Flower Visitation through the Lens: Exploring the Foraging Behaviour of Bombus terrestris with a Computer Vision-Based Application
Abstract
:Simple Summary
Abstract
1. Introduction
- Question 1: How does the interaction of flower density and inflorescence quality (i.e., patch carrying capacity) influence bumblebee visitation rates and time spent on the flower patch (the attractiveness of the flower patch)? For this, we measured how many bumblebees a flower patch can support within a specified time unit and whether there is a difference in the bumblebee presence of flower patches per time unit.
- Question 2: How does the carrying capacity of the inflorescences change with plant species (as a proxy for the resource quality of the inflorescence)? To investigate this, we measured how many bumblebees can occupy a flower patch simultaneously, standardised for flower cover.
- Question 3: We explored what proportion of the total time bumblebees spend on the flower patch (‘bumblebee-time’) was on the inflorescences (handling time), as compared to time spent on non-flowery areas (travelling time).
2. Materials and Methods
2.1. Study Sites
2.2. Data Collection
2.3. Data Processing
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. The Attractiveness of the Flower Patch
4.2. The Carrying Capacity of the Plant Species
4.3. The Time Spent with Handling
4.4. Study Limitations
4.5. Methodological Perspectives
4.6. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nath, R.; Singh, H.; Mukherjee, S. Insect Pollinators Decline: An Emerging Concern of Anthropocene Epoch. J. Apic. Res. 2023, 62, 23–38. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global Pollinator Declines: Trends, Impacts and Drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Biesmeijer, J.C. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Vanbergen, A.J.; Insect Pollinators Initiative. Threats to an Ecosystem Service: Pressures on Pollinators. Front. Ecol. Environ. 2013, 11, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.T.; Pindar, A.; Galpern, P.; Packer, L.; Potts, S.G.; Roberts, S.M.; Rasmont, P.; Schweiger, O.; Colla, S.R.; Richardson, L.L.; et al. Climate Change Impacts on Bumblebees Converge across Continents. Science 2015, 349, 177–180. [Google Scholar] [CrossRef]
- Martinet, B.; Dellicour, S.; Ghisbain, G.; Przybyla, K.; Zambra, E.; Lecocq, T.; Boustani, M.; Baghirov, R.; Michez, D.; Rasmont, P. Global Effects of Extreme Temperatures on Wild Bumblebees. Conserv. Biol. 2020, 35, 1507–1518. [Google Scholar] [CrossRef]
- Vanbergen, A.J. Landscape Alteration and Habitat Modification: Impacts on Plant-Pollinator Systems. Curr. Opin. Insect Sci. 2014, 5, 44–49. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Blacquière, T.; Field, L.M.; Hails, R.S.; Petrokofsky, G.; Potts, S.G.; Raine, N.E.; Vanbergen, A.J.; McLean, A.R. A Restatement of the Natural Science Evidence Base Concerning Neonicotinoid Insecticides and Insect Pollinators. Proc. R. Soc. B 2014, 281, 20140558. [Google Scholar] [CrossRef]
- Stanley, D.A.; Garratt, M.P.D.; Wickens, J.B.; Wickens, V.J.; Potts, S.G.; Raine, N.E. Neonicotinoid Pesticide Exposure Impairs Crop Pollination Services Provided by Bumblebees. Nature 2015, 528, 548–550. [Google Scholar] [CrossRef]
