Effect of Flowering Period on Drone Reproductive Parameters (Apis mellifera L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of Floral Resources
2.2. Evaluation of Reproductive Parameters
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nick, H.; Tom, B.; Ciaran, E.; David, G. Measuring the economic value of pollination services: Principles, evidence and knowledge gaps. Ecosyst. Serv. 2015, 14, 124–132. [Google Scholar]
- Valido, A.; Rodríguez-Rodríguez, M.C.; Jordano, P. Honeybees disrupt the structure and functionality of plant-pollinator networks. Sci. Rep. 2019, 9, 4711. [Google Scholar] [CrossRef]
- Magaña-Magaña, M.A.; Tavera-Cortés, M.E.; Salazar-Barrientos, L.L.; Sanginés-García, J.R. Productividad de la apicultura en México y su impacto sobre la rentabilidad. Rev. Mexicana Cienc. Agric. 2017, 7, 1103–1115. [Google Scholar]
- Castañón-Chavarría, E.J. Mieles diferenciadas de la península de Yucatán; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Corredor Biológico Mesoamericano, Mexico, 2009; p. 157. [Google Scholar]
- Güemes-Ricalde, F.J.; Echazarreta-González, C.; Villanueva, G.R.; Pat-Fernández, J.M.; Gómez-Álvarez, R. La apicultura en la península de Yucatán. Actividad de subsistencia en un entorno globalizado. Rev. Mex. Caribe 2003, 3, 117–132. [Google Scholar]
- Tarpy, D.R.; Keller, J.J.; Caren, J.R.; Delaney, D.A. Assessing the mating ‘health’ of commercial honey bee queens. J. Econ. Entomol. 2012, 105, 20–25. [Google Scholar] [CrossRef]
- Couvillon, M.J.; Hughes, W.O.H.; Perez-Sato, J.A.; Martin, S.J.; Roy, G.G.F.; Ratnieks, F.L.W. Sexual selection in honey bees: Colony variation and the importance of size in male mating success. Behav. Ecol. 2010, 21, 520–525. [Google Scholar] [CrossRef]
- Cobey, S.W. Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie 2007, 38, 390–410. [Google Scholar] [CrossRef]
- Rhodes, J.W.; Harden, S.; Spooner-Hart, R.; Anderson, D.L.; Wheen, G. Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie 2011, 42, 29–38. [Google Scholar] [CrossRef]
- Goins, A.; Schneider, S.S. Drone “quality” and caste interactions in the honey bee, Apis mellifera L. Insect. Soc. 2013, 60, 453–461. [Google Scholar] [CrossRef]
- Winston, M.L. The Biology of the Honey Bee; Harvard University Press: Cambridge, MA, USA, 1991. [Google Scholar]
- INEGI. Anuario Estadístico y Geográfico de Yucatán; INEGI: Aguascalientes, Mexico, 2017. [Google Scholar]
- Neupane, K.; Thapa, R.B. Pollen collection and brood production by honeybees (Apis mellifera L.) under chitwan condition of Nepal. J. Inst. Agric. Anim. Sci. 2005, 26, 143–148. [Google Scholar] [CrossRef]
- Simon, A.D.F.; Marx, H.E.; Starzomski, B.M. Phylogenetic restriction of plant invasion in drought-stressed environments: Implications for insect-pollinated plant communities in water-limited ecosystems. Ecol. Evol. 2021, 11, 10042–10053. [Google Scholar] [CrossRef]
- Nicholls, E.; Rossi, M.; Niven, J.E. Larval nutrition impacts survival to adulthood, body size and the allometric scaling of metabolic rate in adult honeybees. J. Exp. Biol. 2021, 224, jeb242393. [Google Scholar] [CrossRef] [PubMed]
- Czekońska, K.; Chuda-Mickiewicz, B.; Samborski, J. Quality of honeybee drones reared in colonies with limited and unlimited access to pollen. Apidologie 2015, 46, 1–9. [Google Scholar] [CrossRef]
- Thomson, J.D. Flowering phenology, fruiting success and progressive deterioration of pollination in an early-flowering geophyte. Philos. Trans. R. Soc. B Biol. 2010, 365, 3187–3199. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.; Fournier, V.; Giovenazzo, P. Apis mellifera (Hymenoptera: Apidae) drone sperm quality in relation to age, genetic line, and time of breeding. Can. Entomol. 2015, 147, 702–711. [Google Scholar] [CrossRef]
