High Rates of Honey Bee Colony Losses and Regional Variability in Ethiopia Based on the Standardised COLOSS 2023 Survey
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Regions and Description
2.2. Survey and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Colony Management in Oromia and Tigray Regions
3.2. Colony Loss Rates, Components of Loss and Risk Factors
3.3. Annual Colony Development and Management Calendar
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Engelsdorp, D.; Evans, J.D.; Saegerman, C.; Mullin, C.; Haubruge, E.; Nguyen, B.K.; Frazier, M.; Frazier, J.; Cox-Foster, D.; Chen, Y.; et al. Colony Collapse Disorder: A Descriptive Study. PLoS ONE 2009, 4, e6481. [Google Scholar] [CrossRef]
- Ellis, J.D.; Evans, J.D.; Pettis, J. Colony Losses, Managed Colony Population Decline, and Colony Collapse Disorder in the United States. J. Apic. Res. 2010, 49, 134–136. [Google Scholar] [CrossRef]
- Brodschneider, R.; Gray, A.; Adjlane, N.; Ballis, A.; Brusbardis, V.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; Dahle, B.; de Graaf, D.C.; et al. Multi-Country Loss Rates of Honey Bee Colonies during Winter 2016/2017 from the COLOSS Survey. J. Apic. Res. 2018, 57, 452–457. [Google Scholar] [CrossRef]
- Gray, A.; Brodschneider, R.; Adjlane, N.; Ballis, A.; Brusbardis, V.; Charrière, J.D.; Chlebo, R.F.; Coffey, M.; Cornelissen, B.; Amaro da Costa, C.; et al. Loss Rates of Honey Bee Colonies during Winter 2017/18 in 36 Countries Participating in the COLOSS Survey, Including Effects of Forage Sources. J. Apic. Res. 2019, 58, 479–485. [Google Scholar] [CrossRef]
- Gray, A.; Adjlane, N.; Arab, A.; Ballis, A.; Brusbardis, V.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; Cornelissen, B.; Amaro da Costa, C.; et al. Honey Bee Colony Winter Loss Rates for 35 Countries Participating in the COLOSS Survey for Winter 2018–2019, and the Effects of a New Queen on the Risk of Colony Winter Loss. J. Apic. Res. 2020, 59, 744–751. [Google Scholar] [CrossRef]
- Gray, A.; Adjlane, N.; Arab, A.; Ballis, A.; Brusbardis, V.; Bugeja Douglas, A.; Cadahía, L.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; et al. Honey Bee Colony Loss Rates in 37 Countries Using the COLOSS Survey for Winter 2019–2020: The Combined Effects of Operation Size, Migration and Queen Replacement. J. Apic. Res. 2023, 62, 204–210. [Google Scholar] [CrossRef]
- Aurell, D.; Bruckner, S.; Wilson, M.; Steinhauer, N.; Williams, G.R. A National Survey of Managed Honey Bee Colony Losses in the USA: Results from the Bee Informed Partnership for 2020–21 and 2021–22. J. Apic. Res. 2024, 63, 1–14. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and Control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef]
- Guzmán-Novoa, E.; Eccles, L.; Calvete, Y.; McGowan, J.; Kelly, P.G.; Correa-Benítez, A. Varroa destructor Is the Main Culprit for the Death and Reduced Populations of Overwintered Honey Bee (Apis mellifera) Colonies in Ontario, Canada. Apidologie 2010, 41, 443–450. [Google Scholar] [CrossRef]
- Noël, A.; Le Conte, Y.; Mondet, F. Varroa destructor: How Does It Harm Apis mellifera Honey Bees and What Can Be Done about It? Emerg. Top Life Sci. 2020, 4, 45–57. [Google Scholar] [CrossRef]