- Dicks, L.V.; Breeze, T.D.; Ngo, H.T.; Senapathi, D.; An, J.; Aizen, M.A.; Basu, P.; Buchori, D.; Galetto, L.; Garibaldi, L.A.; et al. A Global-Scale Expert Assessment of Drivers and Risks Associated with Pollinator Decline. Nat. Ecol. Evol. 2021, 5, 1453–1461. [Google Scholar] [CrossRef]
- Kaiser-Bunbury, C.N.; Muff, S.; Memmott, J.; Müller, C.B.; Caflisch, A. The Robustness of Pollination Networks to the Loss of Species and Interactions: A Quantitative Approach Incorporating Pollinator Behaviour. Ecol. Lett. 2010, 13, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, O.; Biesmeijer, J.C.; Bommarco, R.; Hickler, T.; Hulme, P.E.; Klotz, S.; Kühn, I.; Moora, M.; Nielsen, A.; Ohlemüller, R.; et al. Multiple Stressors on Biotic Interactions: How Climate Change and Alien Species Interact to Affect Pollination. Biol. Rev. 2010, 85, 777–795. [Google Scholar] [CrossRef] [PubMed]
- Lippert, C.; Feuerbacher, A.; Narjes, M. Revisiting the Economic Valuation of Agricultural Losses Due to Large-Scale Changes in Pollinator Populations. Ecol. Econ. 2021, 180, 106860. [Google Scholar] [CrossRef]
- Burkle, L.A.; Alarcón, R. The Future of Plant–Pollinator Diversity: Understanding Interaction Networks across Time, Space, and Global Change. Am. J. Bot. 2011, 98, 528–538. [Google Scholar] [CrossRef]
- Byers, D.L. Studying Plant–Pollinator Interactions in a Changing Climate: A Review of Approaches. Appl. Plant Sci. 2017, 5, 1700012. [Google Scholar] [CrossRef]
- Rao, S.; Stephen, W.P. Bumble Bee Pollinators in Red Clover Seed Production. Crop Sci. 2009, 49, 2207–2214. [Google Scholar] [CrossRef]
- Velthuis, H.H.W.; Doorn, A. van A Century of Advances in Bumblebee Domestication and the Economic and Environmental Aspects of Its Commercialization for Pollination. Apidologie 2006, 37, 421–451. [Google Scholar] [CrossRef]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.-M.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of Crop Pollination Services Is an Insufficient Argument for Wild Pollinator Conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef]
- Ollerton, J.; Winfree, R.; Tarrant, S. How Many Flowering Plants Are Pollinated by Animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Goulson, D.; Lye, G.C.; Darvill, B. Decline and Conservation of Bumble Bees. Annu. Rev. Entomol. 2008, 53, 191–208. [Google Scholar] [CrossRef]
- Soroye, P.; Newbold, T.; Kerr, J. Climate Change Contributes to Widespread Declines among Bumble Bees across Continents. Science 2020, 367, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.H.; Osborne, J.L. Bumblebee Vulnerability and Conservation World-Wide. Apidologie 2009, 40, 367–387. [Google Scholar] [CrossRef]
- Ghisbain, G.; Thiery, W.; Massonnet, F.; Erazo, D.; Rasmont, P.; Michez, D.; Dellicour, S. Projected Decline in European Bumblebee Populations in the Twenty-First Century. Nature 2023, 628, 337–341. [Google Scholar] [CrossRef]
- Nieto, A. European Red List of Bees. In Monographic Series: IUCN Red List of Threatened Species—Regional Assessment; Publication Office of the European Union: Luxembourg, 2014; ISBN 978-92-79-44511-8. [Google Scholar]
- Varga-Szilay, Z.; Tóth, Z. Is Acetamiprid Really Not That Harmful to Bumblebees (Apidae: Bombus spp.)? Apidologie 2022, 53, 2. [Google Scholar] [CrossRef]