- Schlüns, H.; Schlüns, E.A.; van Praagh, J.; Moritz, R.F.A. Sperm numbers in drone honeybees (Apis mellifera) depend on body size. Apidologie 2003, 34, 577–584. [Google Scholar] [CrossRef]
- Czekońska, K.; Chuda-Mickiewicz, B.; Chorbiński, P. The effect of brood incubation temperature on the reproductive value of honey bee (Apis mellifera) drones. J. Apic. Res. 2013, 52, 96–105. [Google Scholar] [CrossRef]
- Stürup, M.; Baer-Imhoof, B.; Nash, D.R.; Boomsma, J.J.; Baer, B. When every sperm counts: Factors affecting male fertility in the honeybee Apis mellifera. Behav. Ecol. 2013, 24, 1192–1198. [Google Scholar] [CrossRef]
- Hopkins, B.K.; Cobey, S.W.; Herr, C.; Sheppard, W.S. Gel-coated tubes extend above-freezing storage of honey bee (Apis mellifera) semen to 439 days with production of fertilised offspring. Reprod. Fertil. Dev. 2017, 29, 1944–1949. [Google Scholar] [CrossRef]
- Rousseau, A.; Giovenazzo, P. Optimizing drone fertility with spring nutritional supplements to honey bee (Hymenoptera: Apidae) colonies. J. Econ. Res. 2016, 109, 1009–1014. [Google Scholar] [CrossRef]
- Dadkhah, F.; Nehzati-Paghaleh, G.; Zhandi, M.; Emamverdi, M.; Hopkins, B.K. Preservation of honey bee spermatozoa using egg yolk and soybean lecithin-based semen extenders and a modified cryopreservation protocol. J. Apic. Res. 2016, 55, 279–283. [Google Scholar] [CrossRef]
- Chaimanee, V.; Evans, J.D.; Chen, Y.; Jackson, C.; Pettis, J.S. Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J. Insect Physiol. 2016, 89, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Somerville, D. Honey bee nutrition and supplementary feeding. NSW Agric. 2000, 8, 1–8. [Google Scholar]
- Neves, E.; Marcia, F.; Gaia, L.; Vieira, V.; Antonialli-Junior, W. Influence of climate factors on flight activity of drones of Apis mellifera (Hymenoptera: Apidae). Sociobiology 2011, 57, 7. [Google Scholar]
- Andrada, A.C.; Tellería, M.C. Pollen collected by honey bees (Apis mellifera L.) from south of Caldén district (Argentina): Botanical origin and protein content. Grana 2005, 44, 115–122. [Google Scholar] [CrossRef]
- Cinthia, B.S. Identificación de Flora Melífera con Potencial Ornamental y Medicinal en Yucatán. Master’s Thesis, CIATEJ, Guadalajara, Mexico, 2018. [Google Scholar]
- Ramos-Diaz, A.; Noriega-Trejo, R.; Sánchez-Contreras, Á.; San Román-Avila, D.; Góngora-Chin, R.; Rodríguez-Buenfil, I. Catálogo de los Principales Tipos Polínicos Encontrados en las Mieles Producidas en la Península de Yucatán; SIIES: Mérida, México, 2015; pp. 28–94. ISBN 978-607-8424-10-8. [Google Scholar]
- Collins, A.M.; Donoghue, A.M. Viability assessment of honey bee Apis mellifera sperm using dual fluorescent staining. Theriogenology 1999, 51, 1513–1523. [Google Scholar] [CrossRef]
- Taylor, M.A.; Guzmán-Novoa, E.; Morfin, N.; Buhr, M.M. Improving viability of cryopreserved honey bee (Apis mellifera L.) sperm with selected diluents, cryoprotectants, and semen dilution ratios. Theriogenology 2009, 72, 149–159. [Google Scholar] [CrossRef]
- Wegener, J.; May, T.; Knollmann, U.; Kamp, G.; Müller, K.; Bienefeld, K. In vivo validation of in vitro quality tests for cryopreserved honey bee semen. Cryobiology 2012, 65, 126–131. [Google Scholar] [CrossRef]
- Tofilski, A.; Chuda-Mickiewicz, B.; Czekońska, K. Circular movement of honey bee spermatozoa inside spermatheca. Invertebr. Reprod. Dev. 2018, 62, 63–66. [Google Scholar] [CrossRef]
- Tofilski, A.; Chuda-Mickiewicz, B.; Czekońska, K.; Chorbiński, P. Flow cytometry evidence about sperm competition in honey bee (Apis mellifera). Apidologie 2012, 43, 63–70. [Google Scholar] [CrossRef]
- Fisher II, A.; Harrison, K.; Love, C.; Varner, D.; Rangel, J. Spatio-temporal variation in viability of spermatozoa of honey bee, Apis mellifera, drones in central Texas apiaries. Southwest. Entomol. 2018, 43, 343–356. [Google Scholar] [CrossRef]