- Brodschneider, R.; Schlagbauer, J.; Arakelyan, I.; Ballis, A.; Brus, J.; Brusbardis, V.; Cadahía, L.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; et al. Spatial Clusters of Varroa destructor Control Strategies in Europe. J. Pest Sci. (2004) 2023, 96, 759–783. [Google Scholar] [CrossRef]
- Blacquière, T.; Boot, W.; Calis, J.; Moro, A.; Neumann, P.; Panziera, D. Darwinian Black Box Selection for Resistance to Settled Invasive Varroa destructor Parasites in Honey Bees. Biol. Invasions 2019, 21, 2519–2528. [Google Scholar] [CrossRef]
- Martin, S.J.; Hawkins, G.P.; Brettell, L.E.; Reece, N.; Correia-Oliveira, M.E.; Allsopp, M.H. Varroa destructor Reproduction and Cell Re-Capping in Mite-Resistant Apis mellifera Populations. Apidologie 2020, 51, 369–381. [Google Scholar] [CrossRef]
- Mondet, F.; Beaurepaire, A.; McAfee, A.; Locke, B.; Alaux, C.; Blanchard, S.; Danka, B.; Le Conte, Y. Honey Bee Survival Mechanisms against the Parasite Varroa destructor: A Systematic Review of Phenotypic and Genomic Research Efforts. Int. J. Parasitol. 2020, 50, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Luis, A.R.; Grindrod, I.; Webb, G.; Piñeiro, A.P.; Martin, S.J. Recapping and Mite Removal Behaviour in Cuba: Home to the World’s Largest Population of Varroa-Resistant European Honeybees. Sci. Rep. 2022, 12, 15597. [Google Scholar] [CrossRef] [PubMed]
- Begna, D. Occurrences and Distributions of Honeybee (Apis mellifera) Varroa Mite (Varroa destructor) in Tigray Region, Ethiopia. J. Fish. Livest. Prod. 2014, 2, 10–4172. [Google Scholar] [CrossRef]
- Shegaw, T.; Arke, A.; Belay, N.; Habte Giorgis, D. Diagnostic Survey on Varroa Mite (Varroa destructor) Prevalence in South-Western Ethiopia. Cogent Food Agric. 2022, 8, 2143610. [Google Scholar] [CrossRef]
- Gela, A.; Atickem, A.; Bezabeh, A.; Woldehawariat, Y.; Gebresilassie, A. Insights into Varroa Mite (Varroa destructor) Infestation Levels in Local Honeybee (Apis mellifera) Colonies of Ethiopia. J. Appl. Entomol. 2023, 147, 798–808. [Google Scholar] [CrossRef]
- Robi, D.T.; Temteme, S.; Aleme, M.; Bogale, A.; Getachew, A.; Mendesil, E. Epidemiology, Factors Influencing Prevalence and Level of Varroosis Infestation (Varroa destructor) in Honeybee (Apis mellifera) Colonies in Different Agroecologies of Southwest Ethiopia. Parasite Epidemiol. Control 2023, 23, e00325. [Google Scholar] [CrossRef]
- Overturf, K.A.; Steinhauer, N.; Molinari, R.; Wilson, M.E.; Watt, A.C.; Cross, R.M.; Williams, G.R.; Rogers, R. Winter Weather Predicts Honey Bee Colony Loss at the National Scale. Ecol. Indic. 2022, 145, 109709. [Google Scholar] [CrossRef]
- Insolia, L.; Molinari, R.; Rogers, S.R.; Williams, G.R.; Chiaromonte, F.; Calovi, M. Honey Bee Colony Loss Linked to Parasites, Pesticides and Extreme Weather across the United States. Sci. Rep. 2022, 12, 20787. [Google Scholar] [CrossRef] [PubMed]
- Landaverde, R.; Rodriguez, M.T.; Parrella, J.A. Honey Production and Climate Change: Beekeepers’ Perceptions, Farm Adaptation Strategies, and Information Needs. Insects 2023, 14, 493. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; Straub, L. Beekeeping under Climate Change. J. Apic. Res. 2023, 62, 963–968. [Google Scholar] [CrossRef]
