Global Distribution Prediction of Cyrtotrachelus buqueti Guer (Coleoptera: Curculionidae) Insights from the Optimised MaxEnt Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Source of Species Data
2.2. Environmental Variables Related to C. buqueti
2.3. Optimization of Model Parameters
2.4. Maxent Model Construction and Validation
2.5. Statistical Analysis and Suitable Habitat Grade Classification
3. Result
3.1. Model Optimization Results Validation and Variable Selection
3.2. Prediction of Potential Geographic Distribution of C. buqueti under Current Climatic Conditions
3.3. Potential Habitat Changes of C. buqueti under Future Climate Scenarios
3.4. Centroid Changes in Potential Distribution
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Li, X.; Wang, F.; Fang, R.; Yang, W. Screening and verification of proteins interacting with CbuqPBP2 in Cyrtotrachelus buqueti. J. Northwest AF Univ. (Nat. Sci. Ed.) 2024, 52, 87–97. [Google Scholar]
- Yang, Y.-J.; Wang, S.-F.; Gong, J.-W.; Liu, C.; Mu, C.; Qin, H. Relationships among Cyrtotrachelus buqueti larval density and wormhole number and bamboo shoot damage degree. Chin. J. Appl. Ecol. 2009, 20, 1980–1985. [Google Scholar]
- Wang, J.; Wang, F.; Wang, R.; Zhang, J.; Zhao, X.; Yang, H.; Yang, W.; Yang, C.; Wang, Z.; Li, A. Modeling the effects of bioclimatic characteristics and distribution on the occurrence of Cyrtotrachelus buqueti in the Sichuan Basin. Glob. Ecol. Conserv. 2019, 17, e00540. [Google Scholar] [CrossRef]
- Fu, C.; Wang, Z.; Peng, Y.; Zhuo, Z. The Potential Distribution Prediction of the Forestry Pest Cyrtotrachelus buqueti (Guer) Based on the MaxEnt Model across China. Forests 2024, 15, 1049. [Google Scholar] [CrossRef]
- Beaury, E.M.; Fusco, E.J.; Jackson, M.R.; Laginhas, B.B.; Morelli, T.L.; Allen, J.M.; Pasquarella, V.J.; Bradley, B.A. Incorporating climate change into invasive species management: Insights from managers. Biol. Invasions 2020, 22, 233–252. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Menéndez, R. How are insects responding to global warming. Tijdschr. Voor Entomol. 2007, 150, 355–365. [Google Scholar]
- Chen, Y.; Ma, C.S. Effect of global warming on insect:a literature. Acta Ecol. Sin. 2010, 30, 2159–2172. [Google Scholar]
- Yang, C.; Zhao, X.; Wang, J. Predicting the future cultivation regions of Cyrtotrachelus buqueti using MaxEnt model under climate change in China. J. Sichuan Agric. Univ. 2020, 38, 755–763. [Google Scholar]
- Naimi, B.; Araújo, M.B. SDM: A reproducible and extensible R platform for species distribution modelling. Ecography 2016, 39, 368–375. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 1999, 13, 143–158. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. Bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers Distrib 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Jung, J.M.; Lee, W.H.; Jung, S. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomol. Res. 2016, 46, 223–235. [Google Scholar]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Lian, Y.; Bai, Y.; Huang, Z.; Ali, M.; Wang, J.; Chen, H. Spatio-Temporal Changes and Habitats of Rare and Endangered Species in Yunnan Province Based on MaxEnt Model. Land 2024, 13, 240. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Thuiller, W.; Miaud, C. Biodiversity Research: Prediction and validation of the potential global distribution of a problematic alien invasive species—The American bullfrog. Divers. Distrib. 2007, 13, 476. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.; Lei, M. Identifying potentially contaminated areas with MaxEnt model for petrochemical industry in China. Environ. Sci. Pollut. Res. 2022, 29, 54421–54431. [Google Scholar] [CrossRef]
- GBIF.org. GBIF Occurrence Download. Available online: https://www.gbif.org/occurrence/download/0043274-240626123714530 (accessed on 31 July 2024).
