Bioacaricides in Crop Protection—What Is the State of Play?
Simple Summary
Abstract
1. Introduction
2. Biopesticides in the Modern World
2.1. Definitions and Classifications
2.2. Global Market, Advantages and Constraints
3. Bioacaricides in Contemporary Crop Protection
3.1. Microbial Acaricides
3.2. Biochemical Acaricides
3.2.1. Microbial Biochemical Acaricides
3.2.2. Botanical Biochemical Acaricides
3.3. Semiochemicals as Bioacaricides
4. Side Effects of Bioacaricides on Predatory Mites
Bioacaricides | Phytoseiid Mites | Methodology | Comp | References * | ||
---|---|---|---|---|---|---|
Exposure | Endpoints | |||||
abamectin | Amblyseius swirskii | n | rc, rc+/−; Td-re | Se, Sl, Sf, Fec, LC50 | → | [146] |
Euseius scutalis | n | rc, rc+/−; Td-re | Se, Sl, Sf, Fec, LC50 | → | [147] | |
Galendromus occidentalis | c | rc; Tre (3–37) | Sf, Fec, Fer, E, IOBC | + Tre (6) | [148] | |
Neoseiulus barkeri | c | rc, rc+/−; Tre (0) | Sf, Fec, Fer, LC50, E, IOBC ● | + | [149] | |
Neoseiulus californicus | c | rc; Tre (0–21) | Sf | + Tre (7) | [150] | |
n | rc; Tre (0–21) | Sf ● | + Tre (7) | [151] | ||
c | rc; Td-re + Tp | Sf, Fec, Fer, SI ● | − | [138] | ||
Neoseiulus cucumeris | n | rc, rc+/−; Tre (0) | Sf, LC50 ● | + | [152] | |
c | rc; Tre (0) | Sf | − | [153] | ||
Neoseiulus fallacis | c | rc; Td-re + Tp | Sf, Fec, Fer, SI ● | − | [138] | |
Phytoseiulus longipes | n | rc; Td-re | Sf, Fec, Fer, E, IOBC | − | [145] | |
rc; Tre (4–31) | + Tre (10) | |||||
Phytoseiulus persimilis | c | rc; Tre (3–37) | Sf, Fec, Fer, E, IOBC | + Tre (14) | [148] | |
n | rc; Td-re | Sf, Fec, Fer, E, IOBC | − | [131] | ||
c | rc; Tre (0–21) | Sf | + Tre (14) | [150] | ||
c | rc; Td-re + Tp | Sf, Fec, Fer, SI ● | − | [138] | ||
milbemectin | Neoseiulus womersleyi | n | rc; Td-re | Sel-a, Sf, Fec ● | − | [154] |
Phytoseiulus persimilis | n | rc; Td-re | Sel-a, Sf, Fec ● | − | [155] | |
spinosad | Amblyseius swirskii | n | rc, rc+/−; Td-re | Se, Sl, Sf, Fec, LC50 | − | [156] |
Galendromus occidentalis | n | rc; Td-re + Tp | Se, Sf, Fec | + | [136] | |
Kampimodromus aberrans | n | rc; Tre (0) | Sf, Fec, Fer, E | − | [157] | |
Neoseiulus cucumeris | c | rc; Tre (0–6) + Tp | Sf, IOBC | + Tre (4) | [158] | |
Neoseiulus fallacis | n | rc, rc+/−; Td-re + Tp | Se, Sf, Fec, LC50 | → | [137] | |
n | rc; Tre (0), Tp | Sel-a, Sf, Fec | − | [159] | ||
Phytoseiulus persimilis | n | rc; Td-re | Sf, Fec, Fer, E, IOBC | + | [131] | |
Transeius montdorensis | c | rc; Tre (0–6) + Tp | Sf, IOBC | + Tre (5) | [158] |
Bioacaricides | Phytoseiid Mites | Methodology | Comp | References * | ||
---|---|---|---|---|---|---|
Exposure | Endpoints | |||||
azadirachtin | Amblyseius andersoni | n | rc, Td-re | Sf, Fec, E | + | [160] |
Neoseiulus barkeri | c | rc, Tre (0) | Sf, Fec, Fer, E, IOBC | + | [149] | |
Neoseiulus californicus | n | rc; Td-re | Se, Sf, Fec, Fer, E ● | + | [130] | |
c | rc; Td-re | Sf, Fec, Fer | + | [161] | ||
Neoseiulus cucumeris | c | rc; Td, Tre (0) + Tp | Sel-a, Sf, Fec | + | [162] | |
Phytoseiulus longipes | n | rc; Td-re | Sf, Fec, Fer, E, IOBC | + | [145] | |
rc; Tre (4–31) | + Tre (4) | |||||
Phytoseiulus macropilis | c | rc; Td-re | Sf, Fec, Fer | + | [161] | |
Phytoseiulus persimilis | c | rc; Td, Tre (0) + Tp | Sel-a, Sf, Fec | + | [149] | |
n | rc; Td-re | Se, Sf, Fec, Fer, E ● | + | [132] | ||
oxymatrine | Phytoseiulus longipes | n | rc; Td-re | Sf, Fec, Fer, E, IOBC | − | [145] |
rc; Tre (4–31) | + Tre (10) | |||||
pyrethrum | Amblyseius andersoni | n | rc, Td-re | Se, Sf, Fec, E | − | [160] |
Neoseiulus californicus | n | rc; Td-re | Se, Sf, Fec, Fer, E ● | − | [130] | |
Phytoseiulus persimilis | n | rc; Td-re | Se, Sf, Fec, Fer, E ● | − | [132] | |
rosemary oil | Phytoseiulus persimilis | c | rc, rc+/−; Td-re, Tre (0) | Sf, LC50 ● | + | [107] |
soybean oil | Phytoseiulus persimilis | n | rc; Td-re | Se, Sf ● | + | [135] |
+ fatty acids | ||||||
+ caraway oil |
Bioacaricides | Phytoseiid Mites | Methodology | Effect on rm | References * | |
---|---|---|---|---|---|
Beauveria bassiana GHA | Phytoseiulus persimilis | c | rc, ATlt, F0 | ↓ | [170] |
Hirsutella thompsonii | Phytoseiulus longipes | n | rc, ATlt, F0 | ↓ | [145] |
abamectin | Phytoseiulus longipes | n | rc, ATlt, F0 | ↓ | [145] |
Neoseiulus baraki | n | rc, Flt, F0 F1 | ↓ F0 | [171] | |
Phytoseius plumifer | n | LC10, 20, Flt, F1 | ↓ LC20 | [167] | |
milbemectin | Amblyseius swirskii | n | LC5, 15, 25, ATlt, F1 | ns | [169] |
azadirachtin | Neoseiulus baraki | n | rc, Flt, F0 F1 | ns | [171] |
Phytoseiulus longipes | n | rc, ATlt, F0 | ↓ | [145] | |
geraniol + citronellol | Neoseiulus californicus | c | LC10, 20, ATlt, F1 | ns | [168] |
+ nerolidol + farnesol | |||||
oxymatrine | Phytoseiulus longipes | n | rc, ATlt, F0 | ↓ | [145] |
5. Bioacaricides—Potential and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Cooper, J.; Dobson, H. The benefits of pesticides to mankind and the environment. Crop Prot. 2007, 26, 1337–1348. [Google Scholar] [CrossRef]
- Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Pimentel, D.; Acquay, H.; Biltonen, M.; Rice, P.; Silva, M.; Nelson, J.; Lipner, V.; Giordano, S.; Horowitz, A.; D’Amore, M. Environmental and economic costs of pesticide use. BioScience 1992, 42, 750–760. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Copping, L.G.; Menn, J.J. Biopesticides: A review of their action, applications and efficacy. Pest Manag. Sci. 2000, 56, 651–676. [Google Scholar] [CrossRef]
- Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 2007, 63, 524–554. [Google Scholar] [CrossRef]
- Marrone, P.G. Pesticidal natural products—Status and future potential. Pest Manag. Sci. 2019, 75, 2325–2340. [Google Scholar] [CrossRef]
- Flint, M.L.; van den Bosch, R. Introduction to Integrated Pest Management; Plenum Press: New York, NY, USA; London, UK, 1981; p. 240. [Google Scholar]
- Pavela, R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—A review. Plant Prot. Sci. 2016, 52, 229–241. [Google Scholar] [CrossRef]
- Olson, S. An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag. 2015, 26, 203–206. [Google Scholar] [CrossRef]
- Marčić, D. Acaricides in modern management of plant-feeding mites. J. Pest Sci. 2012, 85, 395–408. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Tirry, L.; Yamamoto, A.; Nauen, R.; Dermauw, W. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic. Biochem.Physiol. 2015, 121, 12–21. [Google Scholar] [CrossRef]
- Umetsu, N.; Shirai, Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef] [PubMed]
- IRAC (Insecticide Resistance Action Committee)—The IRAC Mode of Action Classification Online. Available online: http://www.irac-online.org/modes-of-action/ (accessed on 31 May 2024).
