Entomopathogenic Fungi in Forest Habitats of Ixodes ricinus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Isolation of Entomopathogenic Fungi
2.4. DNA Extraction
2.5. Molecular Identification of Entomopathogenic Fungi
2.6. Tick Collection for Bioassays
2.7. Sporulation Test and Bioassays
2.8. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raulf, M.K.; Jordan, D.; Fingerle, V.; Strube, C. Association of Borrelia and Rickettsia spp. and bacterial loads in Ixodes ricinus ticks. Ticks Tick-Borne Dis. 2018, 9, 18–24. [Google Scholar] [CrossRef]
- Matei, I.A.; Estrada-Peña, A.; Cutler, S.J.; Vayssier-Taussat, M.; Varela-Castro, L.; Potkoniak, A.; Zeller, H.; Mihalca, A.D. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasit. Vectors 2019, 12, 599. [Google Scholar] [CrossRef] [PubMed]
- Černý, J.; Lynn, G.; Hrnková, J.; Golovchenko, M.; Rudenko, N.; Grubhoffer, L. Management Options for Ixodes ricinus-Associated Pathogens: A Review of Prevention Strategies. Int. J. Environ. Res. Public. Health 2020, 17, 1830. [Google Scholar] [CrossRef] [PubMed]
- Kahl, O.; Gray, J.S. The biology of Ixodes ricinus with emphasis on its ecology. Ticks Tick-Borne Dis. 2023, 14, 102114. [Google Scholar] [CrossRef]
- Burtis, J.; Yavitt, J.; Fahey, T.; Ostfeld, R. Ticks as Soil-Dwelling Arthropods: An Intersection Between Disease and Soil Ecology. J. Med. Entomol. 2019, 56, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Randolph, S. Tick ecology: Processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 2004, 129, S37–S65. [Google Scholar] [CrossRef]
- Pfäffle, M.; Littwin, N.; Muders, S.; Petney, T. The ecology of tick-borne diseases. Int. J. Parasitol. 2013, 43, 1059–1077. [Google Scholar] [CrossRef]
- Randolph, S.E.; Craine, N.G. General framework for comparative quantitative studies on transmission of tick-borne diseases using Lyme borreliosis in Europe as an example. J. Med. Entomol. 1995, 32, 765–777. [Google Scholar] [CrossRef]
- Hornok, S.; Kováts, D.; Flaisz, B.; Csörgő, T.; Könczöl, Á.; Balogh, G.; Csorba, A.; Hunyadi, A. An unexpected advantage of insectivorism: Insect moulting hormones ingested by song birds affect their ticks. Sci. Rep. 2016, 6, 23390. [Google Scholar] [CrossRef]
- Tuininga, A.; Miller, J.; Morath, S.; Daniels, T.; Falco, R.; Marchese, M.; Sahabi, S.; Rosa, D.; Stafford, K. Isolation of Entomopathogenic Fungi from Soils and Ixodes scapularis (Acari: Ixodidae) Ticks: Prevalence and Methods. J. Med. Entomol. 2009, 46, 557–565. [Google Scholar] [CrossRef]
- De Faria, M.R.; Wraight, S.P. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control 2007, 43, 237–256. [Google Scholar] [CrossRef]
- Fernandes, É.; Bittencourt, V. Entomopathogenic fungi against South American tick species. Exp. Appl. Acarol. 2008, 46, 71–93. [Google Scholar] [CrossRef]
- Plewa-Tutaj, K.; Dyczko, D.; Kiewra, D. Sensitivity of Dermacentor reticulatus ticks to entomopathogenic fungi from the genus of Fusarium isolated from ticks. Ann. Parasitol. 2019, 65, 242. [Google Scholar]
- Ub, G.; Narladkar, B. Role of entomopathogenic fungi in tick control: A Review. J. Entomol. Zool. Stud. 2018, 6, 1265–1269. [Google Scholar]
