Effects of Artificial Sugar Supplementation on the Composition and Nutritional Potency of Honey from Apis cerana
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Methods
2.2.1. Physicochemical Analysis
2.2.2. Antioxidant Activity
Total Flavonoid and Total Phenolic Contents
Antioxidant Activity Assays (Radical Scavenging Activity)
2.2.3. Effect of Honey with Different Sugar Sources on the Lifespan of Worker Bees
2.2.4. Effect of Honey with Different Sugar Sources on Learning and Memory of Worker Bees
2.2.5. Effect of Honey with Different Sugar Sources on the Expression of Learning- and Memory-Related Genes of Worker Bees
2.3. Statistical Analysis
3. Results
3.1. Physicochemical Analysis
3.2. Antioxidant Activity
3.2.1. Total Flavonoid and Total Phenolic Contents
3.2.2. Radical Scavenging Activity
3.3. Lifespan Analysis
3.4. Analysis of Memory and Learning Abilities
3.5. Gene Expression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Attia, Y.A.; Giorgio, G.M.; Addeo, N.F.; Asiry, K.A.; Piccolo, G.; Nizza, A.; Di Meo, C.; Alanazi, N.A.; Al-Qurashi, A.D.; El-Hack, M.E.A. COVID-19 pandemic: Impacts on bees, beekeeping, and potential role of bee products as antiviral agents and immune enhancers. Environ. Sci. Pollut. Res. 2022, 29, 9592–9605. [Google Scholar] [CrossRef] [PubMed]
- Didaras, N.A.; Karatasou, K.; Dimitriou, T.G.; Amoutzias, G.D.; Mossialos, D. Antimicrobial activity of bee-collected pollen and beebread: State of the art and future perspectives. Antibiotics 2020, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- El Ghouizi, A.; Bakour, M.; Laaroussi, H.; Ousaaid, D.; El Menyiy, N.; Hano, C.; Lyoussi, B. Bee pollen as functional food: Insights into its composition and therapeutic properties. Antioxidants 2023, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Zaheen, Z.; Yatoo, A.M.; Ali, S.; Ali, M.N.; Majid, S.; Rasool, S.; Rashid, S.M.; Ahmad, S.B.; Mir, M.u.R.; Zehra, U. Honey: Types, composition and antimicrobial mechanisms. Ther. Appl. Honey Phytochem. 2020, 1, 193–214. [Google Scholar]
- Kuropatnicki, A.K.; Kłósek, M.; Kucharzewski, M. Honey as medicine: Historical perspectives. J. Apic. Res. 2018, 57, 113–118. [Google Scholar] [CrossRef]
- Tafere, D.A. Chemical composition and uses of honey: A review. J. Food Sci. Nutr. Res. 2021, 4, 194–201. [Google Scholar]
- Ahmad, R.S.; Hussain, M.B.; Saeed, F.; Waheed, M.; Tufail, T. Phytochemistry, metabolism, and ethnomedical scenario of honey: A concurrent review. Int. J. Food Prop. 2017, 20, S254–S269. [Google Scholar] [CrossRef]
- Sperandio, G.; Simonetto, A.; Carnesecchi, E.; Costa, C.; Hatjina, F.; Tosi, S.; Gilioli, G. Beekeeping and honey bee colony health: A review and conceptualization of beekeeping management practices implemented in Europe. Sci. Total Environ. 2019, 696, 133795. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Qing, X.-D.; Mu, S.-T.; Wang, D.; Zheng, J.-J.; Zhou, S.-J.; Kang, C.; Liu, Z. Authentication of honey of different nectar sources and antioxidant property evaluation by phenolic composition analysis with chemometrics. Food Control 2021, 124, 107900. [Google Scholar] [CrossRef]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.; Mafra, I. A comprehensive review on the main honey authentication issues: Production and origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef]
- Fakhlaei, R.; Selamat, J.; Khatib, A.; Razis, A.F.A.; Sukor, R.; Ahmad, S.; Babadi, A.A. The toxic impact of honey adulteration: A review. Foods 2020, 9, 1538. [Google Scholar] [CrossRef]