- Peña, F.J.; Ortiz Rodriguez, J.M.; Gil, M.C.; Ortega Ferrusola, C. Flow cytometry analysis of spermatozoa: Is it time for flow spermetry? Reprod. Domest. Anim. 2018, 53, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Statistical Analysis System (SAS). Release 9.1 for Windows; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Rangel, J.; Fisher, A. Factors affecting the reproductive health of honey bee (Apis mellifera) drones—A review. Apidologie 2019, 50, 759–778. [Google Scholar] [CrossRef]
- Czekońska, K.; Chuda-Mickiewicz, B. The ability of honey bee drones to ejaculate. J. Apic. Sci. 2015, 59, 127–133. [Google Scholar] [CrossRef]
- Tourmente, M.; Archer, C.R.; Hosken, D.J. Complex interactions between sperm viability and female fertility. Sci. Rep. 2019, 9, 15366. [Google Scholar] [CrossRef]
- El-Sabrout, A.; Hegazi, E.; Khafagi, W.; Bressac, C. Sperm production is reduced after a heatwave at the pupal stage in the males of the parasitoid wasp Microplitis rufiventris Kok (Hymenoptera; Braconidae). Insects 2021, 12, 862. [Google Scholar] [CrossRef]
- Malawey, A.S.; Zhang, H.; McGuane, A.S.; Walsh, E.M.; Rusch, T.W.; Hjelmen, C.E.; Delclos, P.J.; Rangel, J.; Zheng, L.; Cai, M.; et al. Interaction of age and temperature on heat shock protein expression, sperm count, and sperm viability of the adult black soldier fly (Diptera: Stratiomyidae). J. Insects Food Feed. 2021, 7, 21–33. [Google Scholar] [CrossRef]
- Klaus, F.; Tscharntke, T.; Bischoff, G.; Grass, I. Floral resource diversification promotes solitary bee reproduction and may offset insecticide effects—Evidence from a semi-field experiment. Ecol. Lett. 2021, 24, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Frias, B.E.; Barbosa, C.D.; Lourenço, A.P. Pollen nutrition in honey bees (Apis mellifera): Impact on adult health. Apidologie 2016, 47, 15–25. [Google Scholar] [CrossRef]
- Kaldun, B.; Otti, O. Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius. Ecol. Evol. 2016, 6, 2548–2558. [Google Scholar] [CrossRef]
- Ding, G.; Xu, H.; Oldroyd, B.; Gloag, R.S. Extreme polyandry aids the establishment of invasive populations of a social insect. Heredity 2017, 119, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Baer, B.; Zareie, R.; Paynter, E.; Poland, V.; Millar, A.H. Seminal fluid proteins differ in abundance between genetic lineages of honeybees. J. Proteom. 2012, 75, 5646–5653. [Google Scholar] [CrossRef]
- Diemer, J.; Hahn, J.; Goldenbogen, B.; Müller, K.; Klipp, E. Sperm migration in the genital tract—In silico experiments identify key factors for reproductive success. PLoS Comput. Biol. 2021, 17, e1009109. [Google Scholar] [CrossRef]
- Park, Y.J.; Pang, M. Mitochondrial functionality in male fertility: From spermatogenesis to fertilization. Antioxidants 2021, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Chen, J.; Duan, F.; Song, Q.; Qin, M.; Wang, Z.; Liu, J. Possible mechanism underlying the effect of Heshouwuyin, a tonifying kidney herb, on sperm quality in aging rats. BMC Complement Altern. Med. 2014, 14, 250. [Google Scholar] [CrossRef]
- Buffone, M.G. (Ed.) Sperm Acrosome Biogenesis and Function during Fertilization; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; p. 172. [Google Scholar]
- Hirose, M.; Honda, A.; Fulka, H.; Tamura-Nakano, M.; Matoba, S.; Tomishima, T.; Mochida, K.; Hasegawa, A.; Nagashima, K.; Inoue, K.; et al. Acrosin is essential for sperm penetration through the zona pellucida in hamsters. Proc. Natl. Acad. Sci. USA 2020, 117, 2513–2518. [Google Scholar] [CrossRef]