- OECD (Organisation for Economic Co-operation and Development). Series on Pesticides No. 12: GUIDANCE for Registration Requirements for Pheromones and Other Semiochemicals Used for Arthropod Pest Control; OECD—Environment Directorate: Paris, France, 2001; p. 25. [Google Scholar]
- OECD (Organisation for Economic Co-operation and Development). Series on Pesticides No. 18: Guidance for Registration Requirements for Microbial Pesticides; OECD—Environment Directorate: Paris, France, 2003; p. 51. [Google Scholar]
- OECD (Organisation for Economic Co-operation and Development). Series on Pesticides No. 21: Guidance for Information Requirements for Regulation of Invertebrates as Biological Control Agents (IBCAs); OECD—Environment Directorate: Paris, France, 2004; p. 22. [Google Scholar]
- OECD (Organisation for Economic Co-operation and Development). Series on Pesticides No. 90: Guidance Document on Botanical Active Substances Used in Plant Protection Products; OECD—Environment Directorate: Paris, France, 2017; p. 38. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations); WHO (World Health Organization). International Code of Conduct on Pesticide Management: Guidelines for the Registration of Miucrobial, Botanical and Semiochemical Pest Control Agents for Plant Protection and Public Health Issues; FAO & WHO: Rome, Italy, 2017; p. 76. [Google Scholar]
- Marrone, P.G. Biopesticide Commercialization in North America: State of the Art and Future Opportunities. In Development and Commercialization of Biopesticides—Costs and Benefits; Koul, O., Ed.; Academic Press: London, UK, 2023; pp. 173–202. [Google Scholar] [CrossRef]
- US EPA (United States Environmental Protection Agency)—Biopesticides. Available online: https://www.epa.gov/pesticides/biopesticides (accessed on 28 February 2024).
- Wang, Q.; Wang, Z. Biopesticides in China: Development, Commercialization, and Regulation. In Development and Commercialization of Biopesticides—Costs and Benefits; Koul, O., Ed.; Academic Press: London, UK, 2023; pp. 203–212. [Google Scholar] [CrossRef]
- EC (European Commission) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Official Journal of the European Union, 2009, L 309/1-50. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0001:0050:en:PDF (accessed on 28 February 2024).
- EC (European Commission) EU Pesticide Database—Active Substances, Safeners and Synergists. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances (accessed on 28 February 2024).
- Karamaouna, F.; Economou, L.P.; Lykogianni, M.; Mantzoukas, S.; Eliopoulos, P.A. Biopesticides in the EU: State of play and perspectives after the Green Deal for agriculture. In Development and Commercialization of Biopesticides—Costs and Benefits; Koul, O., Ed.; Academic Press: London, UK, 2023; pp. 213–239. [Google Scholar] [CrossRef]
- Bailey, A.; Chandler, D.; Grant, W.P.; Greaves, J.; Prince, G.; Tatchell, M. Biopesticides: Pest Management and Regulation; CAB International: Wallingford, UK, 2010; p. 232. [Google Scholar]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B 2011, 366, 1987–1998. [Google Scholar] [CrossRef]
- Marrone, P.G. Status of the biopesticide market and prospects for new bioherbicides. Pest Manag. Sci. 2024, 80, 81–86. [Google Scholar] [CrossRef]
- Koul, O. Biopesticides: Commercial opportunities and challenges. In Development and Commercialization of Biopesticides—Costs and Benefits; Koul, O., Ed.; Academic Press: London, UK, 2023; pp. 1–23. [Google Scholar] [CrossRef]
- Biondi, A.; Mommaerts, V.; Smagghe, G.; Viuela, L.; Zappala, L.; Desneux, N. The non-target impact of spinosyns on beneficial arthropods. Pest Manag. Sci. 2012, 68, 1523–1536. [Google Scholar] [CrossRef]
- Cappa, F.; Baracchi, D.; Cervo, R. Biopesticides and insect pollinators: Detrimental effects, outdated guidelines, and future directions. Sci. Total Environ. 2022, 837, 155714. [Google Scholar] [CrossRef]
- Giunti, G.; Benelli, G.; Palmeri, V.; Laudani, F.; Ricupero, M.; Ricciardi, R.; Maggi, F.; Lucchi, A.; Guedes, R.N.C.; Desneux, N.; et al. Non-target effects of essential oil-based biopesticides for crop protection: Impact on natural enemies, pollinators, and soil invertebrates. Biol. Control 2022, 176, 105071. [Google Scholar] [CrossRef]
- Toledo-Hernández, E.; Peňa-Chora, G.; Hernández-Velázquez, V.M.; Lormendez, C.C.; Toribio-Jimenéz, J.; Romero-Ramírez, Y.; León-Rodríguez, R. The stingless bees (Hymenoptera: Apidae: Meliponini): A review of the current threats to their survival. Apidologie 2022, 53, 8. [Google Scholar] [CrossRef]
- Brimner, T.A.; Boland, G.J. A review of the non-target effects of fungi used to biologically control plant diseases. Agric. Ecosyst. Environ. 2003, 100, 3–16. [Google Scholar] [CrossRef]
- Mota-Sanchez, D.; Wise, J.C. The Arthropod Pesticide Resistance Database. Available online: www.pesticideresistance.org (accessed on 31 May 2024).
- Sundin, G.W.; Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2018, 56, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Siegwart, M.; Graillot, B.; Lopez, C.B.; Besse, S.; Bardin, M.; Nicot, P.C.; Lopez-Ferber, M. Resistance to bio-insecticides or how to enhance their sustainability: A review. Front. Plant Sci. 2015, 6, 381. [Google Scholar] [CrossRef] [PubMed]
- Mangan, R.; Bussière, L.F.; Polanczyk, R.A.; Tinsley, M.C. Increasing ecological heterogeneity can constrain biopesticide resistance evolution. Trends Ecol. Evol. 2023, 38, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B. Botanical insecticides in the twenty-first century: Fulfilling the promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef]
- Flamini, G. Acaricides of natural origin, personal experiences and review of literature (1990–2001). Stud. Nat. Prod. Chem. 2003, 28, 381–451. [Google Scholar] [CrossRef]
- Maniania, N.K.; Bugeme, D.M.; Wekesa, V.W.; Delalibero, I., Jr.; Knapp, M. Role of entomopathogenic fungi in the control of Tetranychus evansi and Tetranychus urticae (Acari: Tetranychidae), pests of horticultural crops. Exp. Appl. Acarol. 2008, 46, 259–274. [Google Scholar] [CrossRef]
- Attia, S.; Grissa, K.L.; Lognay, G.; Bitume, E.; Hance, T.; Mailleux, A.C. A review of the major biological approaches to control the worldwide pest Tetranychus urticae with special reference to natural pesticides. J. Pest Sci. 2013, 86, 361–386. [Google Scholar] [CrossRef]
- Rincón, R.A.; Rodriguez, D.; Coy-Barrera, E. Botanicals against Tetranychus urticae Koch under laboratory conditions: A survey of alternatives for controlling pest mites. Plants 2019, 8, 272. [Google Scholar] [CrossRef]
- Jakubowska, M.; Dobosz, R.; Zawada, D.; Kowalska, J. A review of crop protection methods against the twospotted spider mite—Tetranychus urticae Koch (Acari: Tetranychidae)—With special reference to alternative methods. Agriculture 2022, 12, 898. [Google Scholar] [CrossRef]
- Smagghe, F.; Spooner-Hart, R.; Chen, Z.H.; Donovan-Mak, M. Biological control of arthropod pests in protected cropping by employing entomopathogens: Efficiency, production and safety. Biol. Control 2023, 186, 105337. [Google Scholar] [CrossRef]
- Royalty, R.N.; Hall, F.R.; Taylor, R.A.J. Effects of thuringiensin on Tetranychus urticae (Acari: Tetranychidae) mortality, fecundity, and feeding. J. Econ. Entomol. 1990, 83, 792–798. [Google Scholar] [CrossRef]
- Royalty, R.N.; Hall, F.R.; Lucius, B.A. Effects of thuringiensin on European red mite (Acarina: Tetranychidae) mortality, oviposition rate and feeding. Pestic. Sci. 1991, 33, 383–391. [Google Scholar] [CrossRef]
- Vargas, R.; Chapman, B.; Penman, D.R. Toxicity of thurigiensin on immature and adult stages of Tetranychus urticae Koch and Panonychus ulmi (Koch) (Acarina: Tetranychidae). Agric. Téc. 2001, 61, 3–14. [Google Scholar] [CrossRef]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [PubMed]
- Zenkova, A.A.; Grizanova, E.V.; Andreeva, I.V.; Gerne, D.Y.; Shatalova, E.I.; Cvetcova, V.P.; Dubovskiy, I.M. Effect of fungus Lecanicillium lecanii and bacteria Bacillus thuringiensis, Streptomyces avermitilis on two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) and predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). J. Plant Prot. Res. 2020, 60, 415–419. [Google Scholar] [CrossRef]