- Sunil, K.; Thomas, J.S. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Environ. 2009, 1, 94–98. [Google Scholar]
- Warren, D.L.; Matzke, N.J.; Cardillo, M.; Baumgartner, J.B.; Beaumont, L.J.; Turelli, M.; Glor, R.E.; Huron, N.A.; Simões, M.; Iglesias, T.L.; et al. ENMTools 1.0: An R package for comparative ecological biogeography. Ecography 2021, 44, 504–511. [Google Scholar]
- Shi, X.; Wang, J.; Zhang, L.; Chen, S.; Zhao, A.; Ning, X.; Fan, G.; Wu, N.; Zhang, L.; Wang, Z. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecol. Indic. 2023, 148, 110093. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar]
- Liu, L.; Guan, L.; Zhao, H.; Huang, Y.; Mou, Q.; Liu, K.; Chen, T.; Wang, X.; Zhang, Y.; Wei, B.; et al. Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. Ecol. Inform. 2021, 63, 101324. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H.-D.; Xing, D.; Jia, N.; Du, Y.-T.; Xie, J.-W.; Wang, M.; Li, C.-X.; Zhao, T.; Jiang, Y.-T.; et al. The predicted potential distribution of Aedes albopictus in China under the shared socioeconomic pathway (SSP)1–2.6. Acta Trop. 2023, 248, 107001. [Google Scholar] [CrossRef] [PubMed]
- HamadAmin, B.A.; Khwarahm, N.R. Mapping Impacts of Climate Change on the Distributions of Two Endemic Tree Species under Socioeconomic Pathway Scenarios (SSP). Sustainability 2023, 15, 5469. [Google Scholar] [CrossRef]
- Wei, X.; Xu, D.; Zhuo, Z. Predicting the Impact of Climate Change on the Geographical Distribution of Leafhopper, Cicadella virid is in China through the MaxEnt Model. Insects 2023, 14, 586. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Optimized maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests 2020, 11, 302. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Pica, A.; Vela, D.; Magrini, S. Forest Orchids under Future Climate Scenarios: Habitat Suitability Modelling to Inform Conservation Strategies. Plants 2024, 13, 1810. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qin, H.; Deng, G.; Wang, S.; Liao, L.; Liu, C.; Li, S. Larvae Population Dynamics of Cyrtatrachelus buqueti and the Forecasting Models with Climate Factors. Sci. Silvae Sin. 2011, 47, 82–87. [Google Scholar]
- Ning, H.; Tang, M.; Chen, H. Mapping Invasion Potential of the Pest from Central Asia, Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae), in the Shelter Forests of Northwest China. Insects 2021, 12, 242. [Google Scholar] [CrossRef] [PubMed]
- Xian, X.; Qi, Y.; Zhao, H.; Cao, J.; Jia, T.; Yang, N.; Wan, F.; Weyl, P.; Liu, W.-X. Temperature extremes nip invasive macrophyte Cabomba caroliniana A. Gray in the bud: Potential geographic distributions and risk assessment based on future climate change and anthropogenic influences. Front. Plant Sci. 2024, 15, 1393663. [Google Scholar] [CrossRef]
- Yackulic, C.B.; Chandler, R.; Zipkin, E.F.; Royle, J.A.; Nichols, J.D.; Grant, E.H.C.; Veran, S. Presence-only modelling using MAXENT: When can we trust the inferences? Methods Ecol. Evol. 2013, 4, 236–243. [Google Scholar] [CrossRef]
- Li, X.; Mao, F.; Du, H.; Zhou, G.; Xing, L.; Liu, T.; Han, N.; Liu, Y.; Zhu, D.; Zheng, J.; et al. Spatiotemporal evolution and impacts of climate change on bamboo distribution in China. J. Environ. Manag. 2019, 248, 109265. [Google Scholar] [CrossRef]
Abbreviation | Climate Variables | Unit |
---|---|---|
Bio01 | Annual mean temperature | °C |
Bio02 | Mean diurnal temperature range | °C |
Bio03 | Isothermality (bio2/bio7) (×100) | |
Bio04 | Temperature Seasonalit (standard deviation × 100) | |