- Landaverde, R.; Rodriguez, M.T.; Parrella, J.A. Honey production and climate change: Beekeepers’ perceptions, farm adaptation strategies, and information needs. Insects 2023, 14, 493. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.J.; Musharraf, S.G.; Choudhary, M.I. Application of analytical methods in authentication and adulteration of honey. Food Chem. 2017, 217, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Guler, A.; Bakan, A.; Nisbet, C.; Yavuz, O. Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum Officinarum L.) syrup. Food Chem. 2007, 105, 1119–1125. [Google Scholar] [CrossRef]
- Kamal, M.M.; Rashid, M.H.U.; Mondal, S.C.; El Taj, H.F.; Jung, C. Physicochemical and microbiological characteristics of honey obtained through sugar feeding of bees. J. Food Sci. Technol. 2019, 56, 2267–2277. [Google Scholar] [CrossRef] [PubMed]
- Kaftanoglu, O.; Linksvayer, T.A.; Page, R.E., Jr. Rearing honey bees, apis mellifera, in vitro i: Effects of sugar concentrations on survival and development. J. Insect Sci. 2011, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, B.; Liu, Z.; Wang, Y.; Wang, H. Effects of different overwintering feeds on midgut digestive enzyme activities, tissue development status and antioxidant enzyme gene expression of honeybees. Chin. J. Anim. Nutr. 2017, 29, 1183–1190. [Google Scholar]
- Papežíková, I.; Palíková, M.; Syrová, E.; Zachová, A.; Somerlíková, K.; Kováčová, V.; Pecková, L. Effect of feeding honey bee (apis mellifera hymenoptera: Apidae) colonies with honey, sugar solution, inverted sugar, and wheat starch syrup on nosematosis prevalence and intensity. J. Econ. Entomol. 2020, 113, 26–33. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO. Recommended international code of practice general principles of food hygiene. CAC/RCP Rev. 2003, 4, 1–1969. [Google Scholar]
- Thrasyvoulou, A.; Tananaki, C.; Goras, G.; Karazafiris, E.; Dimou, M.; Liolios, V.; Kanelis, D.; Gounari, S. Legislation of honey criteria and standards. J. Apic. Res. 2018, 57, 88–96. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, L.; Li, G.; Li, H.; Ye, D.; Li, X. Nondestructive determination of diastase activity of honey based on visible and near-infrared spectroscopy. Molecules 2019, 24, 1244. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-Q.; Milne, R.I.; Zhou, H.-X.; Ma, X.-L.; Fang, J.-Y.; Zha, H.-G. Floral nectar chitinase is a potential marker for monofloral honey botanical origin authentication: A case study from loquat (Eriobotrya japonica lindl.). Food Chem. 2019, 282, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Soyseven, M.; Sezgin, B.; Arli, G. A novel, rapid and robust hplc-elsd method for simultaneous determination of fructose, glucose and sucrose in various food samples: Method development and validation. J. Food Compos. Anal. 2022, 107, 104400. [Google Scholar] [CrossRef]
- Mehrotra, S.; Rai, P.; Sharma, S.K. A quick and simple paper-based method for detection of furfural and 5-hydroxymethylfurfural in beverages and fruit juices. Food Chem. 2022, 377, 131532. [Google Scholar] [CrossRef] [PubMed]
- Otmani, A.; Amessis-Ouchemoukh, N.; Birinci, C.; Yahiaoui, S.; Kolayli, S.; Rodríguez-Flores, M.S.; Escuredo, O.; Seijo, M.C.; Ouchemoukh, S. Phenolic compounds and antioxidant and antibacterial activities of algerian honeys. Food Biosci. 2021, 42, 101070. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Z.; Wang, S.; Wu, X. The difference in composition and nutritional potency of honey extracted by centrifugation and pressed processes. Food Qual. Saf. 2023, 7, fyad018. [Google Scholar] [CrossRef]
- Ibrahimi, H.; Hajdari, A. Phenolic and flavonoid content, and antioxidant activity of honey from Kosovo. J. Apic. Res. 2020, 59, 452–457. [Google Scholar] [CrossRef]
- Simonetti, A.; Perna, A.; Grassi, G.; Gambacorta, E. Antioxidant activity of different cheese-honey combinations before and after in vitro gastrointestinal digestion. LWT 2020, 131, 109725. [Google Scholar] [CrossRef]