- Belousova, M.E.; Malovichko, Y.V.; Shikov, A.E.; Nizhnikov, A.A.; Antonets, K.S. Dissecting the environmental consequences of Bacillus thuringiensis application for natural ecosystems. Toxins 2021, 13, 355. [Google Scholar] [CrossRef]
- Martin, P.A.W.; Gundersen-Rindal, D.; Blackburn, M.; Buyer, J. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int. J. Syst. Evol. Microbiol. 2007, 57, 993–999. [Google Scholar] [CrossRef]
- Cordova-Kreylos, A.L.; Fernandez, L.E.; Koivunen, M.; Yang, A.; Flor-Weiler, L.; Marrone, P.G. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Appl. Environ. Microbiol. 2013, 79, 7669–7678. [Google Scholar] [CrossRef]
- Ray, H.A.; Hoy, M.A. Effects of reduced-risk insecticides on three orchid pests and two predacious natural enemies. Fla Entomol. 2014, 97, 972–978. [Google Scholar] [CrossRef]
- Mertoglu, G. Evaluation of Biorational Insecticides Against Two-Spotted Spider Mite (Acari: Tetranychidae) on Tomato. Master’s Thesis, Auburn University, Auburn, AL, USA, 12 December 2019. [Google Scholar]
- Golec, J.R.; Hoge, B.; Walgenbach, J.F. Effects of biopesticides on different Tetranychus urticae (Acari: Tetranychidae) life stages. Crop Prot. 2020, 128, 105006. [Google Scholar] [CrossRef]
- Stansly, P.A.; Kostyk, B.C. Control of broad mite on “bell” pepper with labeled and experimental insecticides. Arthropod Manag. Tests 2014, 39, E67. [Google Scholar] [CrossRef]
- Stansly, P.A.; Kostyk, B.C. Acaricidal control of citrus rust mites, 2013. Arthropod Manag. Tests 2014, 39, D17. [Google Scholar] [CrossRef]
- Dara, S.K.; Peck, D.; Murray, D. Chemical and non-chemical options for managing twospotted spider mite, western tarnished plant bug and other arthropod pests in strawberries. Insects 2018, 9, 156. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.R.; Wraight, S.P. Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control 2007, 43, 237–256. [Google Scholar] [CrossRef]
- Marčić, D. Biopesticides for insect and mite pest management in modern crop protection. In Understanding Pests and Their Control Agents as the Basis for Integrated Plant Protection; Tanović, B., Nicot., P., Dolzhenko, V., Marčić, D., Eds.; IOBC-WPRS: Darmstadt, Germany, 2021; pp. 77–88. [Google Scholar]
- Mascarin, G.M.; Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 2016, 32, 177. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, J. The registration situation and use of mycopesticides in the world. J. Fungi 2023, 9, 940. [Google Scholar] [CrossRef]
- Ullah, M.S.; Lim, U.T. Laboratory bioassay of Beauveria bassiana against Tetranychus urticae (Acari: Tetranychidae) on leaf discs and potted bean plants. Exp. Appl. Acarol. 2015, 65, 307–318. [Google Scholar] [CrossRef]
- Basak, R.; Akter, M.; Tumpa, T.A.; Sharmin, D.; Ullah, M.S. Laboratory bioassay of six pesticides, an entomopathogenic fungus, and a botanical pesticide on two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Persian J. Acarol. 2021, 10, 269–280. [Google Scholar] [CrossRef]
- Nahian-Al Sabri, M.D.; Jahan, M.; Tetsuo, G.; Döker, I.; Ullah, M.S. Effect of relative humidity on the efficacy of entomopathogen Beauveria bassiana-based mycopesticide against red spider mite Tetranychus macfarlanei. Syst. Appl. Acarol. 2022, 27, 2414–2425. [Google Scholar] [CrossRef]
- Kumar, K.K.; Sridhar, J.; Murali-Baskaran, R.K.; Senthil-Nathan, S.; Kaushal, P.; Dara, S.K.; Arthurs, S. Microbial biopesticides for insect pest management in India: Current status and future prospects. J. Invertebr. Pathol. 2019, 165, 74–81. [Google Scholar] [CrossRef]
- US EPA (United States Environmental Protection Agency)—Biopesticide Active Ingredients. Available online: https://www.epa.gov/ingredients-used-pesticide-products/biopesticide-active-ingredients (accessed on 28 February 2024).
- Arthurs, S.; Dara, S. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 2019, 165, 13–21. [Google Scholar] [CrossRef]
- Brownbridge, M.; Buitenhuis, R. Integration of microbial biopesticides in greenhouse floriculture: The Canadian experience. J. Invertebr. Pathol. 2019, 165, 4–12. [Google Scholar] [CrossRef]
- Hatting, J.L.; Moore, S.D.; Malan, A.P. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future prospects. J. Invertebr. Pathol. 2019, 165, 54–66. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Lopes, R.B.; Delalibera, Í., Jr.; Fernandes, É.K.K.; Luz, C.; Faria, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebr. Pathol. 2019, 165, 46–53. [Google Scholar] [CrossRef] [PubMed]
- US EPA (United States Environmental Protection Agency)—Pesticide Product and Label System. Available online: https://ordspub.epa.gov/ords/pesticides/f?p=PPLS:1 (accessed on 28 February 2024).
- Chandler, D.; Davidson, G.; Jacobson, R.J. Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato, Lycopersicon esculentum. Biocontrol Sci. Technol. 2005, 15, 37–54. [Google Scholar] [CrossRef]
- Sreerama Kumar, P.S. Hirsutella thompsonii as a mycoacaricide for Aceria guerreronis on coconut in India: Research, development, and other aspects. In Trends in Acarology; Sabelis, M.W., Bruin, J., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 441–444. [Google Scholar] [CrossRef]
- Gatarayiha, M.C.; Laing, M.D.; Miller, R.M. Field evaluation of Beauveria bassiana efficacy for the control of Tetranychus urticae Koch (Acari: Tetranychidae). J. Appl. Entomol. 2011, 135, 582–592. [Google Scholar] [CrossRef]
- Marčić, D.; Prijović, M.; Drobnjaković, T.; Međo, I.; Perić, P.; Milenković, S. Greenhouse and field evaluation of two biopesticides against Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pestic. Phytomed. 2012, 27, 313–320. [Google Scholar] [CrossRef]
- Marčić, D.; Perić, P.; Petronijević, S.; Prijović, M.; Drobnjaković, T.; Milenković, S. Efficacy evaluation of Beauveria bassiana strain ATCC 74040 (Naturalis) against spider mites (Acari: Tetranychidae) in Serbia. IOBC-WPRS Bull. 2013, 93, 65–71. [Google Scholar]
- Wraight, S.P.; Lopes, R.B.; Faria, M. Microbial control of mite and insect pests of greenhouse crops. In Microbial Control of Insect and Mite Pests; Lacey, L.A., Ed.; Academic Press: London, UK, 2017; pp. 237–252. [Google Scholar]
- Chouikhi, S.; Assadi, B.H.; Grissa Lebdi, K.; Belkadhi, M.S. Efficacy of the entomopathogenic fungus, Beauveria bassiana and Lecanicillium muscarium against two main pests, Bemisia tabaci (Genn.) and Tetranychus urticae Koch, under geothermal greenhouses of Southern Tunisia. Egypt. J. Biol. Pest Control 2022, 32, 125. [Google Scholar] [CrossRef]
- Ullah, M.S.; Lim, U.T. Synergism of Beauveria bassiana and Phytoseiulus persimilis in control of Tetranychus urticae on bean plants. Syst. Appl. Acarol. 2017, 22, 1924–1935. [Google Scholar] [CrossRef]
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D.; et al. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classfication—A tool for resistance management. Pestic. Biochem. Physiol. 2020, 167, 104587. [Google Scholar] [CrossRef] [PubMed]
- Collett, M.G.; Oakes, K.A.; Babu, R.; McLennan, A. Evaluation of adjuvants for abamectin in early-season control of two-spotted mite and European red mite in apples. In Spray Oils Beyond 2000: Sustainable Pest and Disease Management; Beattie, A., Watson, D.M., Stevens, M.L., Rae, D.J., Spooner-Hart, R.N., Eds.; University of Western Sydney: Sydney, Australia, 2002; pp. 285–288. [Google Scholar]
- Marčić, D.; Perić, P.; Prijović, M.; Ogurlić, I. Field and greenhouse evaluation of rapeseed spray oil against spider mites, green peach aphid and pear psylla in Serbia. Bull. Insectol. 2009, 62, 159–167. [Google Scholar]
- Van Leeuwen, T.; Dermauw, W.; Van De Veire, M.; Tirry, L. Systemic use of spinosad to control the two-spotted spider mite (Acari: Tetranychidae) on tomatoes grown in rockwool. Exp. Appl. Acarol. 2005, 37, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.S.M.; Soliman, M.F.M.; El Naggar, M.H.; Ghallab, M.M. Acaricidal activity of spinosad and abamectin against two-spotted spider mites. Exp. Appl. Acarol. 2007, 43, 129–135. [Google Scholar] [CrossRef]