- Rafferty, N.E.; Diez, J.M.; Bertelsen, C.D. Changing Climate Drives Divergent and Nonlinear Shifts in Flowering Phenology across Elevations. Curr. Biol. 2020, 30, 432–441.e3. [Google Scholar] [CrossRef] [PubMed]
- McNally, L.C.; Schneider, S.S. Seasonal Cycles of Growth, Development and Movement of the African Honey Bee, Apis mellifera scutellata, in Africa. Ins. Soc. 1992, 39, 167–179. [Google Scholar] [CrossRef]
- Hailu, T.G.; Wakjira, K.; Gray, A. Honey Bee Colony Population Annual Dynamics in Northern Ethiopia’s Semi-Arid Region, Tigray. J. Apic. Res. 2024, 1–10. [Google Scholar] [CrossRef]
- Gebretinsae, T.; Tesfay, Y. Honeybee Colony Marketing and Its Implications for Queen Rearing and Beekeeping Development in Tigray, Ethiopia. Int. J. Livest. Prod. 2014, 5, 117–128. [Google Scholar] [CrossRef]
- Jara, L.; Ruiz, C.; Martín-Hernández, R.; Muñoz, I.; Higes, M.; Serrano, J.; De la Rúa, P. The Effect of Migratory Beekeeping on the Infestation Rate of Parasites in Honey Bee (Apis mellifera) Colonies and on Their Genetic Variability. Microorganisms 2021, 9, 22. [Google Scholar] [CrossRef]
- Adgaba, N. Selling Honeybee Colonies as a Source of Income for Subsistence Beekeepers. Bees Dev. 2002, 64, 2–3. [Google Scholar]
- Central Statistical Agency (CSA). Agricultural Sample Survey 2017/18 [2010 E.C.]: Report on Livestock and Livestock Characteristics; CSA: Addis Ababa, Ethiopia, 2018; Volume II. [Google Scholar]
- Hailu, T.G.; Chagunda, M.; Rosenkranz, P. Sustainable Development Outlooks to Subsistent Apiculture in a Transition: The Case of Ethiopia. J. Apic. Res. 2023, 62, 730–740. [Google Scholar] [CrossRef]
- Bahadur Poudel, P.; Ram Poudel, M.; Gautam, A.; Phuyal, S.; Krishna Tiwari, C.; Bashyal, N.; Bashyal, S. COVID-19 and Its Global Impact on Food and Agriculture. J. Biol. Todays World 2020, 9, 221. [Google Scholar]
- Kassegn, A.; Endris, E. Review on Socio-Economic Impacts of ‘Triple Threats’ of COVID-19, Desert Locusts, and Floods in East Africa: Evidence from Ethiopia. Cogent Soc. Sci. 2021, 7, 1885122. [Google Scholar] [CrossRef]
- World Peace Foundation Report 2021. In Starving Tigray; World Peace Foundation: Somerville, MA, USA, 2021.
- Demissie, B.; Nyssen, J.; Annys, S.; Negash, E.; Gebrehiwet, T.; Abay, F.; Wolff, E. Geospatial Solutions for Evaluating the Impact of the Tigray Conflict on Farming. Acta Geophys. 2022, 70, 1285–1299. [Google Scholar] [CrossRef]
- Gesesew, H.; Berhane, K.; Siraj, E.S.; Siraj, D.; Gebregziabher, M.; Gebre, Y.G.; Gebreslassie, S.A.; Amdes, F.; Tesema, A.G.; Siraj, A.; et al. The Impact of War on the Health System of the Tigray Region in Ethiopia: An Assessment. BMJ Glob. Health 2021, 6, e007328. [Google Scholar] [CrossRef] [PubMed]
- Gebrekirstos, A.; Birhane, E. The War on Tigray Wiped out Decades of Environmental Progress: How to Start Again 2023. The Conversation. Available online: https://theconversation.com/the-war-on-tigray-wiped-out-decades-of-environmental-progress-how-to-start-again-201062 (accessed on 5 April 2023).