- Morais, L.S.; Araujo Neto, E.R.; Silva, A.M.; Marinho, D.E.L.; Bezerra, L.G.P.; Velarde, D.S.; Silva, A.R.; Gramacho, K.P.; Message, D. Sperm characteristics of Africanized honey bee (Apis mellifera L.) drones during dry and wet seasons in the Caatinga biome. J. Apic. Res. 2022, 1–8. [Google Scholar] [CrossRef]
- Straser, R.K.; Daane, K.M.; Stahl, J.M.; Wilson, H. Floral resources enhance fitness of the parasitoid Hadronotus pennsylvanicus (Hymenoptera: Scelionidae) but not biological control of its host Leptoglossus zonatus (Heteroptera: Coreidae). Environ. Entomol. 2024, 53, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Filipiak, Z.; Denisow, B.; Stawiarz, E.; Filipiak, M. Unravelling the dependence of a wild bee on floral diversity and composition using a feeding experiment. Sci. Total Environ. 2022, 820, 153326. [Google Scholar] [CrossRef]
- Koeniger, G.; Koeniger, N.; Tingek, S.; Phiancharoen, M. Variance in spermatozoa number among Apis dorsata drones and among Apis mellifera drones. Apidologie 2005, 36, 279–284. [Google Scholar] [CrossRef]
- Fisher II, A.; Rangel, J. Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLoS ONE 2018, 13, e0208630. [Google Scholar] [CrossRef]
- Bratu, I.C.; Igna, V.; Simiz, E.; Dunea, I.B.; Pătruică, S. The influence of body weight on semen parameters in Apis mellifera drones. Insects 2022, 13, 1141. [Google Scholar] [CrossRef] [PubMed]
- Metz, B.; Tarpy, D. Reproductive senescence in drones of the honey bee (Apis mellifera). Insects 2019, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Czekońska, K.; Chuda-Mickiewicz, B.; Chorbiński, P. The influence of honey bee (Apis mellifera) drone age on volume of semen and viability of spermatozoa. J. Apic. Sci. 2013, 57, 61–66. [Google Scholar] [CrossRef]
Family | Period/Species | |
---|---|---|
Flowering Scarcity | Flowering Onset | |
Asteraceae | Sclerocarpus divaricatus | |
Convolvulaceae | Ipomoea crinicalyx | Ipomoea hederifolia |
Jacquemontia pentantha | Jacquemontia nodiflora | |
Jacquemontia pentanthos | ||
Leguminosae | Mimosa bahamensis | Leucaena leucocephala |
Acaciella angustissima | ||
Verbenaceae | Lantana camara |
Sperm Parameters | Period | |
---|---|---|
Flowering Scarcity | Flowering Onset | |
Number of drones | 39 | 162 |
Volume (μL) | 0.5 ± 0.3 b | 0.9 ± 0.79 a |
Concentration (×106) | 4.1 ± 1.47 b | 5.6 ± 1.01 a |
Motility (scale 1–4) | 70 (e3) ± 4.23 b | 81 (e4) ± 4.85 a |
Viability (%) | 75 ± 3.97 b | 90 ± 2.40 a |
Acrosome integrity (%) | 70 ± 3.21 b | 83 ± 3.75 a |
Mitochondrial activity (%) | 60 ± 5.30 b | 75 ± 4.10 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellanos-Zacarías, C.; Domínguez-Rebolledo, Á.; Loeza-Concha, H.; Vivas-Rodríguez, J.; Ramón-Ugalde, J.; Baeza-Rodríguez, J.; Zamora-Bustillos, R. Effect of Flowering Period on Drone Reproductive Parameters (Apis mellifera L.). Insects 2024, 15, 676. https://doi.org/10.3390/insects15090676
Castellanos-Zacarías C, Domínguez-Rebolledo Á, Loeza-Concha H, Vivas-Rodríguez J, Ramón-Ugalde J, Baeza-Rodríguez J, Zamora-Bustillos R. Effect of Flowering Period on Drone Reproductive Parameters (Apis mellifera L.). Insects. 2024; 15(9):676. https://doi.org/10.3390/insects15090676
Chicago/Turabian StyleCastellanos-Zacarías, Carlos, Álvaro Domínguez-Rebolledo, Henry Loeza-Concha, Jorge Vivas-Rodríguez, Julio Ramón-Ugalde, Juan Baeza-Rodríguez, and Roberto Zamora-Bustillos. 2024. "Effect of Flowering Period on Drone Reproductive Parameters (Apis mellifera L.)" Insects 15, no. 9: 676. https://doi.org/10.3390/insects15090676
APA StyleCastellanos-Zacarías, C., Domínguez-Rebolledo, Á., Loeza-Concha, H., Vivas-Rodríguez, J., Ramón-Ugalde, J., Baeza-Rodríguez, J., & Zamora-Bustillos, R. (2024). Effect of Flowering Period on Drone Reproductive Parameters (Apis mellifera L.). Insects, 15(9), 676. https://doi.org/10.3390/insects15090676