- Međo, I.; Stojnić, B.; Marčić, D. Acaricidal activity and sublethal effects of the microbial pesticide spinosad on Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 2017, 22, 1748–1762. [Google Scholar] [CrossRef]
- Cowles, R.S. Effect of spinosad formulations and other miticides on twospotted spider mite. Arthropod Manag. Tests 1998, 23, 342–343. [Google Scholar] [CrossRef]
- Tjosvold, S.A.; Chaney, W.E. Evaluation of reduced risk and other biorational miticides on the control of spider mites (Tetranychus urticae). Acta Hortic. 2001, 547, 93–96. [Google Scholar] [CrossRef]
- OECD (Organisation for Economic Co-operation and Development). Series on Pesticides No. 43: Working Document on the Evaluation of Microbials for Pest Control; OECD—Environment Directorate: Paris, France, 2008; p. 64. [Google Scholar]
- Bradberry, S.M.; Cage, S.A.; Proudfoot, A.T.; Vale, J.A. Poisoning due to Pyrethroids. Toxicol. Rev. 2005, 24, 93–106. [Google Scholar] [CrossRef]
- Chrustek, A.; Hołynska-Iwan, I.; Dziembowska, I.; Bogusiewicz, J.; Wróblewski, M.; Cwynar, A.; Olszewska-Słonina, D. Current research on the safety of pyrethroids used as insecticides. Medicina 2018, 54, 61. [Google Scholar] [CrossRef]
- Isman, M.B. Commercialization and regulation of botanical biopesticides: A global perspective. In Development and Commercialization of Biopesticides—Costs and Benefits; Koul, O., Ed.; Academic Press: London, UK, 2023; pp. 25–36. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 2019, 105, 483–495. [Google Scholar] [CrossRef]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Juma, P.; Njau, N.; Wacera, F.W.; Micheni, C.M.; Khan, H.A.; Mitalo, O.W.; Odongo, D. Trends in neem (Azadirachta indica)-based botanical pesticides. In New and Future Development in Biopesticide Research: Biotechnological Exploration; De Mandal, S., Ramkumar, G., Karthi, S., Jin, F., Eds.; Springer Nature: Singapore, 2022; pp. 137–156. [Google Scholar]
- Tsolakis, H.; Ragusa, E.; Ragusa, S. Effects of neem oil (Azadirachta indica A. Juss) on Tetranychus urticae Koch (Acariformes, Tetranychidae) in laboratory tests. In Acarid Phylogeny and Evolution—Adaptations in Mites and Ticks; Bernini, F., Nannetti, R., Nuzzaci, C., de Lillo, E., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 351–362. [Google Scholar]
- Marčić, D.; Međo, I. Sublethal effects of azadirachtin-A (NeemAzal-T/S) on Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 2015, 20, 25–38. [Google Scholar] [CrossRef]
- Kilani-Morakchi, S.; Morakchi-Goudji, H.; Sifi, K. Azadirachtin-based insecticide: Overview, risk assessments, and future directions. Front. Agron. 2021, 3, 676208. [Google Scholar] [CrossRef]
- Savi, P.J.; Martins, M.B.; de Moraes, G.J.; Hountondji, F.C.C.; de Andrade, D.J. Bioactivity of oxymatrine and azadirachtin against Tetranychus evansi (Acari: Tetranychidae) and their compatibility with the predator Phytoseiulus longipes (Acari: Phytoseiidae) on tomato. Syst. Appl. Acarol. 2021, 26, 1264–1279. [Google Scholar] [CrossRef]
- Marčić, D.; Ogurlić, I.; Prijović, M.; Perić, P. Effectiveness of azadirachtin (NeemAzal-T/S) in controlling pear psylla (Cacopsylla pyri) and European red mite (Panonychus ulmi). Pestic. Phytomed. 2009, 24, 123–132. [Google Scholar] [CrossRef]
- Soto, A.; Venzon, M.; Oliveira, R.M.; Oliveira, H.G.; Pallini, A. Alternative control of Tetranychus evansi Baker & Pritchard (Acari: Tetranychidae) on tomato plants grown in greenhouses. Neotrop. Entomol. 2010, 39, 638–644. [Google Scholar] [CrossRef]
- Bagde, A.S.; Pashte, V.V. Efficacy of neem bio-pesticides against eggs of coconut eriophyid mite, (Aceria guerreronis Keifer). Adv. Life Sci. 2016, 5, 1436–1441. [Google Scholar]
- Prasad, R.; Hembrom, L.; Prasad, D. Evaluation of acaricidal efficacy of some botanicals and conventional acaricides for management of yellow mite (Polyphagotarsonemus latus Banks) of chilli. J. Eco-Friendly Agric. 2017, 12, 50–52. [Google Scholar]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–425. [Google Scholar] [CrossRef]
- Miresmailli, S.; Isman, M.B. Efficacy and persistance of rosemary oil as an acaricide against twospotted spider mite (Acari: Tetranychidae) on greenhouse tomato. J. Econ. Entomol. 2006, 99, 2015–2023. [Google Scholar] [CrossRef]
- Cloyd, R.A.; Galle, C.L.; Keith, S.R.; Kalscheur, N.A.; Kemp, K.E. Effect of commercially available plant-derived essential oil products on arthropod pests. J. Econ. Entomol. 2009, 102, 1567–1579. [Google Scholar] [CrossRef] [PubMed]
- Haviland, D.; Hill, S. The effects of miticide treatments on Pacific spider mite in Almond 2018. Arthropod Manag. Tests 2019, 44, tsz067. [Google Scholar] [CrossRef]
- Szczepaniec, A.; Lathrop-Melting, A.; Janecek, T.; Nachappa, P.; Cranshaw, W.; Alnajjar, G.; Axtell, A. Suppression of hemp russet mite, Aculops cannabicola (Acari: Eriophyidae), in industrial hemp in greenhouse and field. Environ. Entomol. 2024, 53, 18–25. [Google Scholar] [CrossRef]
- Chiasson, H.; Bostanian, N.J.; Vincent, C. Acaricidal properties of a Chenopodium-based botanical. J. Econ. Entomol. 2004, 97, 1373–1377. [Google Scholar] [CrossRef]
- Chiasson, H.; Bostanian, N.J.; Vincent, C. Insecticidal properties of a Chenopodium-based botanical. J. Econ. Entomol. 2004, 97, 1378–1383. [Google Scholar] [CrossRef]
- Musa, A.; Međo, I.; Marić, I.; Marčić, D. Acaricidal and sublethal effects of a Chenopodium-based biopesticide on the twospotted spider mite (Acari: Tetranychidae). Exp. Appl. Acarol. 2017, 71, 211–226. [Google Scholar] [CrossRef]
- Marčić, D.; Međo, I. Acaricidal activity and sublethal effects of an oxymatrine-based biopesticide on two-spotted spider mite (Acari: Tetranychidae). Exp. Appl. Acarol. 2014, 64, 375–391. [Google Scholar] [CrossRef]
- de Andrade, D.J.; Ribeiro, E.B.; de Morais, M.R.; Zanardi, O.Z. Bioactivity of an oxymatrine-based commercial formulation against Brevipalpus yothersi Baker and its effects on predatory mites in citrus groves. Ecotoxicol. Environ. Saf. 2019, 176, 339–345. [Google Scholar] [CrossRef]
- de Andrade, D.J.; da Rocha, C.M.; de Matos, S.T.S.; Zanardi, O.Z. Oxymatrine-based bioacaricide as a management tool against Oligonychus ilicis (McGregor) (Acari: Tetranychidae) in coffee. Crop Prot. 2020, 134, 105182. [Google Scholar] [CrossRef]
- Rousseau, D. Chemical and physical properties of canola and rapeseed oil. In Rapeseed and Canola Oil Production, Processing, Properties and Uses; Gunstone, F.D., Ed.; Blackwell Publishing: Oxford, UK, 2004; pp. 79–105. [Google Scholar]
- Takeda, N.; Takata, A.; Arai, Y.; Sasaya, K.; Noyama, S.; Wakisaka, S.; Ghazy, N.A.; Voigt, D.; Suzuki, T. A vegetable oil–based biopesticide with ovicidal activity against the two-spotted spider mite, Tetranychus urticae Koch. Eng. Life Sci. 2020, 20, 525–534. [Google Scholar] [CrossRef]
- Villarreal, G.U.; Campos, E.V.R.; de Oliveira, J.L.; Fraceto, L.F. Development and commercialization of pheromone-based biopesticides: A global perspective. In Development and Commercialization of Biopesticides—Costs and Benefits; Koul, O., Ed.; Academic Press: London, UK, 2023; pp. 37–56. [Google Scholar] [CrossRef]
- Carr, A.L.; Roe, M. Acarine attractants: Chemoreception, bioassay, chemistry and control. Pestic. Biochem. Physiol. 2016, 131, 60–79. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.B.; Bueno, A.F. Conservation biological control using selective insecticides—A valuable tool for IPM. Biol. Control 2018, 126, 53–64. [Google Scholar] [CrossRef]
- Knapp, M.; van Houten, I.; van Baal, E.; Groot, T. Use of predatory mites in commercial biocontrol: Current status and future prospects. Acarologia 2018, 58, 72–82. [Google Scholar] [CrossRef]
- Duso, C.; Van Leeuwen, T.; Pozzebon, A. Improving the compatibility of pesticides and predatory mites: Recent findings on physiological and ecological selectivity. Curr. Opin. Insect Sci. 2020, 39, 63–68. [Google Scholar] [CrossRef]
- Jansen, J.P. Beneficial arthropods and pesticides: Building selectivity lists for IPM. IOBC-WPRS Bull. 2010, 55, 23–47. [Google Scholar]
- IOBC—Pesticide Side Effects Database. Available online: https://iobc-wprs.org/ip-tools/pesticide-side-effect-database/ (accessed on 15 January 2021).