- Wang, S.; Miao, X.; Zhao, W.; Huang, B.; Fan, M.; Li, Z.; Huang, Y. Genetic diversity and population structure among strains of the entomopathogenic fungus, Beauveria bassiana, as revealed by inter-simple sequence repeats (ISSR). Mycol. Res. 2005, 109, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Keyser, C.A.; De Fine Lich, H.H.; Steinwender, B.M.; Meyling, N.V. Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated with agricultural crops in Denmark. BMC Microbiol. 2015, 15, 249. [Google Scholar] [CrossRef]
- Serna-Domínguez, M.G.; Andrade-Michel, G.Y.; Rosas-Valdez, R.; Castro-Félix, P.; Arre-dondo-Bernal, H.C.; Gallou, A. High genetic diversity of the entomopathogenic fungus Beauveria bassiana in Colima, Mexico. J. Invertebr. Pathol. 2019, 163, 67–74. [Google Scholar] [CrossRef]
- Vey, A.; Hoagland, R.E.; Butt, T.M. Toxic metabolites of fungal biocontrol agents. In Fungi as Biocontrol Agents: Progress, Problems and Potential; Bruce, A., Ed.; CABI Publishing: Wallingford, UK, 2009; pp. 311–346. [Google Scholar]
- Schrank, A.; Vainstein, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon 2010, 56, 1267–1274. [Google Scholar] [CrossRef]
- Wang, H.; Peng, H.; Li, W.; Cheng, P.; Gong, M. The Toxins of Beauveria bassiana and the Strategies to Improve Their Virulence to Insects. Front. Microbiol. 2021, 12, 705343. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.; Yadav, P.K. Entomopathogenic fungi and their relevance in sustainable agriculture: A review. Cogent Food Agric. 2023, 9, 2180857. [Google Scholar] [CrossRef]
- Fernandes, É.K.; Bittencourt, V.R.; Roberts, D.W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Exp. Parasitol. 2012, 130, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Ostfeld, R.S.; Price, A.; Hornbostel, V.L.; Benjamin, M.A.; Keesing, F. Controlling Ticks and Tick-borne Zoonoses with Biological and Chemical Agents. Bioscience 2006, 56, 383–394. [Google Scholar] [CrossRef]
- Zeina, G.; Laing, M. Isolation and evaluation of South African isolates of Beauveria bassiana (Hypocreales: Cordycipitaceae) on Rhipicephalus microplus (Acari: Ixodidae). Exp. Appl. Acarol. 2022, 86, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Barker, J. Laboratory Evaluation of the Pathogenicity of Beauveria Bassiana and Metarhizium Anisopliae to Larvae of the Banded Sunflower Moth, Cochylis Hospes (Lepidoptera: Cochylidae). Great Lakes Entomol. 1999, 32, 101–106. [Google Scholar] [CrossRef]
- Gindin, G.; Samish, M.; Zangi, G.; Mishoutchenko, A.; Glazer, I. The susceptibility of different species and stages of ticks to entomopathogenic fungi. Exp. Appl. Acarol. 2002, 28, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, B.H.; Westwood, G.S.; Keyhani, N.O. Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. J. Med. Entomol. 2004, 41, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Samish, M.; Rot, A.; Ment, D.; Barel, S.; Glazer, I.; Gindin, G. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions. Vet. Parasitol. 2014, 206, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Immediato, D.; Iatta, R.; Ramos, R.A.; Lia, R.P.; Porretta, D.; Figueredo, L.A.; Dantas-Torres, F.; Otranto, D. Native strains of Beauveria bassiana for the control of Rhipicephalus sanguineus sensu lato. Parasites Vectors 2015, 8, 80. [Google Scholar] [CrossRef]