- Stanley, D.A.; Russell, A.L.; Morrison, S.J.; Rogers, C.; Raine, N.E. Investigating the Impacts of Field-Realistic Exposure to a Neonicotinoid Pesticide on Bumblebee Foraging, Homing Ability and Colony Growth. J. Appl. Ecol. 2016, 53, 1440–1449. [Google Scholar] [CrossRef]
- Feltham, H.; Park, K.; Goulson, D. Field Realistic Doses of Pesticide Imidacloprid Reduce Bumblebee Pollen Foraging Efficiency. Ecotoxicology 2014, 23, 317–323. [Google Scholar] [CrossRef]
- Gill, R.J.; Ramos-Rodriguez, O.; Raine, N.E. Combined Pesticide Exposure Severely Affects Individual- and Colony-Level Traits in Bees. Nature 2012, 491, 105–108. [Google Scholar] [CrossRef]
- Samuelson, E.E.W.; Chen-Wishart, Z.P.; Gill, R.J.; Leadbeater, E. Effect of Acute Pesticide Exposure on Bee Spatial Working Memory Using an Analogue of the Radial-Arm Maze. Sci. Rep. 2016, 6, 38957. [Google Scholar] [CrossRef]
- Heinrich, B. Resource Heterogeneity and Patterns of Movement in Foraging Bumblebees. Oecologia 1979, 40, 235–245. [Google Scholar] [CrossRef]
- Gillespie, S.D.; Adler, L.S. Indirect Effects on Mutualisms: Parasitism of Bumble Bees and Pollination Service to Plants. Ecology 2013, 94, 454–464. [Google Scholar] [CrossRef]
- Goulson, D. Why Do Pollinators Visit Proportionally Fewer Flowers in Large Patches? Oikos 2000, 91, 485–492. [Google Scholar] [CrossRef]
- Geslin, B.; Baude, M.; Mallard, F.; Dajoz, I. Effect of Local Spatial Plant Distribution and Conspecific Density on Bumble Bee Foraging Behaviour. Ecol. Entomol. 2014, 39, 334–342. [Google Scholar] [CrossRef]
- Evans, L.J.; Smith, K.E.; Raine, N.E. Fast Learning in Free-Foraging Bumble Bees Is Negatively Correlated with Lifetime Resource Collection. Sci. Rep. 2017, 7, 496. [Google Scholar] [CrossRef]
- Heinrich, B. “ Majoring” and" Minoring" by Foraging Bumblebees, Bombus Vagans: An Experimental Analysis. Ecology 1979, 60, 245–255. [Google Scholar] [CrossRef]
- Gegear, R.J.; Otterstatter, M.C.; Thomson, J.D. Bumble-Bee Foragers Infected by a Gut Parasite Have an Impaired Ability to Utilize Floral Information. Proc. Biol. Sci. 2006, 273, 1073–1078. [Google Scholar] [CrossRef]
- Goulson, D. Bumblebees: Behaviour, Ecology, and Conservation. In Oxford Biology, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 2010; ISBN 978-0-19-955306-8. [Google Scholar]
- Jha, S.; Kremen, C. Resource Diversity and Landscape-Level Homogeneity Drive Native Bee Foraging. Proc. Natl. Acad. Sci. USA 2013, 110, 555–558. [Google Scholar] [CrossRef]
- Zimmerman, M. Optimal Foraging, Plant Density and the Marginal Value Theorem. Oecologia 1981, 49, 148–153. [Google Scholar] [CrossRef]
- Brunet, J.; Thairu, M.W.; Henss, J.M.; Link, R.I.; Kluever, J.A. The Effects of Flower, Floral Display, and Reward Sizes on Bumblebee Foraging Behavior When Pollen Is the Reward and Plants Are Dichogamous. Int. J. Plant Sci. 2015, 176, 811–819. [Google Scholar] [CrossRef]
- Makino, T.T.; Sakai, S. Experience Changes Pollinator Responses to Floral Display Size: From Size-Based to Reward-Based Foraging. Funct. Ecol. 2007, 21, 854–863. [Google Scholar] [CrossRef]