- Samsøe-Petersen, L. Sequences of standard methods to test effects of chemicals on terrestrial arthropods. Ecotoxicol. Environ. Saf. 1990, 19, 310–319. [Google Scholar] [CrossRef]
- Bakker, F.M.; Grove, A.; Blümel, S.; Calis, J.; Oomen, P. Side-effect tests for phytoseiids and their rearing methods. IOBC-WPRS Bull. 1992, 15, 61–81. [Google Scholar]
- Sterk, G.; Hassan, S.A.; Baillod, M.; Bakker, F.; Bigler, F.; Blümel, S.; Bogenschütz, H.; Boller, E.; Bromand, B.; Brun, J.; et al. Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS-Working Group ‘Pesticides and Beneficial Organisms’. BioControl 1999, 44, 99–117. [Google Scholar] [CrossRef]
- Overmeer, W.P.J.; van Zon, A.Q. A standardized method for testing the side effects of pesticides on the predacious mite, Amblyseius potentillae (Acarina: Phytoseiidae). Entomophaga 1982, 27, 357–364. [Google Scholar] [CrossRef]
- Castagnoli, M.; Liguori, M.; Simoni, S.; Duso, C. Toxicity of some insecticides to Tetranychus urticae, Neoseiulus californicus and Tydeus californicus. BioControl 2005, 50, 611–622. [Google Scholar] [CrossRef]
- Duso, C.; Malagnini, V.; Pozzebon, A.; Buzzetti, F.M.; Tirello, P. A method to assess the effects of pesticides on the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) in the laboratory. Biocontrol Sci. Technol. 2008, 18, 1027–1040. [Google Scholar] [CrossRef]
- Duso, C.; Malagnini, V.; Pozzebon, A.; Castagnoli, M.; Liguori, M.; Simoni, S. Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of Tetranychus urticae and Phytoseiulus persimilis (Acari Tetranychidae, Phytoseiidae). Biol. Control 2008, 47, 16–21. [Google Scholar] [CrossRef]
- Međo, I.; Marić, I.; Marčić, D.; Döker, I. Pesticides and phytoseiid mites: What the IOBC-WPRS Pesticide Side Effects Database can(not) tell us about selectivity? IOBC-WPRS Bull. 2024, 169, 45–47. [Google Scholar]
- Schmidt-Jeffris, R.; Beers, E.; Sater, C. Meta-analysis and review of pesticide non-target effects on phytoseiids, key biological control agents. Pest Manag. Sci. 2021, 77, 4848–4862. [Google Scholar] [CrossRef]
- Tsolakis, H.; Ragusa, S. Effects of a mixture of vegetable and essential oils and fatty acid potassium salts on Tetranychus urticae and Phytoseiulus persimilis. Ecotoxicol. Environ. Saf. 2008, 70, 276–282. [Google Scholar] [CrossRef]
- Bostanian, N.J.; Thistlewood, H.A.; Hardman, J.M.; Laurin, M.C.; Racette, G. Effects of seven new orchard pesticides on Galendromus occidentalis in laboratory studies. Pest Manag. Sci. 2009, 65, 635–639. [Google Scholar] [CrossRef]
- Bostanian, N.J.; Hardman, J.M.; Thistlewood, H.A.; Racette, G. Effects of six selected orchard insecticides on Neoseiulus fallacis (Acari: Phytoseiidae) in the laboratory. Pest Manag. Sci. 2010, 66, 1263–1267. [Google Scholar] [CrossRef]
- Bergeron, P.E.; Schmidt-Jeffris, R.A. Not all predators are equal: Miticide non-target effects and differential selectivity. Pest Manag. Sci. 2020, 76, 2170–2179. [Google Scholar] [CrossRef]
- Beers, E.H.; Schmidt, R.A. Impact of orchard pesticides on Galendromus occidentalis: Lethal and sublethal effects. Crop Prot. 2014, 56, 16–24. [Google Scholar] [CrossRef]
- Schmidt-Jeffris, R.; Beers, E. Potential impacts of orchard pesticides on Tetranychus urticae: A predator-prey perspective. Crop Prot. 2018, 103, 56–64. [Google Scholar] [CrossRef]
- Birch, L.C. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 1948, 17, 15–26. [Google Scholar] [CrossRef]
- Carey, J.R. Applied Demography for Biologists with Special Emphasis on Insects; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Chi, H.; You, M.; Atlihan, R.; Smith, C.L.; Kavousi, A.; Őzgőkçe, M.S.; Güncan, A.; Tuan, S.J.; Fu, J.W.; Xu, Y.Y.; et al. Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 2020, 40, 103–124. [Google Scholar] [CrossRef]
- Midthassel, A.; Leather, S.R.; Wright, D.J.; Baxter, I.H. Compatibility of Amblyseius swirskii with Beauveria bassiana: Two potentially complimentary biocontrol agents. BioControl 2016, 61, 437–447. [Google Scholar] [CrossRef]
- Savi, P.J.; de Moraes, G.J.; Hountondji, F.C.C.; Nansen, C.; de Andrade, D.J. Compatibility of synthetic and biological pesticides with a biocontrol agent Phytoseiulus longipes (Acari: Phytoseiidae). Exp. Appl. Acarol. 2024, 93, 273–295. [Google Scholar] [CrossRef]
- Döker, I.; Kazak, C. Non-target effects of five acaricides on a native population of Amblyseius swirskii (Acari: Phytoseiidae). Int. J. Acarol. 2019, 45, 69–74. [Google Scholar] [CrossRef]
- Döker, I.; Kazak, C. Toxicity and risk assessment of acaricides on the predatory mite Euseius scutalis (Athias-Henriot) (Acari: Phytoseiidae) under laboratory conditions. Chemosphere 2020, 261, 127760. [Google Scholar] [CrossRef]
- Sáenz-de-Cabezón Irigaray, F.J.; Zalom, F.G.; Thompson, P.B. Residual toxicity of acaricides to Galendromus occidentalis and Phytoseiulus persimilis reproductive potential. Biol. Control 2007, 40, 153–159. [Google Scholar] [CrossRef]
- Silva, D.L.; Lima, J.E.D.; Souza, P.V.L.; Melo, J.W.S.; de Morais Oliveira, J.E.; Lima, D.B. Selectivity of acaricides to Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae). J. Appl. Entomol. 2023, 147, 1014–1023. [Google Scholar] [CrossRef]
- Argolo, P.S.; Jacas, J.A.; Urbaneja, A. Comparative toxicity of pesticides in three phytoseiid mites with different life-style occuring in citrus: Euseius stipulatus, Neoseiulus californicus and Phytoseiulus persimilis. Exp. Appl Acarol. 2014, 62, 33–46. [Google Scholar] [CrossRef]
- Uddin, M.N.; Alam, M.Z.; Miah, M.R.U.; Mian, M.I.H.; Mustarin, K.E. Toxicity of pesticides to Tetranychus urticae Koch (Acari: Tetranychidae) and their side effects on Neoseiulus californicus. Int. J. Acarol. 2015, 41, 688–693. [Google Scholar] [CrossRef]
- Cheng, S.; Lin, R.; You, Y.; Lin, T.; Zeng, Z.; Yu, C. Comparative sensitivity of Neoseiulus cucumeris and its prey Tetranychus cinnbarinus after exposed to nineteen pesticides. Ecotoxicol. Environ. Saf. 2021, 217, 112234. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Lin, T.; Wei, H.; Zeng, Z.; Fu, J.; Liu, X.; Lin, R.; Zhang, Y. Laboratory evaluation of the sublethal effects of four selective pesticides on the predatory mite Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Syst. Appl. Acarol. 2016, 21, 1506–1514. [Google Scholar] [CrossRef]
- Kim, S.S.; Seo, S.G. Relative toxicity of some acaricides to hte predatory mite, Amblyseius womersleyi, and the twospotted spider mite, Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Appl. Entomol. Zool. 2001, 36, 509–514. [Google Scholar] [CrossRef]
- Kim, S.S.; Yoo, S.S. Comparative toxicity of some acaricides to the predatory mite, Phytoseiulus persimilis and the twospotted spider mite, Tetranychus urticae. BioControl 2002, 47, 563–573. [Google Scholar] [CrossRef]
- Döker, I.; Yavaş, H.; Shirvani, Z.; Karaca, M.; Karut, K.; Marčić, D.; Kazak, C. Toxicity and risk assessment of pesticides on the predatory mite, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) under laboratory conditions. Phytoparasitica 2024, 52, 97. [Google Scholar] [CrossRef]