- Ali, H.; Iqbal, J.; Raweh, H.S.; Alqarni, A.S. Proboscis behavioral response of four honey bee apis species towards different concentrations of sucrose, glucose, and fructose. Saudi J. Biol. Sci. 2021, 28, 3275–3283. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, Z.; Yang, H.; He, X.; Yan, W.; Zeng, Z. The adverse impact on lifespan, immunity, and forage behavior of worker bees (apis mellifera linnaeus 1758) after exposure to flumethrin. Sci. Total Environ. 2023, 858, 160146. [Google Scholar] [CrossRef]
- Liao, C.; Yuan, A.; Wu, X.; Guo, Y. Effects of vitamin b2 on lifespan and learning memory ability of worker bees for apis cerana cerana. Chin. J. Anim. Nutr. 2016, 28, 3346–3351. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative pcr and the 2−δδct method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wakgari, M.; Yigezu, G. Honeybee keeping constraints and future prospects. Cogent Food Agric. 2021, 7, 1872192. [Google Scholar] [CrossRef]
- Wang, W.; Liu, T.; Wu, X.; Zhang, F. Effect of high fructose syrup diet exposure on honeybee colony (Apis mellifera ligustica). Acta Agric. Univ. Jiangxiensis 2012, 34, 5. [Google Scholar]
- Singh, I.; Singh, S. Honey moisture reduction and its quality. J. Food Sci. Technol. 2018, 55, 3861–3871. [Google Scholar] [CrossRef] [PubMed]
- Engidaw, D.; Alemayehu, K.; Mustofa, S.; Tilahun, A. Effect of season on the major physico-chemical parameters of honey product. Food Environ. Saf. J. 2020, 19, 14–24. [Google Scholar]
- Živkov Baloš, M.; Popov, N.; Jakšić, S.; Mihaljev, Ž.; Pelić, M.; Ratajac, R.; Ljubojević Pelić, D. Sunflower honey—Evaluation of quality and stability during storage. Foods 2023, 12, 2585. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Zhao, H.; Liu, C.; Zhu, M.; Gao, H.; Cheng, N.; Cao, W. Discrimination of natural mature acacia honey based on multi-physicochemical parameters combined with chemometric analysis. Molecules 2019, 24, 2674. [Google Scholar] [CrossRef] [PubMed]
- Eshete, Y.; Eshete, T. A review on the effect of processing temperature and time duration on commercial honey quality. Madridge J. Food Technol. 2019, 4, 158–162. [Google Scholar] [CrossRef]
- De Arruda, V.A.S.; Pereira, A.A.S.; de Freitas, A.S.; Barth, O.M.; de Almeida-Muradian, L.B. Dried bee pollen: B complex vitamins, physicochemical and botanical composition. J. Food Compos. Anal. 2013, 29, 100–105. [Google Scholar] [CrossRef]
- Parachnowitsch, A.L.; Manson, J.S.; Sletvold, N. Evolutionary ecology of nectar. Ann. Bot. 2019, 123, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; Biluca, F.C.; Gonzaga, L.V.; Fett, R.; Dalmarco, E.M.; Caon, T.; Costa, A.C.O. In vitro anti-inflammatory properties of honey flavonoids: A review. Food Res. Int. 2021, 141, 110086. [Google Scholar] [CrossRef]
- Brudzynski, K. Honey as an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Antibiotics 2021, 10, 551. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Liebig, J. Genetic basis of chemical communication in eusocial insects. Genes Dev. 2021, 35, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, M.R.; Calla, B. Honey as a functional food for apis mellifera. Annu. Rev. Entomol. 2021, 66, 185–208. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.-L.; Liao, C.-H.; Wang, Z.-L.; Wu, X.-B. Effect of royal jelly on longevity and memory-related traits of Apis mellifera workers. J. Asia-Pac. Entomol. 2018, 21, 1430–1433. [Google Scholar] [CrossRef]
- Tosun, M.; Keles, F. Investigation methods for detecting honey samples adulterated with sucrose syrup. J. Food Compos. Anal. 2021, 101, 103941. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Khalifa, S.A.; Abd El-Wahed, A.; Gao, R.; Guo, Z.; Tahir, H.E.; Zhao, C.; Du, M.; Farag, M.A.; Musharraf, S.G. Honeybee products: An updated review of neurological actions. Trends Food Sci. Technol. 2020, 101, 17–27. [Google Scholar] [CrossRef]