- Chudzinska, M.; Dupont, Y.L.; Nabe-Nielsen, J.; Maia, K.P.; Henriksen, M.V.; Rasmussen, C.; Kissling, W.D.; Hagen, M.; Trøjelsgaard, K. Combining the Strengths of Agent-Based Modelling and Network Statistics to Understand Animal Movement and Interactions with Resources: Example from within-Patch Foraging Decisions of Bumblebees. Ecol. Model. 2020, 430, 109119. [Google Scholar] [CrossRef]
- Darras, K.; Batáry, P.; Furnas, B.J.; Grass, I.; Mulyani, Y.A.; Tscharntke, T. Autonomous Sound Recording Outperforms Human Observation for Sampling Birds: A Systematic Map and User Guide. Ecol. Appl. 2019, 29, e01954. [Google Scholar] [CrossRef] [PubMed]
- Besson, M.; Alison, J.; Bjerge, K.; Gorochowski, T.E.; Høye, T.T.; Jucker, T.; Mann, H.M.R.; Clements, C.F. Towards the Fully Automated Monitoring of Ecological Communities. Ecol. Lett. 2022, 25, 2753–2775. [Google Scholar] [CrossRef] [PubMed]
- Tuia, D.; Kellenberger, B.; Beery, S.; Costelloe, B.R.; Zuffi, S.; Risse, B.; Mathis, A.; Mathis, M.W.; Van Langevelde, F.; Burghardt, T.; et al. Perspectives in Machine Learning for Wildlife Conservation. Nat. Commun. 2022, 13, 792. [Google Scholar] [CrossRef] [PubMed]
- Treanore, E.; Barie, K.; Derstine, N.; Gadebusch, K.; Orlova, M.; Porter, M.; Purnell, F.; Amsalem, E. Optimizing Laboratory Rearing of a Key Pollinator, Bombus Impatiens. Insects 2021, 12, 673. [Google Scholar] [CrossRef] [PubMed]
- Bjerge, K.; Geissmann, Q.; Alison, J.; Mann, H.M.R.; Høye, T.T.; Dyrmann, M.; Karstoft, H. Hierarchical Classification of Insects with Multitask Learning and Anomaly Detection. Ecol. Inform. 2023, 77, 102278. [Google Scholar] [CrossRef]
- Spiesman, B.J.; Gratton, C.; Hatfield, R.G.; Hsu, W.H.; Jepsen, S.; McCornack, B.; Patel, K.; Wang, G. Assessing the Potential for Deep Learning and Computer Vision to Identify Bumble Bee Species from Images. Sci. Rep. 2021, 11, 7580. [Google Scholar] [CrossRef]
- Preti, M.; Verheggen, F.; Angeli, S. Insect Pest Monitoring with Camera-Equipped Traps: Strengths and Limitations. J. Pest Sci. 2021, 94, 203–217. [Google Scholar] [CrossRef]
- Ratnayake, M.N.; Amarathunga, D.C.; Zaman, A.; Dyer, A.G.; Dorin, A. Spatial Monitoring and Insect Behavioural Analysis Using Computer Vision for Precision Pollination 2022. Int. J. Comput. Vis. 2023, 131, 1300–1301. [Google Scholar] [CrossRef]
- Sittinger, M.; Uhler, J.; Pink, M.; Herz, A. Insect Detect: An Open-Source DIY Camera Trap for Automated Insect Monitoring. PLoS ONE 2024, 19, e0295474. [Google Scholar] [CrossRef]
- Barlow, S.E.; O’Neill, M.A. Technological Advances in Field Studies of Pollinator Ecology and the Future of E-Ecology. Curr. Opin. Insect Sci. 2020, 38, 15–25. [Google Scholar] [CrossRef]
- Høye, T.T.; Ärje, J.; Bjerge, K.; Hansen, O.L.P.; Iosifidis, A.; Leese, F.; Mann, H.M.R.; Meissner, K.; Melvad, C.; Raitoharju, J. Deep Learning and Computer Vision Will Transform Entomology. Proc. Natl. Acad. Sci. USA 2021, 118, e2002545117. [Google Scholar] [CrossRef] [PubMed]
- van Klink, R.; August, T.; Bas, Y.; Bodesheim, P.; Bonn, A.; Fossøy, F.; Høye, T.T.; Jongejans, E.; Menz, M.H.M.; Miraldo, A.; et al. Emerging Technologies Revolutionise Insect Ecology and Monitoring. Trends Ecol. Evol. 2022, 37, 872–885. [Google Scholar] [CrossRef] [PubMed]