- Duso, C.; Ahmad, S.; Tirello, P.; Pozzebon, A.; Klaric, V.; Baldessari, M. The impact of insecticides applied in apple orchards on the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae). Exp. Appl. Acarol. 2014, 62, 391–414. [Google Scholar] [CrossRef]
- Rahman, T.; Spafford, H.; Broughton, S. Compatibility of spinosad with predaceous mites (Acari) used to control Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Pest Manag. Sci. 2011, 67, 993–1003. [Google Scholar] [CrossRef]
- Villanueva, R.T.; Walgenbach, J.F. Development, oviposition, and mortality of Neoseiulus fallacis (Acari: Phytoseiidae) in response to reduced-risk insecticides. J. Econ. Entomol. 2005, 98, 2114–2120. [Google Scholar] [CrossRef]
- Castagnoli, M.; Angeli, G.; Liguori, M.; Forti, D.; Simoni, S. Side effects of botanical insecticides on predatory mite Amblyseius andersoni (Chant). J. Pest Sci. 2002, 75, 122–127. [Google Scholar] [CrossRef]
- Bernardi, D.; Botton, M.; da Cunha, U.S.; Bernardi, O.; Malausa, T.; Garcia, M.S.; Nava, D.E. Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry. Pest Manag. Sci. 2013, 69, 75–80. [Google Scholar] [CrossRef]
- Spollen, K.M.; Isman, M.B. Acute and sublethal effects of a neem insecticide on the commercial biological control agents Phytoseiulus persimilis and Amblyseius cucumeris (Acari: Phytoseiidae) and Aphidoletes aphidimyza (Diptera: Cecidomyiidae). J. Econ. Entomol. 1996, 89, 1379–1386. [Google Scholar] [CrossRef]
- Ghazy, N.A.; Osakabe, M.; Negm, M.W.; Schausberger, P.; Gotoh, T.; Amano, H. Phytoseiid mites under environmental stress. Biol. Control 2016, 96, 120–134. [Google Scholar] [CrossRef]
- Xue, W.; Snoeck, S.; Njiru, C.; Inak, E.; Dermauw, W.; Van Leeuwen, T. Geographical distribution and molecular insights into abamectin and milbemectin cross-resistance in European field populations of Tetranychus urticae. Pest Manag. Sci. 2020, 76, 2569–2581. [Google Scholar] [CrossRef]
- Döker, I.; Kazak, C.; Ay, R. Resistance status and detoxification enzyme activity in ten populations of Panonychus citri (Acari: Tetranychidae) from Turkey. Crop Prot. 2021, 141, 105488. [Google Scholar] [CrossRef]
- Khajehali, J.; Alavijeh, E.S.; Ghadamyari, M.; Marčić, D. Acaricide resistance in Panonychus citri and P. ulmi (Acari: Tetranychidae): Molecular mechanisms and management implications. Syst. Appl. Acarol. 2021, 26, 1526–1542. [Google Scholar] [CrossRef]
- Hamedi, N.; Fathipour, Y.; Saber, M. Sublethal effects of abamectin on the biological performance of the predatory mite Phytoseius plumifer (Acari: Phytoseiidae). Exp. Appl. Acarol. 2011, 53, 29–40. [Google Scholar] [CrossRef]
- Havasi, M.; Kheradmand, K.; Mosallanejad, H.; Fathipour, Y. Life history traits and demographic parameters of Neoseiulus californicus McGregor (Acari: Phytoseiidae) treated with the Biomite. Syst. Appl. Acarol. 2020, 25, 125–138. [Google Scholar] [CrossRef]
- Mousavi, A.; Kheradmand, K.; Fathipour, Y.; Mosallanejad, H.; Havasi, M. Sublethal effects of milbemectin on biological parameters of Amblyseius swirskii (Acari: Phytoseiidae). Syst. Appl. Acarol. 2022, 27, 1085–1097. [Google Scholar] [CrossRef]
- Ullah, M.S.; Lim, U.T. Laboratory evaluation of the effect of Beauveria bassiana on the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). J. Invertebr. Pathol. 2017, 148, 102–109. [Google Scholar] [CrossRef]
- Lima, D.B.; Melo, J.W.S.; Gondim, M.G.C., Jr.; Guedes, R.N.C.; Oliveira, J.E.M. Population-level effects of abamectin, azadirachtin and fenpyroximate on the predatory mite Neoseiulus baraki. Exp. Appl. Acarol. 2016, 70, 165–177. [Google Scholar] [CrossRef]
- Stark, J.D.; Banks, J.E. Population-level effects of pesticides and other toxicants on arthropods. Annu. Rev. Entomol. 2003, 48, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.B.; Monteiro, V.B.; Guedes, R.N.C.; Siqueira, H.A.A.; Pallini, A.; Gondim, M.G.C., Jr. Acaricide toxicity and synergism of fenpyroximate to the coconut mite predator Neoseiulus baraki. BioControl 2013, 58, 595–605. [Google Scholar] [CrossRef]
- Lima, D.B.; Melo, J.W.S.; Guedes, R.N.C.; Siqueira, H.A.A.; Pallini, A.; Gondim, M.G.C., Jr. Survival and behavioural response to acaricides of the coconut mite predator Neoseiulus baraki. Exp. Appl. Acarol. 2013, 60, 381–393. [Google Scholar] [CrossRef]
- Beers, E.H.; Schmidt-Jeffris, R.A. Effects of orchard pesticides on Galendromus occidentalis (Acari: Phytoseiidae): Repellency and irritancy. J. Econ. Entomol. 2015, 108, 259–265. [Google Scholar] [CrossRef]
- Lima, D.B.; Melo, J.W.S.; Gondim, M.G.C., Jr.; Guedes, R.N.C.; Oliveira, J.E.M.; Pallini, A. Acaricide-impaired functional predation response of the phytoseiid mite Neoseiulus baraki to the coconut mite Aceria guerreronis. Ecotoxicology 2015, 24, 1124–1130. [Google Scholar] [CrossRef]
- Lima, D.B.; Melo, J.W.S.; Guedes, N.M.P.; Gontijo, L.M.; Guedes, R.N.C.; Gondim, M.G.C., Jr. Bioinsecticide-predator interactions: Azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki. PLoS ONE 2015, 10, e0118343. [Google Scholar] [CrossRef]
- Lima, D.B.; Oliveira, H.K.V.; Melo, J.W.S.; Gondim, M.G.C., Jr.; Guedes, R.N.C.; Pallini, A.; Oliveira, J.E.M. Acaricides impair prey location in a predatory phytoseiid mite. J. Appl. Entomol. 2017, 141, 141–149. [Google Scholar] [CrossRef]
- Schmidt-Jeffris, R. Nontarget pesticide impacts on pest natural enemies: Progress and gaps in currrent knowledge. Curr. Opin. Insect Sci. 2023, 58, 101056. [Google Scholar] [CrossRef]
- Sterk, G.; Creemers, P.; Merckx, K. Testing the side effects of pesticides on the predatory mite Typhlodromus pyri (Acari: Phytoseiidae) in field trials. IOBC/WPRS Bull. 1994, 17, 27–40. [Google Scholar]
- Bakker, F.M.; Jacas, J.A. Pesticides and phytoseiid mites: Strategies for risk assessment. Ecotoxicol. Environ. Saf. 1995, 32, 58–67. [Google Scholar] [CrossRef]
- Thomson, L.J.; Hoffmann, A.A. Ecologically-sustainable chemical recommendations for agricultural pest control? J. Econ. Entomol. 2007, 100, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Numa Vergel, S.J.; Bustos, R.A.; Rodríguez, C.D.; Cantor, R.F. Laboratory and greenhouse evaluation of the entomopathogenic fungi and garlic–pepper extract on the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus and their effect on the spider mite Tetranychus urticae. Biol. Control 2011, 57, 143–149. [Google Scholar] [CrossRef]
- Saito, T.; Brownbridge, M. Compatibility of foliage-dwelling predatory mites and mycoinsecticides, and their combined efficacy against western flower thrips Frankliniella occidentalis. J. Pest Sci. 2018, 91, 1291–1300. [Google Scholar] [CrossRef]
- Holt, K.M.; Opit, G.P.; Nechols, J.R.; Margolies, D.C. Testing for non-target effects of spinosad on twospotted spider mites and their predator Phytoseiulus persimilis under greenhouse conditions. Exp. Appl. Acarol. 2006, 38, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Jacas Miret, J.A.; Garcia-Mari, F. Side-effects of pesticides on selected natural enemies occurring in citrus in Spain. IOBC/WPRS Bull. 2001, 24, 103–112. [Google Scholar]