- Arieiro Jones, G.; de Souza Perinotto, W.M.; Guedes Camargo, M.; Silva Golo, P.; Elias Pinheiro Bittencourt, V.R. Selection of Metarhizium spp. Brazilian isolates to control Rhipicephalus microplus ticks: In vitro virulence tests and conidiogenesis. Braz. J. Vet. Med. 2021, 43, e002020. [Google Scholar] [CrossRef]
- Kaaya, G.; Hedimbi, M. The use of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, as bio-pesticides for tick control. Int. J. Agric. Sci. 2012, 2, 245–250. [Google Scholar]
- Alonso-Díaz, M.A.; Fernández-Salas, A. Entomopathogenic Fungi for Tick Control in Cattle Livestock from Mexico. Front. Fungal Biol. 2021, 2, 657694. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.F.; Parker, B.L.; Skinner, M.A. Review of Commercial Metarhizium and Beauveria-Based Biopesticides for the Biological Control of Ticks in the USA. Insects 2022, 13, 260. [Google Scholar] [CrossRef]
- Hartelt, K.; Wurst, E.; Collatz, J.; Zimmermann, G.; Kleespies, R.G.; Oeheme, R.M.; Kimmig, P.; Steidle, J.L.M.; Mackenstedt, U. Biological control of the tick Ixodes ricinus with entomopathogenic fungi and nematodes: Preliminary results from laboratory experiments. Int. J. Food Microbiol. 2008, 298, 314–320. [Google Scholar] [CrossRef]
- Wassermann, M.; Selzer, P.; Steidle, J.L.M.; Mackenstedt, U. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores. Ticks Tick-Borne Dis. 2016, 7, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Pirali-Kheirabadi, K.H.; Razzaghi-Abyaneh, M.; Eslamifar, A.; Halajian, A.; Nabian, S. Scanning electron microscopy (SEM) analysis and biological control of Ixodes ricinus using entomopathogenic fungi. Mycol. Iran 2016, 3, 39–46. [Google Scholar]
- Szczepańska, A.; Kiewra, D.; Plewa-Tutaj, K.; Dyczko, D.; Guz-Regner, K. Sensitivity of Ixodes ricinus (L., 1758) and Dermacentor reticulatus (Fabr., 1794) ticks to entomopathogenic fungi isolates: Preliminary study. Parasitol. Res. 2020, 119, 3857–3861. [Google Scholar] [CrossRef] [PubMed]
- Dyczko, D.; Kiewra, D.; Kolanek, A.; Błażej, P. The influence of local environmental factors in southwestern Poland on the abundance of Ixodes ricinus and prevalence of infection with Borrelia burgdorferi s.l. and B. miyamotoi. Parasitol. Res. 2022, 121, 1575–1585. [Google Scholar] [CrossRef]
- Pérez-González, V.H.; Guzmán-Franco, A.W.; Alatorre-Rosas, R.; Hernández-López, J.; Hernández-López, A.; Carrillo-Benítez, M.G.; Baverstock, J. Specific diversity of the entomopathogenic fungi Beauveria and Metarhizium in Mexican agricultural soils. J. Invertebr. Pathol. 2014, 119, 54–61. [Google Scholar] [CrossRef]
- Zimmermann, G. 1986. Galleria bait method for detection of entomopathogenic fungi in soil. J. Appl. Entomol. 1986, 2, 213–215. [Google Scholar] [CrossRef]
- Iwanicki, N.S.A.; Pereira, A.A.; Botelho, A.B.R.Z.; Rezende, J.M.; Moral, R.A.; Zucchi, M.I.; Delalibera, I., Jr. Monitoring of the field application of Metarhizium anisopliae in Brazil revealed high molecular diversity of Metarhizium spp. in insects, soil and sugarcane roots. Sci. Rep. 2019, 9, 4443. [Google Scholar] [CrossRef]
- Humber, R.A. Identification of entomopathogenic fungi. In Manual of Techniques in Invertebrate Pathology; Lacey, L.A., Ed.; Academic: London, UK, 2012; pp. 151–187. [Google Scholar]