- Berke, J.D. What does dopamine mean? Nat. Neurosci. 2018, 21, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.J.; Kogan, J.H.; Frankland, P.W.; Kida, S. Creb and memory. Annu. Rev. Neurosci. 1998, 21, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.A.R.; An, J.; Jeong, S. The pleiotropic face of creb family transcription factors. Mol. Cells 2023, 46, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Mustard, J.A.; Pham, P.M.; Smith, B.H. Modulation of motor behavior by dopamine and the d1-like dopamine receptor amdop2 in the honey bee. J. Insect Physiol. 2010, 56, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Baracchi, D.; Cabirol, A.; Devaud, J.-M.; Haase, A.; d’Ettorre, P.; Giurfa, M. Pheromone components affect motivation and induce persistent modulation of associative learning and memory in honey bees. Commun. Biol. 2020, 3, 447. [Google Scholar] [CrossRef] [PubMed]
- Ragab, M.A.; El-Yazbi, A.F.; El-Hawiet, A. Fast economic electrochemical assay for vitamins and heavy mineral components in honey samples of different botanical origin. Microchem. J. 2020, 155, 104770. [Google Scholar] [CrossRef]
- Sawicki, T.; Bączek, N.; Starowicz, M. Characterisation of the total phenolic, vitamins c and e content and antioxidant properties of the beebread and honey from the same batch. Czech J. Food Sci. 2020, 38, 158–163. [Google Scholar] [CrossRef]
Gene Names | Forward Primer (5′—3′) | Reverse Primer (5′—3′) |
---|---|---|
AcCREB | TGAAAATCCAGTTTGATCATTCGAT | TTCAAATAATCAGCAAATCATGCAC |
Acdop2 | TTGGTTCTCCCTCTCTCCGA | CCAAGAGGTCACTATGAATGCG |
Acdop3 | AGAAGGACAAGAAAAATGCCG | CCAAGAGGTCACTATGAATGCG |
GAPDH | GCTGGTTTCATCGATGGTTT | ACGATTTCGACCACCGTAA |
Process | Groups | ||
---|---|---|---|
Flower-Sourced Honey | Honey-Sourced Honey | Sugar-Based Product | |
Moisture % | 21.660 ± 0.337 a | 22.393 ± 0.547 a | 22.213 ± 0.348 a |
Amylase activity [mL/(g·h)] | 27.149 ± 0.742 a | 27.030 ± 0.231 a | 26.868 ± 1.025 a |
Total acidity (mL/kg) | 24.594 ± 0.675 a | 28.425 ± 0.455 b | 37.829 ± 0.525 c |
Fructose % | 33.426 ± 0.609 a | 30.427 ± 0.026 b | 29.387 ± 1.748 b |
Sucrose % | 1.526 ± 0.044 a | 1.585 ± 0.023 a | 4.849 ± 0.396 b |
Glucose % | 43.807 ± 1.654 a | 35.010 ± 0.076 b | 26.986 ± 1.207 c |
Total proteins (mg/100 g) | 39.725 ± 3.421 a | 21.571 ± 3.929 b | 16.817 ± 3.124 c |
HMF (mL/kg) | ND | ND | ND |
Groups | Average Lifespan/Days | Median/Days | Sample Size |
---|---|---|---|
FH | 26.743 ± 1.707 a | 26.500 ± 0.500 a | 236 |
HH | 23.867 ± 0.121 b | 23.500 ± 0.500 b | 211 |
SP | 22.198 ± 0.543 b | 21.833 ± 1.041 bc | 237 |
Control | 20.257 ± 1.059 c | 20.000 ± 2.074 c | 256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Liu, J.; Pan, Q.; Shi, X.; Wu, X. Effects of Artificial Sugar Supplementation on the Composition and Nutritional Potency of Honey from Apis cerana. Insects 2024, 15, 344. https://doi.org/10.3390/insects15050344
Hu Y, Liu J, Pan Q, Shi X, Wu X. Effects of Artificial Sugar Supplementation on the Composition and Nutritional Potency of Honey from Apis cerana. Insects. 2024; 15(5):344. https://doi.org/10.3390/insects15050344
Chicago/Turabian StyleHu, Yueyang, Jianhui Liu, Qizhong Pan, Xinxin Shi, and Xiaobo Wu. 2024. "Effects of Artificial Sugar Supplementation on the Composition and Nutritional Potency of Honey from Apis cerana" Insects 15, no. 5: 344. https://doi.org/10.3390/insects15050344
APA StyleHu, Y., Liu, J., Pan, Q., Shi, X., & Wu, X. (2024). Effects of Artificial Sugar Supplementation on the Composition and Nutritional Potency of Honey from Apis cerana. Insects, 15(5), 344. https://doi.org/10.3390/insects15050344