- Miles, M.; Dutton, R. Testing the effects of spinosad to predatory mites in laboratory, extended laboratory, semi-field and field studies. IOBC/WPRS Bull. 2003, 26, 9–20. [Google Scholar]
- Konopická, J.; Bohatá, A.; Nermuť, J.; Jozová, E.; Mráček, Z.; Palevsky, E.; Zemek, R. Efficacy of soil isolates of entomopathogenic fungi against the bulb mite, Rhizoglyphus robini (Acari: Acaridae). Syst. Appl. Acarol. 2021, 26, 1149–1167. [Google Scholar] [CrossRef]
- Yucel, C. Effects of local isolates of Beauveria bassiana (Balsamo) Vuillemin on the twospotted spider mite, Tetranychus urticae (Koch) (Acari: Tetranychidae). Egypt. J. Biol. Pest Control 2021, 31, 63. [Google Scholar] [CrossRef]
- Chaithra, M.; Prameeladevi, T.; Prasad, L.; Kundu, A.; Bhagyasree, S.N.; Subramanian, S.; Deba, K. Metabolomic diversity of local strains of Beauveria bassiana (Balsamo) Vuillemin and their efficacy against the cassava mite, Tetranychus truncatus Ehara (Acari: Tetranychidae). PLoS ONE 2022, 17, e0277124. [Google Scholar] [CrossRef]
- Deka, B.; Babu, A.; Pandey, A.K.; Kumhar, K.C.; Rajbongshi, H.; Dey, P.; Peter, A.J.; Amalraj, E.L.D.; Tallur, V.R. Potential of the entomopathogenic fungus, Metarhizium anisopliae s.l. for control of red spider mite Oligonychus coffeae Nietner on tea crop. Int. J. Acarol. 2022, 48, 121–129. [Google Scholar] [CrossRef]
- Eroglu, C.; Cimen, H.; Ulug, D.; Karagoz, M.; Hazir, S.; Cakmak, I. Acaricidal effect of cell-free supernatants from Xenorhabdus and Photorhabdus bacteria against Tetranychus urticae (Acari: Tetranychidae). J. Invertebr. Pathol. 2019, 160, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Aswini, M.N.; Bhaskar, H.; Mathew, D.; Shilaya, M.R.; Girija, D. Isolation and evaluation of bacteria associated with entomopathogenic nematode Heterorhabditis spp. against the spider mite, Tetranychus truncatus Ehara (Acari: Tetranychidae). Egypt. J. Biol. Pest Control 2022, 32, 87. [Google Scholar] [CrossRef]
- Menon, A.G.; Bhaskar, H.; Subramanian, S.M.; Gopal, S.K. Acaricidal effects of two native isolates of entomopathogenic bacteria Photorhabdus luminescens (Thomas & Poinar) against spider mite, Tetranychus truncatus Ehara (Acari: Tetranychidae). Int. J. Acarol. 2023, 49, 395–399. [Google Scholar] [CrossRef]
- Camara, C.A.; Moraes, M.M.; Melo, J.P.; Silva, M.M. Chemical composition and acaricidal activity of essential oils from Croton rhamnifolioides Pax and Hoffm. in different regions of a caatinga biome in northeastern Brazil. J. Essent. Oil-Bear. Plants 2017, 20, 1434–1449. [Google Scholar] [CrossRef]
- Lee, M.W.; Lee, D.H.; Nam, I.; Lee, J.W.; Huh, M.J.; Park, I.K. Acaricidal and insecticidal activities of essential oils and constituents of Tasmannia lanceolata (Poir.) A.C.Sm. (Canellales: Winteraceae) against Tetranychus urticae Koch (Trombidiformes: Tetranychidae) and Myzus persicae Sulzer (Hemiptera: Aphididae). J. Econ. Entomol. 2022, 116, 447–455. [Google Scholar] [CrossRef]
- Pavan, A.M.; Da-Costa, T.; Marques, A.J.; Ethur, E.M.; Buhl, B.; Soares, G.L.G.; Ferla, N.J. The use of essential oils as an alternative for the control of Tetranychus urticae (Acari: Tetranychidae). Crop Prot. 2024, 184, 106862. [Google Scholar] [CrossRef]
- Ma, X.F.; Zhang, Y.Y.; Guo, F.Y.; Luo, J.X.; Ding, W.; Zhang, Y.Q. Molecular characterization of a voltage-gated calcium channel and its potential role in the acaricidal action of scopoletin against Tetranychus cinnabarinus. Pestic. Biochem. Physiol. 2020, 168, 104618. [Google Scholar] [CrossRef]
- Miotto, J.; Duarte, A.F.; Bernardi, D.; Ribeiro, L.P.; Andreazza, F.; Cunha, U.S. Toxicities of acetogenin-based bioacaricides against two-spotted spider mite and selectivity to its phytoseiid predators. Exp. Appl. Acarol. 2020, 81, 173–187. [Google Scholar] [CrossRef]
- Maldonaldo-Michael, M.A.; Muňis-Valencia, R.; Peraza-Campos, A.L.; Parra-Delgado, H.; Chan-Cupul, W. Acaricidal, ovicidal and fagoinhibition activities of seed extracts from Swietenia humilis against Tetranychus urticae under laboratory conditions. Ind. Crops Prod. 2022, 177, 114494. [Google Scholar] [CrossRef]
- Rizzo, R.; Ragusa, E.; Benelli, G.; Verde, G.L.; Zeni, V.; Maggi, P.; Petrelli, R.; Spinozzi, E.; Ferrati, M.; Sinacori, M.; et al. Lethal and sublethal effects of carlina oxide on Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus (Acari: Phytoseiidae). Pest Manag. Sci. 2024, 80, 967–977. [Google Scholar] [CrossRef]
- Lovett, B.; St. Leger, R.J. Genetically engineering better fungal biopesticides. Pest Manag. Sci. 2018, 74, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Gressel, J. Four pillars are required to support a successful biocontrol fungus. Pest Manag. Sci. 2024, 80, 35–39. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz-Quiroz, R.; Maldonado, J.J.C.; de Jesús Rostro Alanis, M.; Antonio Torres, J.; Saldívar, R.P. Fungi based biopesticides: Shelf life preservation technologies used in commercial products. J. Pest Sci. 2019, 92, 1003–1015. [Google Scholar] [CrossRef]
- Giunti, G.; Campolo, O.; Laudani, F.; Palmeri, V.; Spinozzi, E.; Bonacucina, G.; Maggi, F.; Pavela, R.; Canale, A.; Lucchi, A.; et al. Essential oil-based nanoinsecticides: Ecological costs and commercial potential. In Development and Commercialization of Biopesticides—Costs and Benefits; Koul, O., Ed.; Academic Press: London, UK, 2023; pp. 375–402. [Google Scholar] [CrossRef]
- Machado, S.; Pereira, R.; Sousa, R.M.O.F. Nanobiopesticides: Are they the future of phytosanitary treatments in modern agriculture? Sci. Total Environ. 2023, 896, 166401. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Sendi, J.J.; Aliakbar, A. Efficacy of nanoencapsulated Thymus eriocalyx and Thymus kotschyanus essential oils by a mesoporous material MCM-41 against Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 2017, 110, 2413–2420. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Saber, M.; Akbari, A.; Mahdavinia, G.R. Encapsulation of Satureja hortensis L. (Lamiaceae) in chitosan/TPP nanoparticles with enhanced acaricide activity against Tetranychus urticae Koch (Acari: Tetranychidae). Ecotoxicol. Environ. Saf. 2018, 161, 111–119. [Google Scholar] [CrossRef]
- de Oliveira, J.L.; de Oliveira, T.N.; Savassa, S.M.; Della Vechia, J.F.; de Matos, S.T.S.; de Andrade, D.J.; Fraceto, L.F. Encapsulation of Beauveria bassiana in polysaccharide-based microparticles: A promising carrier system for biological control applications. ACS Agric. Sci. Technol. 2023, 3, 785–794. [Google Scholar] [CrossRef]
- Arora, N.K.; Verma, M.; Prakash, J.; Mishra, J. Regulation of biopesticides: Global concerns and policies. In Bioformulations: For Sustainable Agriculture; Arora, N.K., Mehnaz, S., Balestrini, R., Eds.; Springer: New Delhi, India, 2016; pp. 283–299. [Google Scholar] [CrossRef]
- Balog, A.; Hartel, T.; Loxdale, H.D.; Wilson, K. Differences in the progress of the biopesticide revolution between the EU and other major crop-growing regions. Pest Manag. Sci. 2017, 73, 2203–2208. [Google Scholar] [CrossRef]