Bio05 | Max temperature of warmest month | °C |
Bio06 | Min temperature of coldest month | °C |
Bio07 | Temperature annual range (bio5–bio6) | °C |
Bio08 | Mean temperature of wettest quarter | °C |
Bio09 | Mean temperature of driest quarter | °C |
Bio10 | Mean temperature of warmest quarter | °C |
Bio11 | Mean temperature of coldest quarter | °C |
Bio12 | Annual precipitation | mm |
Bio13 | Precipitation of wettest month | mm |
Bio14 | Precipitation of driest month | mm |
Bio15 | Precipitation seasonality (Coefficient of variation) | |
Bio16 | Precipitation of wettest quarter | mm |
Bio17 | Precipitation of driest quarter | mm |
Bio18 | Precipitation of warmest quarter | mm |
Bio19 | Precipitation of coldest quarter | mm |
Elev | Altitude (elevation above sea level) (m) | m |
Slope | Slope | ° |
Aspect | Aspect | rad |
Abbreviation | Climate Variables | Unit |
---|---|---|
Bio02 | Mean diurnal range | °C |
Bio04 | Temperature Seasonalit (standard deviation × 100) | |
Bio06 | Min temperature of coldest month | °C |
Bio15 | Precipitation seasonality (Coefficient of variation) | |
Bio17 | Precipitation of driest quarter | mm |
Bio18 | Precipitation of warmest quarter | mm |
Bio19 | Precipitation of coldest quarter | mm |
Elev | Altitude (elevation above sea level) (m) | m |
Aspect | Aspect | rad |
Variable | Percent Contribution | Permutation Importance |
---|---|---|
Bio18 | 66.4 | 75.4 |
Bio04 | 14.4 | 8.7 |
Bio02 | 9.1 | 2 |
Bio15 | 5.3 | 2.5 |
Bio19 | 3.6 | 7.7 |
Bio17 | 0.7 | 2.6 |
Bio06 | 0.6 | 0.5 |
Elev | 0.1 | 0.7 |
Aspect | 0 | 0 |
Scenarios | Decade | Total Suitable Regions | Regions of Low Habitat Suitability | Regions of Medium Habitat Suitability | Regions of High Habitat Suitability | ||||
---|---|---|---|---|---|---|---|---|---|
Area (104 km2) | Area Change (%) | Area (104 km2) | Area Change (%) | Area (104 km2) | Area Change (%) | Area (104 km2) | Area Change (%) | ||
- | Current | 33.42 | - | 19.81 | - | 4.61 | - | 9.00 | - |
SSP1-2.6 | 2050s | 26.00 | −22.20 | 19.03 | −3.94 | 3.01 | −34.71 | 3.95 | −56.11 |
2070s | 41.10 | 22.98 | 25.15 | 26.96 | 8.41 | 82.43 | 7.55 | −16.11 | |
SSP3-7.0 | 2050s | 44.52 | 33.21 | 34.26 | 72.94 | 3.51 | −23.86 | 6.75 | −25.00 |
2070s | 45.86 | 37.22 | 37.36 | 88.59 | 1.83 | −60.30 | 6.67 | −25.89 | |
SSP5-8.5 | 2050s | 46.11 | 37.97 | 35.23 | 77.84 | 6.34 | 37.53 | 4.54 | −49.56 |
2070s | 41.00 | 22.68 | 26.12 | 31.85 | 9.83 | 113.23 | 5.04 | −44.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Yang, J.; Xu, D.; Zhuo, Z. Global Distribution Prediction of Cyrtotrachelus buqueti Guer (Coleoptera: Curculionidae) Insights from the Optimised MaxEnt Model. Insects 2024, 15, 708. https://doi.org/10.3390/insects15090708
Peng Y, Yang J, Xu D, Zhuo Z. Global Distribution Prediction of Cyrtotrachelus buqueti Guer (Coleoptera: Curculionidae) Insights from the Optimised MaxEnt Model. Insects. 2024; 15(9):708. https://doi.org/10.3390/insects15090708
Chicago/Turabian StylePeng, Yaqin, Junyi Yang, Danping Xu, and Zhihang Zhuo. 2024. "Global Distribution Prediction of Cyrtotrachelus buqueti Guer (Coleoptera: Curculionidae) Insights from the Optimised MaxEnt Model" Insects 15, no. 9: 708. https://doi.org/10.3390/insects15090708
APA StylePeng, Y., Yang, J., Xu, D., & Zhuo, Z. (2024). Global Distribution Prediction of Cyrtotrachelus buqueti Guer (Coleoptera: Curculionidae) Insights from the Optimised MaxEnt Model. Insects, 15(9), 708. https://doi.org/10.3390/insects15090708