- Bjerge, K.; Nielsen, J.B.; Sepstrup, M.V.; Helsing-Nielsen, F.; Høye, T.T. An Automated Light Trap to Monitor Moths (Lepidoptera) Using Computer Vision-Based Tracking and Deep Learning. Sensors 2021, 21, 343. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.N.; Rustia, D.J.A.; Yang, E.-C.; Lin, T.-T. Automated Monitoring and Analyses of Honey Bee Pollen Foraging Behavior Using a Deep Learning-Based Imaging System. Comput. Electron. Agric. 2021, 187, 106239. [Google Scholar] [CrossRef]
- Bjerge, K.; Mann, H.M.R.; Høye, T.T. Real-time Insect Tracking and Monitoring with Computer Vision and Deep Learning. Remote Sens. Ecol. Conserv. 2022, 8, 315–327. [Google Scholar] [CrossRef]
- Ratnayake, M.N.; Dyer, A.G.; Dorin, A. Tracking Individual Honeybees among Wildflower Clusters with Computer Vision-Facilitated Pollinator Monitoring. PLoS ONE 2021, 16, e0239504. [Google Scholar] [CrossRef]
- Carey, C.C.; Ward, N.K.; Farrell, K.J.; Lofton, M.E.; Krinos, A.I.; McClure, R.P.; Subratie, K.C.; Figueiredo, R.J.; Doubek, J.P.; Hanson, P.C.; et al. Enhancing Collaboration between Ecologists and Computer Scientists: Lessons Learned and Recommendations Forward. Ecosphere 2019, 10, e02753. [Google Scholar] [CrossRef]
- Steen, R. Diel Activity, Frequency and Visit Duration of Pollinators in Focal Plants: In Situ Automatic Camera Monitoring and Data Processing. Methods Ecol. Evol. 2017, 8, 203–213. [Google Scholar] [CrossRef]
- Dwyer, B.; Nelson, J.; Hansen, T. Roboflow; Roboflow, Inc.: Des Moines, IA, USA, 2024; Available online: https://roboflow.com/ (accessed on 19 September 2024).
- Varga-Szilay, Z. Lotus_Creticus_2022 Open Source Dataset; Roboflow, Inc.: Des Moines, IA, USA, 2023; Available online: https://universe.roboflow.com/zsofia-varga-szilay/lotus_creticus_2022 (accessed on 19 September 2024).
- Varga-Szilay, Z. Persicaria_Capitata_2022 Open Source Dataset; Roboflow, Inc.: Des Moines, IA, USA, 2023; Available online: https://universe.roboflow.com/zsofia-varga-szilay/persicaria_capitata_20220921_22 (accessed on 19 September 2024).
- Varga-Szilay, Z. Trifolium_Pratense_2022 Open Source Dataset; Roboflow, Inc.: Des Moines, IA, USA, 2023; Available online: https://universe.roboflow.com/zsofia-varga-szilay/trifolium_pratense_2022 (accessed on 19 September 2024).
- Jocher, G. Ultralytics/yolov5, v3.1; Zenodo: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: Nice, France, 2019; pp. 8024–8035. [Google Scholar]
- Rasband, W.S. ImageJ 1997–2018; National Institutes of Health: Bethesda, MD, USA, 2018. Available online: https://imagej.net/ij/ (accessed on 19 September 2024).
- Python Software Foundation Python Language Reference, Python: Wolfeboro Falls, NH, USA, 2019. Available online: https://www.python.org/ (accessed on 19 September 2024).
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- The Pandas Development Team Pandas-Dev/Pandas: Pandas; Zenodo: Geneva, Switzerland, 2022. [CrossRef]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 25, 120–123. [Google Scholar]
- FFmpeg Developers Ffmpeg Tool, FFmpeg, 2016. Available online: http://ffmpeg.org (accessed on 19 September 2024).
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. PBC Dplyr: A Grammar of Data Manipulation; 2023; Available online: https://cran.r-project.org/web/packages/dplyr/ (accessed on 19 September 2024).