Fungal Species And Strains | Products | Manufacturers | Target Mites |
---|---|---|---|
Beauveria bassiana | |||
ATCC 74040 | Naturalis L | Danstar Ferment (Hailey, ID, USA) | Tet, Tar, Ten |
GHA | Mycotrol, Botanigard | Certis (Columbia, MD, USA) | Tet, Tar, Eri |
PPRI 5339 | Velifer | BASF Corporation (Florham Park, NJ, USA) | Pfm |
Broadband | BASF (Midrand, South Africa) | Tet | |
R444 | Bb Protec, Eco-Bb | Andermatt (Howick, South Africa) | Tet |
ESALQ-PL63 | Boveril | Koppert Biological Systems (Piracicaba, Brazil) | Tur |
IBCB-66 | Bovebio | Biofungi (Eunapolis, Brazil) | Tur |
Beauveria Oligos | Oligos Biotecnologia (Piracicaba, Brazil) | Tur | |
Eco-bass | Toyobo (Sao Paulo, Brazil) | Tur | |
Not specified | Boverin | Cherkasy Biozakhyst (Geronimovka Ukraine) | Tet |
Myco-Jaal | PCI (Mumbai, India) | Pfm | |
Metarhizium brunneum * | |||
F52/MA 43 | Lalguard M52 | Lallemand Plant Care (Milwaukee, WI, USA) | Pfm |
Isaria fumosorosea ** | |||
Apopka 97 | PFR 97 | Certis (Columbia, MD, USA) | Tet, Eri, Tar |
FE9901 | Isarid | Koppert Biological Systems (Howell, MI, USA) | Tet, Eri |
PFA 011 | Paecilomite | AgriLife (Hyderabad, India) | Pfm |
Lecanicillium lecanii | |||
MCC 0058 | Mealikil | AgriLife (Hyderabad, India) | Pfm |
V-80 | Biovert | Sibbiofarm (Berdsk, Russia) | Tet |
Lecanicillium muscarium | |||
Not specified | Verticillin | Cherkasy Biozakhyst (Geronimovka, Ukraine) | Tet |
Hirsutella thompsonii | |||
HT 019 | Lancer | AgriLife (Hyderabad, India) | Tet, Eri |
Not specified | Almite | IPL Biologicals (Gurugram, India) | Tet, Eri |
Active Ingredients | Products | Manufacturers | Target Mites |
---|---|---|---|
pyrethrum (pyrethrin I and II) 1 | Pyrethrum | PelGar International (Alton, UK) | Tet |
Pyganic | MGK (Minneapolis, MN, USA) | Pfm | |
Aphkiller | Beijing Kingbo Biotech (Beijing, China) | Tet | |
Azadirachtin 2 | NeemAzal T/S | Trifolio-M (Lahnau, Germany) | Tet |
AzaGuard | BioSafe systems (East Hartford, CT, USA) | Tet, Eri | |
Azatin | Certis (Columbia, MD, USA) | Tet, Eri | |
Ozomite | Ozone Biotech (Faridabad, India) | Tet | |
Neem Kil | Kilpest (Bhopal, India) | Pfm | |
Ecotin | PJ Margo (Bangalore, India) | Tet | |
Azamax | UPL (Ituverava, Brazil) | Tur | |
rosemary oil 3 (1.8-cineole) * | EcoTrol | KeyPlex (Winter Park, FL, USA) | Tet, Eri, Tar |
+ geraniol | |||
+ peppermint oil 4 (menthol) | |||
orange oil 5 (d-limonene) | Prev-Am | Oro Agri (Cape Town, South Africa) | Pfm |
tea tree oil 6 (terpinen-4-ol) | Eco-oil | OCP (Clayton, Australia) | Tur |
+ eucalyptus oil 7 (1.8-cineole) | |||
cinnamon oil 8 (cynnamaldehyde) | Akabrown | GreenCorp Biorganiks (Coahuila, Mexico) | Tet |
+ peppermint oil 4 (menthol) | |||
+ clove oil 9 (eugenol) | |||
+ oregano oil 10 (carvacrol) | |||
geraniol + citronellol | Mitexstream | Touchstone Env. Sol. (Sheridan, WY, USA) | Tet, Eri, Tar |
geraniol + citronellol | Biomite | Arysta LifeScience (Cary, NC, USA) | Tet |
+ nerolidol+ farnesol | |||
α-terpinene + d-limonene + p-cymene | Requiem Prime | Bayer Crop Science (Monheim, Germany) | Tet, Eri, Tar, Ten |
matrine, oxymatrine 11 | Matrine | Beijing Kingbo Biotech (Beijing, China) | Pfm |
Veratrine 12 | Marvee | Chengdu Newsun (Chengdu, China) | Tet |
capsicum oleoresin 13 (capsaicin) | Captiva | Gowan (Yuma, AZ, USA) | Tet, Eri, Tar, Ten |
+ canola oil 14 (oleic acid) | |||
+ garlic oil 15 (allyl sulfides) | |||
cottonseed oil 16 (oleic acid) | GC-Mite | JH Biotech (Ventura, CA, USA) | Pfm |
+ clove oil 9 (eugenol) | |||
+ garlic oil 15 (allyl sulfides) | |||
castor oil 17 (ricinoleic acid) | TetraCURB Max | Kemin (Des Moines, IA, USA) | Tet |
+ rosemary oil 3 (1.8-cineole) | |||
+ clove oil 9 (eugenol) | |||
+ peppermint oil 4 (menthol) | |||
canola oil 14 (oleic acid) | Neu1160 | Neudorff (Emmerthal, Germany) | Tet |
rapessed oil 14 (oleic acid) | Neu1160 I | Neudorff (Emmerthal, Germany) | Tet |
safflower oil 18 (linoleic acid) | Suffoil | OAT Agrio (Tokyo, Japan) | Tet |
+ cottonseed oil 16 (oleic acid) |
(a) | |||||||||||||||||||||||
Bioacaricides | Aan | Ala | Asw | Ide | Kab | Nca | Ncu | Ppe | Ppl | Tpy | Σ | ||||||||||||
L | F | L | F | L | F | L | F | L | F | L | F | L | F | L | F | L | F | L | F | L | F | T | |
Microbial | |||||||||||||||||||||||
B. bassiana | 1● | 1 | 8○● | 9 | 1 | 10 | |||||||||||||||||
L. lecanii | 1● | 1 | 1○ | 1 | 2 | 2 | 4 | ||||||||||||||||
I. fumosorosea | 1 | 1 | 2 | 2 | |||||||||||||||||||
M. brunneum | 1 | 1 | 1 | ||||||||||||||||||||
Biochemical | |||||||||||||||||||||||
abamectin | 1○ | 1 | 2■ | 1● | 1● | 7● | 2 | 12 | 3 | 15 | |||||||||||||
milbemectin | 7○● | 7 | 7 | ||||||||||||||||||||
spinosad | 1● | 1■ | 10○● | 12 | 12 | ||||||||||||||||||
azadirachtin | 2● | 2○● | 1 | 4 | 1 | 5 | |||||||||||||||||
fatty acids | 1○ | 1○ | 2○● | 4 | 4 | ||||||||||||||||||
rapeseed oil | 1● | 3● | 4 | 4 | |||||||||||||||||||
thymol | 1○ | 1 | 1 | ||||||||||||||||||||
1 | 1 | 2 | 1 | 1 | 3 | 1 | 1 | 6 | 2 | 1 | 41 | 4 | 55 | 10 | 65 | ||||||||
(b) | |||||||||||||||||||||||
Bioacaricides | Aan | Ala | Asw | Ide | Kab | Nca | Ncu | Ppe | Ppl | Tpy | |||||||||||||
L | F | L | F | L | F | L | F | L | F | L | F | L | F | L | F | L | F | L | F | ||||
Microbial | |||||||||||||||||||||||
B. bassiana | 2 | 1 | 2-1 | ||||||||||||||||||||
L. lecanii | 1 | 1 | 1 | 2 | |||||||||||||||||||
I. fumosorosea | 1 | 1 | |||||||||||||||||||||
M. brunneum | 1 | ||||||||||||||||||||||
Biochemical | |||||||||||||||||||||||
abamectin | 3 | 2 | 3-1a | 4 | 4 | 4-2 | 1 | ||||||||||||||||
milbemectin | 4-1 | ||||||||||||||||||||||
spinosad | 4 | 1b | 4-1 | ||||||||||||||||||||
azadirachtin | 4-1 | 3-1 | 1 | ||||||||||||||||||||
fatty acids | 3 | 1 | 3-1 | ||||||||||||||||||||
rapeseed oil | 3-1 | 3-1 | |||||||||||||||||||||
thymol | 1 |
Mycopesticides | Phytoseiid Mites | Methodology | Comp | References * | ||
---|---|---|---|---|---|---|
Exposure | Endpoints | |||||
Beauveria bassiana GHA | Amblyseius swirskii | c | rc; Td-re | Sf, Fec, Fer | + | [144] |
Beauveria bassiana ATCC 74040 | Neoseiulus californicus | n | rc; Td-re | Se, Sf, Fec, Fer, E ● | − | [130] |
Phytoseiulus persimilis | n | rc; Td-re | Se, Sf, Fec, Fer, E ● | + | [132] | |
Hirsutella thompsonii | Phytoseiulus longipes | n | rc; Td-re | Sf, Fec, Fer, E, IOBC | + | [145] |
rc; Tre (4-31) | + Tre (10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marčić, D.; Döker, I.; Tsolakis, H. Bioacaricides in Crop Protection—What Is the State of Play? Insects 2025, 16, 95. https://doi.org/10.3390/insects16010095
Marčić D, Döker I, Tsolakis H. Bioacaricides in Crop Protection—What Is the State of Play? Insects. 2025; 16(1):95. https://doi.org/10.3390/insects16010095
Chicago/Turabian StyleMarčić, Dejan, Ismail Döker, and Haralabos Tsolakis. 2025. "Bioacaricides in Crop Protection—What Is the State of Play?" Insects 16, no. 1: 95. https://doi.org/10.3390/insects16010095
APA StyleMarčić, D., Döker, I., & Tsolakis, H. (2025). Bioacaricides in Crop Protection—What Is the State of Play? Insects, 16(1), 95. https://doi.org/10.3390/insects16010095