- Kepler, R.; Humber, R.; Bischoff, J.; Rehner, S. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 2014, 106, 811–829. [Google Scholar] [CrossRef] [PubMed]
- Perinotto, W.M.; Angelo, I.C.; Golo, P.S.; Quinelato, S.; Camargo, M.G.; Sá, F.A.; Bittencourt, V.R. Susceptibility of different populations of ticks to entomopathogenic fungi. Exp. Parasitol. 2012, 130, 257–260. [Google Scholar] [CrossRef]
- Webster, A.; Souza, U.A.; Martins, J.R.; Klafke, G.; Reck, J.; Schrank, A. Comparative study between Larval Packet Test and Larval Immersion Test to assess the effect of Metarhizium anisopliae on Rhipicephalus microplus tick larvae. Exp. Appl. Acarol. 2018, 74, 455–461. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis. J. Inst. Actuar. 1952, 78, 388–390. [Google Scholar]
- Quesada-Moraga, E.; Navas-Cortés, J.A.; Maranhao, E.A.; Ortiz-Urquiza, A.; Santiago-Alvarez, C. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol. Res. 2007, 111, 947–966. [Google Scholar] [CrossRef]
- Hallouti, A.; Ait Hamza, M.; Zahidi, A.; Ait Hammou, R.; Bouharroud, R.; Ait Ben Aoumar, A.; Boubaker, H. Diversity of entomopathogenic fungi associated with Mediterranean fruit fly (Ceratitis capitata (Diptera: Tephritidae)) in Moroccan Argan forests and nearby area: Impact of soil factors on their distribution. BMC Ecol. 2020, 20, 64. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Oliveira, I.; Gonçalves, F.; Raimundo, F.; Singh, R.K.; Torres, L.; Marques, G. Effect of Soil Chemical Properties on the Occurrence and Distribution of Entomopathogenic Fungi in Portuguese Grapevine Fields. Pathogens 2021, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- Dickie, I.; Reich, P. Ectomycorrhizal fungal communities at forest edges. J. Ecol. 2005, 93, 244–255. [Google Scholar] [CrossRef]
- Ishida, T.; Nara, K.; Hogetsu, T. Host effects on ectomycorrhizal fungal communities: Insight from eight host species in mixed conifer-broadleaf forests. New Phytol. 2007, 174, 430–440. [Google Scholar] [CrossRef]
- Hui, N.; Liu, X.; Kotze, D.; Jumpponen, A.; Francini, G.; Setälä, H. Ectomycorrhizal Fungal Communities in Urban Parks Are Similar to Those in Natural Forests but Shaped by Vegetation and Park Age. AEM 2015, 83, e01797-17. [Google Scholar] [CrossRef]
- Popowska-Nowak, E.; Skrzecz, I.; Tumialis, D.; Pezowicz, E.; Samborska, I.; Góral, K. Entomopathogenic fungi in the soils of forest plantations: Towards the control of large pine weevil, Hylobius abietis. Balt. For. 2016, 22, 8–15. [Google Scholar]
- Majchrowska-Safaryan, A.; Tkaczuk, C. Abundance of Entomopathogenic Fungi in Leaf Litter and Soil Layers in Forested Habitats in Poland. Insects 2021, 12, 134. [Google Scholar] [CrossRef]
- Xiao, G.; Ying, S.H.; Zheng, P.; Wang, Z.L.; Zhang, S.; Xie, X.Q.; Shang, Y.; St Leger, R.J.; Zhao, G.P.; Wang, C.; et al. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci. Rep. 2012, 2, 483. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.P.; Hughes, D.P. Diversity of Entomopathogenic Fungi: Which Groups Conquered the Insect Body? Adv. Genet. 2016, 94, 1–39. [Google Scholar] [PubMed]
- Wang, C.; Wang, S. Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements. Ann. Rev. Entomol. 2017, 62, 73–90. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.; Reilly, C.; Hotchkiss, M. Comparative Impact of Artificial Selection for Fungicide Resistance on Beauveria bassiana and Metarhizium brunneum. Environ. Entomol. 2011, 40, 59–65. [Google Scholar] [CrossRef]