- Wickham, H.; Hester, J.; Bryan, J. Readr: Read Rectangular Text Data; 2024; Available online: https://cran.r-project.org/web/packages/readr/readr (accessed on 19 September 2024).
- Wickham, H.; Henry, L. Purrr: Functional Programming Tools; 2023; Available online: https://cran.r-project.org/web/packages/purrr (accessed on 19 September 2024).
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R News 2002, 2, 7–10. [Google Scholar]
- Zeileis, A.; Köll, S.; Graham, N. Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R. J. Stat. Softw. 2020, 95, 1–36. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
- Vaca-Uribe, J.L.; Figueroa, L.L.; Santamaría, M.; Poveda, K. Plant Richness and Blooming Cover Affect Abundance of Flower Visitors and Network Structure in Colombian Orchards. Agric. For. Entomol. 2021, 23, 545–556. [Google Scholar] [CrossRef]
- Stout, J.C.; Allen, J.A.; Goulson, D. The Influence of Relative Plant Density and Floral Morphological Complexity on the Behaviour of Bumblebees. Oecologia 1998, 117, 543–550. [Google Scholar] [CrossRef]
- Harris, C.; Ratnieks, F.L.W. Improving Pollen and Nectar Supply by Identifying the Red Clover (Trifolium Pratense) Cultivars That Attract Most Pollinators. Agric. For. Entomol. 2024, 26, 273–283. [Google Scholar] [CrossRef]
- Pyke, G. Optimal Foraging Theory: A Critical Review. Annu. Rev. Ecol. Evol. Syst. 1984, 15, 523–575. [Google Scholar] [CrossRef]
- Lázaro, A.; Aase, A.L.T.O.; Totland, Ø. Relationships between Densities of Previous and Simultaneous Foragers and the Foraging Behaviour of Three Bumblebee Species. Ecol. Entomol. 2011, 36, 221–230. [Google Scholar] [CrossRef]
- Somme, L.; Vanderplanck, M.; Michez, D.; Lombaerde, I.; Moerman, R.; Wathelet, B.; Wattiez, R.; Lognay, G.; Jacquemart, A.-L. Pollen and Nectar Quality Drive the Major and Minor Floral Choices of Bumble Bees. Apidologie 2015, 46, 92–106. [Google Scholar] [CrossRef]
- Szabo, T.I.; Najda, H.G. Flowering, Nectar Secretion and Pollen Production of Some Legumes in the Peace River Region of Alberta, Canada. J. Apic. Res. 1985, 24, 102–106. [Google Scholar] [CrossRef]
- Harder, L.D. Flower Handling Efficiency of Bumble Bees: Morphological Aspects of Probing Time. Oecologia 1983, 57, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Harder, L.D. Effects of Nectar Concentration and Flower Depth on Flower Handling Efficiency of Bumble Bees. Oecologia 1986, 69, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Stout, J.C.; Goulson, D. The Influence of Nectar Secretion Rates on the Responses of Bumblebees (Bombus spp.) to Previously Visited Flowers. Behav. Ecol. Sociobiol. 2002, 52, 239–246. [Google Scholar] [CrossRef]
- Krell, R. The Pollination of Cultivated Plants: A Compendium for Practitioners; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Volume 2, ISBN 978-92-5-130506-5. [Google Scholar]
- Bjerge, K.; Karstoft, H.; Mann, H.M.R.; Høye, T.T. A deep learning pipeline for time-lapse camera monitoring of floral environments and insect populations. bioRxiv 2024. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-time end-to-end object detection. arXiv 2024, arXiv:2405.14458. [Google Scholar] [CrossRef]
- Akyon, F.C.; Altinuc, S.O.; Temizel, A. Slicing Aided Hyper Inference and Fine-tuning for Small Object Detection. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 966–970. [Google Scholar]