- Tekulu, F.B.; Asgedom, D.B.; Gebre, H.T.; Desta, G.M.; Shifare, T.H.; Hadigu, T.B. The Effect of War on Educational Institutions of Eastern Tigray Zone, Tigray State, Ethiopia. Res. Sq. 2023, preprint. [Google Scholar] [CrossRef]
- Ngussie, H.G.; Hailu, T.G. Tigray War Put Honey Bees in Peril. Bee World 2023, 100, 51–55. [Google Scholar] [CrossRef]
- Lewoyehu, M.; Amare, M. Comparative Assessment on Selected Physicochemical Parameters and Antioxidant and Antimicrobial Activities of Honey Samples from Selected Districts of the Amhara and Tigray Regions, Ethiopia. Int. J. Food Sci. 2019, 2019, 4101695. [Google Scholar] [CrossRef] [PubMed]
- R Core Team 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 19 May 2024).
- JMP Statistical Discovery LLC. Discovering JMP® 2022–2023, Version 17; JMP Statistical Discovery LLC: Cary, NC, USA, 2022.
- Food and Agriculture Organization of the United Nations (FAO); International Institute for Applied Systems Analysis (IIASA). Global Agro-Ecological Zones Data Portal. Global Agro-Ecological Zones. Available online: https://gaez.fao.org/ (accessed on 9 May 2024).
- Gratzer, K.; Wakjira, K.; Fiedler, S.; Brodschneider, R. Challenges and Perspectives for Beekeeping in Ethiopia. A Review. Agron. Sustain. Dev. 2021, 41, 46. [Google Scholar] [CrossRef]
- Kükrer, M.; Kence, M.; Kence, A. Honey Bee Diversity Is Swayed by Migratory Beekeeping and Trade Despite Conservation Practices: Genetic Evidence for the Impact of Anthropogenic Factors on Population Structure. Front. Ecol. Evol. 2021, 9, 556816. [Google Scholar] [CrossRef]
- Cánovas, F.; De La Rúa, P.; Serrano, J.; Galián, J. Microsatellite Variability Reveals Beekeeping Influences on Iberian Honeybee Populations. Apidologie 2011, 42, 235–251. [Google Scholar] [CrossRef]
- Melicher, D.; Wilson, E.S.; Bowsher, J.H.; Peterson, S.S.; Yocum, G.D.; Rinehart, J.P. Long-Distance Transportation Causes Temperature Stress in the Honey Bee, Apis mellifera (Hymenoptera: Apidae). Environ. Entomol. 2019, 48, 691–701. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.; Strand, M.K.; Tarpy, D.R.; Rueppell, O. Impact of Honey Bee Migratory Management on Pathogen Loads and Immune Gene Expression Is Affected by Complex Interactions with Environment, Worker Life History, and Season. J. Insect Sci. 2022, 22, 17. [Google Scholar] [CrossRef] [PubMed]
- Medina-Flores, C.A.; López-Carlos, M.; Carrillo-Muro, O.; Gray, A. Honey Bee Colony Losses in Mexico’s Semi-Arid High Plateau for the Winters 2016–2017 to 2021–2022. Insects 2023, 14, 453. [Google Scholar] [CrossRef] [PubMed]
- Akyol, E.; Yeninar, H.; Korkmaz, A.; Çakmak, I. An Observation Study on the Effects of Queen Age on Some Characteristics of Honey Bee Colonies. Ital. J. Anim. Sci. 2008, 7, 19–25. [Google Scholar] [CrossRef]
- Lodesani, M.; Costa, C.; Besana, A.; Dall’Olio, R.; Franceschetti, S.; Tesoriero, D.; Vaccari, G. Impact of Control Strategies for Varroa destructor on Colony Survival and Health in Northern and Central Regions of Italy. J. Apic. Res. 2014, 53, 155–164. [Google Scholar] [CrossRef]