- Shang, Y.; Duan, Z.; Huang, W.; Gao, Q.; Wang, C. Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. J. Invertebr. Pathol. 2012, 109, 105–109. [Google Scholar] [CrossRef]
- Rajula, J.; Rahman, A.; Krutmuang, P. Entomopathogenic fungi in Southeast Asia and Africa and their possible adoption in biological control. Biol. Control 2020, 151, 104399. [Google Scholar] [CrossRef]
- Fernández-Salas, A.; Alonso-Díaz, M.A.; Alonso-Morales, R.A. Effect of entomopathogenic native fungi from paddock soils against Rhipicephalus microplus larvae with different toxicological behaviors to acaricides. Exp. Parasitol. 2019, 204, 107729. [Google Scholar] [CrossRef]
- Kalsbeek, V.; Frandsen, F.; Steenberg, T. Entomopathogenic fungi associated with Ixodes ricinus ticks. Exp. Appl. Acarol. 2004, 19, 45–51. [Google Scholar] [CrossRef]
- Rot, A.; Gindin, G.; Ment, D.; Mishoutchenko, A.; Glazer, I.; Samish, M. On-host control of the brown dog tick Rhipicephalus sanguineus Latreille (Acari: Ixodidae) by Metarhizium brunneum (Hypocreales: Clavicipitaceae). Vet. Parasitol. 2013, 193, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Samish, M.; Gindin, G.; Alekseev, E.; Glazer, I. Pathogenicity of entomopathogenic fungi to different developmental stages of Rhipicephalus sanguineus (Acari: Ixodidae). J. Parasitol. 2001, 87, 1355–1359. [Google Scholar] [CrossRef] [PubMed]
Type of Forest Habitat | Site | Number of EF Isolates (%) | ||
---|---|---|---|---|
Metarhizium | Beauveria | Isaria | ||
BF | 1 | 4 | 4 | - |
6 | 15 | - | 1 | |
9 | 1 | - | 10 | |
Total | 20 (37.7) | 4 (7.5) | 11 (20.8) | |
MBCF | 2 | 12 | 1 | - |
5 | - | - | - | |
7 | - | - | - | |
Total | 12 (22.7) | 1 (1.9) | - | |
CF | 3 | 2 | - | - |
4 | 1 | - | - | |
8 | 2 | - | - | |
Total | 5 (9.4) | - | - | |
Total | 37 (69.8) | 5 (9.4) | 11 (20.8) |
Strain | Germination (%) | Developmental Stage of Ticks | ||
---|---|---|---|---|
LC50 (cfu/mL) | ||||
Females | Males | Nymphs | ||
1.3(3) Metarhizium sp. | 92 | 8.5 × 105 | 3.4 × 106 | 1.2 × 107 |
1.4(4) Beauveria bassiana | 96 | 1.9 × 107 | 2.9 × 106 | 2.6 × 106 |
2.3(1) Beauveria sp. | 91 | 2.9 × 106 | 3.0 × 106 | 6.6 × 107 |
3.4(2) Metarhizium anisopliae | 95 | 6.1 × 105 | 1.6 × 105 | 1.4 × 106 |
6.4(6) Metarhizium anisopliae | 92 | 2.9 × 105 | 1.8 × 106 | 1.9 × 106 |
9.4(4) Metarhizium anisopliae | 90 | 2.8 × 106 | 1.3 × 107 | 1.4 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyczko, D.; Plewa-Tutaj, K.; Kiewra, D. Entomopathogenic Fungi in Forest Habitats of Ixodes ricinus. Insects 2024, 15, 341. https://doi.org/10.3390/insects15050341
Dyczko D, Plewa-Tutaj K, Kiewra D. Entomopathogenic Fungi in Forest Habitats of Ixodes ricinus. Insects. 2024; 15(5):341. https://doi.org/10.3390/insects15050341
Chicago/Turabian StyleDyczko, Dagmara, Kinga Plewa-Tutaj, and Dorota Kiewra. 2024. "Entomopathogenic Fungi in Forest Habitats of Ixodes ricinus" Insects 15, no. 5: 341. https://doi.org/10.3390/insects15050341
APA StyleDyczko, D., Plewa-Tutaj, K., & Kiewra, D. (2024). Entomopathogenic Fungi in Forest Habitats of Ixodes ricinus. Insects, 15(5), 341. https://doi.org/10.3390/insects15050341