- Lövei, G.L.; Ferrante, M. The Use and Prospects of Nonlethal Methods in Entomology. Annu. Rev. Entomol. 2024, 69, 183–198. [Google Scholar] [CrossRef]
Type of Set | Type of Images | Flower Species | ||
---|---|---|---|---|
Lotus | Trifolium | Persicaria | ||
Test | Labelled | 387 | 254 | 202 |
False positive | 19 | 12 | 10 | |
Train | Labelled | 2889 | 1354 | 1247 |
False positive | 144 | 68 | 62 | |
Validation | Labelled | 828 | 391 | 369 |
False positive | 41 | 20 | 18 | |
Total | 4308 | 2099 | 1908 |
Question 1 | |||||
Model: average number of bumblebees per time unit~flower species * flower cover (%) | |||||
slope | SD | t-value | p-value | ||
(Intercept) | 0.053 | 0.164 | 0.322 | 0.749 | |
Persicaria | 0.205 | 0.304 | 0.675 | 0.504 | |
Trifolium | −0.054 | 0.361 | −0.149 | 0.882 | |
Flower cover (%) | 0.110 | 0.033 | 3.330 | 0.002 ** | |
Persicaria × Flower cover (%) | −0.069 | 0.092 | −0.744 | 0.461 | |
Trifolium × Flower cover (%) | −0.065 | 0.068 | −0.950 | 0.347 | |
Question 2 | |||||
Model: (average number of bumblebees visiting flower patches at the same time )−3~flower species | |||||
slope | SD | t-value | p-value | ||
(Intercept) | 75.445 | 14.115 | 5.345 | <0.001 *** | |
Persicaria | −56.155 | 19.963 | −2.813 | 0.007 | |
Trifolium | 57.595 | 19.112 | 3.013 | 0.004 | |
Model: (average number of bumblebees visiting flower patches at the same time )−3~flower species + (1|wind strength) + (1|temperature) | |||||
slope | SD | df | t-value | p-value | |
(Intercept) | 1.359 | 53.919 | 4.432 | 0.025 | 0.981 |
Persicaria | 58.949 | 70.381 | 4.834 | 0.838 | 0.442 |
Trifolium | 151.297 | 58.661 | 4.227 | 2.579 | 0.059 |
Question 3 | |||||
Model: percentage of ‘bumblebee-time’ spent on flower~flower species * flower cover (%) | |||||
slope | SD | t-value | p-value | ||
(Intercept) | 30.861 | 18.875 | 1.635 | 0.110 | |
Persicaria | −32.511 | 20.561 | −1.581 | 0.121 | |
Trifolium | 19.119 | 35.137 | 0.544 | 0.589 | |
Flower cover (%) | 0.313 | 3.264 | 0.096 | 0.924 | |
Persicaria × Flower cover (%) | 8.385 | 4.104 | 2.043 | 0.047 * | |
Trifolium × Flower cover (%) | −3.084 | 6.383 | −0.483 | 0.631 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varga-Szilay, Z.; Szövényi, G.; Pozsgai, G. Flower Visitation through the Lens: Exploring the Foraging Behaviour of Bombus terrestris with a Computer Vision-Based Application. Insects 2024, 15, 729. https://doi.org/10.3390/insects15090729
Varga-Szilay Z, Szövényi G, Pozsgai G. Flower Visitation through the Lens: Exploring the Foraging Behaviour of Bombus terrestris with a Computer Vision-Based Application. Insects. 2024; 15(9):729. https://doi.org/10.3390/insects15090729
Chicago/Turabian StyleVarga-Szilay, Zsófia, Gergely Szövényi, and Gábor Pozsgai. 2024. "Flower Visitation through the Lens: Exploring the Foraging Behaviour of Bombus terrestris with a Computer Vision-Based Application" Insects 15, no. 9: 729. https://doi.org/10.3390/insects15090729
APA StyleVarga-Szilay, Z., Szövényi, G., & Pozsgai, G. (2024). Flower Visitation through the Lens: Exploring the Foraging Behaviour of Bombus terrestris with a Computer Vision-Based Application. Insects, 15(9), 729. https://doi.org/10.3390/insects15090729