- Mortensen, A.N.; Jack, C.J.; Bustamante, T.A.; Schmehl, D.R.; Ellis, J.D. Effects of Supplemental Pollen Feeding on Honey Bee (Hymenoptera: Apidae) Colony Strength and Nosema Spp. Infection. J. Econ. Entomol. 2019, 112, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Gregorc, A. Monitoring of Honey Bee Colony Losses: A Special Issue. Diversity 2020, 12, 403. [Google Scholar] [CrossRef]
- Negash, E.; Birhane, E.; Gebrekirstos, A.; Gebremedhin, M.A.; Annys, S.; Rannestad, M.M.; Berhe, D.H.; Sisay, A.; Alemayehu, T.; Berhane, T.; et al. Remote Sensing Reveals How Armed Conflict Regressed Woody Vegetation Cover and Ecosystem Restoration Efforts in Tigray, Ethiopia. Sci. Remote Sens. 2023, 8, 100108. [Google Scholar] [CrossRef]
- Manaye, A.; Afewerk, A.; Manjur, B.; Solomon, N. The Effect of the War on Smallholder Agriculture in Tigray, Northern Ethiopia. Cogent Food Agric. 2023, 9, 2247696. [Google Scholar] [CrossRef]
- Nyssen, J.; Negash, E.; Van Schaeybroeck, B.; Haegeman, K.; Annys, S. Crop Cultivation at Wartime–Plight and Resilience of Tigray’s Agrarian Society (North Ethiopia). Def. Peace Econ. 2023, 34, 618–645. [Google Scholar] [CrossRef]
- Schneider, S.S.; McNally, L.C. Factors Influencing Seasonal Absconding in Colonies of the African Honey Bee, Apis mellifera scutellata. Insectes Soc. 1992, 39, 403–423. [Google Scholar] [CrossRef]
- Spiewok, S.; Neumann, P.; Hepburn, H.R. Preparation for Disturbance-Induced Absconding of Cape Honeybee Colonies (Apis mellifera capensis Esch.). Insectes Soc. 2006, 53, 27–31. [Google Scholar] [CrossRef]
- McMenamin, A.; Mumoki, F.; Frazier, M.; Kilonzo, J.; Mweu, B.; Baumgarten, T.; Patch, H.; Torto, B.; Masiga, D.; Tumlinson, J.; et al. The Impact of Hive Type on the Behavior and Health of Honey Bee Colonies (Apis mellifera) in Kenya. Apidologie 2017, 48, 703–715. [Google Scholar] [CrossRef]
- Loftus, J.C.; Smith, M.L.; Seeley, T.D. How Honey Bee Colonies Survive in the Wild: Testing the Importance of Small Nests and Frequent Swarming. PLoS ONE 2016, 11, e0150362. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, O.; Mekonnen, E. Floral Calendar of Honeybee Plants in Kellem and West Wollega Zone, Western Ethiopia. Int. J. For. Res. 2023, 2023, 2797159. [Google Scholar] [CrossRef]
- Bareke, T.; Roba, K.; Addi, A. Identification and Establishing Floral Calendar in Jimma Zone of Oromia Ethiopia. J. Glob. Ecol. Environ. 2023, 19, 48–61. [Google Scholar] [CrossRef]
- Gebremedhn, H.; Tesfay, Z.; Murutse, G.; Estifanos, A. Seasonal Honeybee Forage Availability, Swarming, Absconding and Honey Harvesting in Debrekidan and Begasheka Watersheds of Tigray, Northern Ethiopia. Livest. Res. Rural. Dev. 2013, 25, 61. [Google Scholar]
Description | Regional State | Total | |
---|---|---|---|
Oromia | Tigray | ||
No. of Kebelles | 10 | 4 | 14 |
No. of Beekeepers | 31 | 33 | 64 |
No. of Apiaries | 35 | 33 | 68 |
No. of Honey bee colonies | 1305 | 408 | 1713 |
Average no. of Colonies per apiary | 42.10 | 12.36 | 26.77 |
Variables | Oromia | Tigray | Test of Difference | |
---|---|---|---|---|
Method | p-Value | |||
Colonies per beekeeper in spring 2022 | ||||
Mean | 27.00 | 9.03 | Mann–Whitney test | p < 0.001 |
Median | 17.00 | 6.00 | ||
Range | 7–125 | 2–47 | ||
Colonies per beekeeper before winter 2023 | ||||
Mean | 42.10 | 12.36 | Mann–Whitney test | p < 0.001 |
Median | 27.00 | 8.00 | ||
Range | 10–200 | 2–60 | ||
Colonies per beekeeper in spring 2023 | ||||
Mean | 30.58 | 5.24 | Mann–Whitney test | p < 0.001 |
Median | 16.00 | 3.00 | ||
Range | 5–160 | 0–37 | ||
Monitoring Varroa destructor (frequency) | ||||
Yes | 5 | 21 | Fisher’s test | p < 0.0001 |
No | 26 | 10 | ||
Not applicable | 0 | 2 | ||
Treating against V. destructor (frequency) | ||||
Yes | 5 | 0 | Fisher’s test | p < 0.0001 |
No | 3 | 32 | ||
Not applicable | 23 | 1 | ||
Bees with deformed wings (frequency) | ||||
None | 0 | 7 | Fisher’s test | p < 0.0001 |
Some | 31 | 15 | ||
Many | 0 | 10 | ||
Don’t know | 0 | 1 | ||
Use of natural comb (frequency) | ||||
Yes | 31 | 14 | Fisher’s test | p < 0.0001 |
No | 0 | 19 | ||
Purchase of external wax (frequency) | ||||
Yes | 18 | 30 | Fisher’s test | p < 0.01 |
No | 13 | 3 | ||
Presence of Vespa velutina (frequency) | ||||
Yes | 8 | 29 | Fisher’s test | p < 0.0001 |
No | 13 | 4 | ||
Don’t know | 10 | 0 | ||
Colony merging (frequency) | ||||
Yes | 21 | 6 | Fisher’s test | p < 0.001 |
No | 10 | 27 | ||
Colony splitting (frequency) | ||||
Yes | 26 | 5 | Fisher’s test | p < 0.0001 |
No | 5 | 28 | ||
Feed supplementation (frequency) | ||||
Yes | 31 | 17 | Fisher’s test | p < 0.0001 |
No | 0 | 16 | ||
Queen replacement (frequency) | ||||
Yes | 19 | 0 | Fisher’s test | p < 0.0001 |
No | 12 | 33 | ||
Proportional Colony loss rate (%) | 24.1 | 66.4 | Chi-squared test | p < 0.0001 |
#Colonies Before Winter | #Colonies Lost Due to Queen Problems | #Colonies Lost Due to Natural Disaster | #Empty Hives or Dead Colonies | #Colonies in Spring 2022 | |
---|---|---|---|---|---|
#Colonies lost due to queen problems | 0.14 | ||||
#Colonies lost due to natural disaster | 0.28 * | 0.41 * | |||
#Empty hives or dead colonies | 0.68 * | 0.13 | 0.06 | ||
#Colonies in spring 2022 | 0.92 * | 0.04 | 0.28 * | 0.52 * | |
#Colonies in spring 2023 | 0.93 * | 0.01 | 0.11 | 0.58 * | 0.92 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hailu, T.G.; Atsbeha, A.T.; Wakjira, K.; Gray, A. High Rates of Honey Bee Colony Losses and Regional Variability in Ethiopia Based on the Standardised COLOSS 2023 Survey. Insects 2024, 15, 376. https://doi.org/10.3390/insects15060376
Hailu TG, Atsbeha AT, Wakjira K, Gray A. High Rates of Honey Bee Colony Losses and Regional Variability in Ethiopia Based on the Standardised COLOSS 2023 Survey. Insects. 2024; 15(6):376. https://doi.org/10.3390/insects15060376
Chicago/Turabian StyleHailu, Teweldemedhn Gebretinsae, Alem Tadesse Atsbeha, Kibebew Wakjira, and Alison Gray. 2024. "High Rates of Honey Bee Colony Losses and Regional Variability in Ethiopia Based on the Standardised COLOSS 2023 Survey" Insects 15, no. 6: 376. https://doi.org/10.3390/insects15060376
APA StyleHailu, T. G., Atsbeha, A. T., Wakjira, K., & Gray, A. (2024). High Rates of Honey Bee Colony Losses and Regional Variability in Ethiopia Based on the Standardised COLOSS 2023 Survey. Insects, 15(6), 376. https://doi.org/10.3390/insects15060376