A Comprehensive Review: Biology of Anopheles squamosus, an Understudied Malaria Vector in Africa
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Anopheles squamosus Identification
3.2. Anopheles squamosus Distribution
3.3. Larval Biology of Anopheles squamosus
3.4. Adult Anopheles squamosus Behavior
3.5. Anopheles squamosus Contribution to Pathogen Transmission
3.6. Genetic Information of Anopheles squamosus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2023; World Health Organization: Geneva, Switzerland, 2023; ISBN 978-92-4-008617-3. [Google Scholar]
- Gao, L.; Shi, Q.; Liu, Z.; Li, Z.; Dong, X. Impact of the COVID-19 Pandemic on Malaria Control in Africa: A Preliminary Analysis. Trop. Med. Infect. Dis. 2023, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Hessou-Djossou, D.; Djègbè, I.; Loko, Y.L.E.; Boukari, M.K.Y.G.; Nonfodji, O.M.; Tchigossou, G.; Djouaka, R.; Akogbeto, M. Attitudes and Prevention Towards Malaria in the Context of COVID-19 Pandemic in Urban Community in Benin, West Africa. Malar. J. 2023, 22, 228. [Google Scholar] [CrossRef]
- World Health Organization. Global Technical Strategy for Malaria 2016–2030; World Health Organization: Geneva, Switzerland, 2015; ISBN 978-92-4-156499-1. [Google Scholar]
- Chalageri, V.H.; Marinaik, S.B.; Nath, S.N.; Singhal, R.; Rawat, S.; Ravikumar, K.; Shariff, M.; Eapen, A. Malaria Control—Lessons Learned from Trends of Malaria Indices over Three Decades in Karnataka, India. Malar. J. 2023, 22, 353. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for Malaria. Available online: https://app.magicapp.org/#/guideline/LwRMXj/section/LpOA4j (accessed on 3 January 2025).
- World Health Organization. World Malaria Report 2017; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-156552-3. [Google Scholar]
- DePina, A.J.; Niang, E.H.A.; Barbosa Andrade, A.J.; Dia, A.K.; Moreira, A.; Faye, O.; Seck, I. Achievement of Malaria Pre-Elimination in Cape Verde According to the Data Collected from 2010 to 2016. Malar. J. 2018, 17, 236. [Google Scholar] [CrossRef]
- Lee, P.-W.; Liu, C.-T.; Rampao, H.S.; do Rosario, V.E.; Shaio, M.-F. Pre-Elimination of Malaria on the Island of Príncipe. Malar. J. 2010, 9, 26. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kurani, S.; Hamapumbu, H.; Stevenson, J.C.; Thuma, P.E.; Moss, W.J. Prevalence of Glucose-6-Phosphate Dehydrogenase Deficiency and Gametocytemia in a Pre-Elimination, Low Malaria Transmission Setting in Southern Zambia. The Am. J. Trop. Med. Hyg. 2021, 104, 1000–1002. [Google Scholar] [CrossRef] [PubMed]
- Wotodjo, A.N.; Doucoure, S.; Diagne, N.; Sarr, F.D.; Sokhna, C. Malaria Epidemics Associated with Low Net Use in Preadolescent and Young Adult Population in Dielmo (Senegal), a Malaria Pre-Elimination Area. Parasites Vectors 2024, 17, 74. [Google Scholar] [CrossRef]
- Silva, R.; Lopes, L.F.; Rodrigues, A.; Arez, A.P.; Medeiros, M.M. Assessing the Burden of Submicroscopic Plasmodium Infections in a Pre-Elimination Malaria Setting in Sub-Saharan Africa, Guinea-Bissau. Malar. J. 2024, 23, 316. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kanyangarara, M.; Laban, N.M.; Phiri, M.; Hamapumbu, H.; Searle, K.M.; Stevenson, J.C.; Thuma, P.E.; Moss, W.J. Characteristics of Subpatent Malaria in a Pre-Elimination Setting in Southern Zambia. Am. J. Trop. Med. Hyg. 2019, 100, 280. [Google Scholar] [CrossRef]
- Moonasar, D.; Nuthulaganti, T.; Kruger, P.S.; Mabuza, A.; Rasiswi, E.S.; Benson, F.G.; Maharaj, R. Malaria Control in South Africa 2000–2010: Beyond MDG6. Malar. J. 2012, 11, 294. [Google Scholar] [CrossRef]
- World Health Organization. Malaria Vector Control. Available online: https://www.who.int/teams/global-malaria-programme/prevention/vector-control (accessed on 3 May 2023).
- Bhatt, S.; Weiss, D.J.; Cameron, E.; Bisanzio, D.; Mappin, B.; Dalrymple, U.; Battle, K.E.; Moyes, C.L.; Henry, A.; Eckhoff, P.A.; et al. The Effect of Malaria Control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 2015, 526, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Cross, D.E.; Thomas, C.; McKeown, N.; Siaziyu, V.; Healey, A.; Willis, T.; Singini, D.; Liywalii, F.; Silumesii, A.; Sakala, J.; et al. Geographically Extensive Larval Surveys Reveal an Unexpected Scarcity of Primary Vector Mosquitoes in a Region of Persistent Malaria Transmission in Western Zambia. Parasites Vectors 2021, 14, 91. [Google Scholar] [CrossRef]
- Bayoh, M.N.; Mathias, D.K.; Odiere, M.R.; Mutuku, F.M.; Kamau, L.; Gimnig, J.E.; Vulule, J.M.; Hawley, W.A.; Hamel, M.J.; Walker, E.D. Anopheles gambiae: Historical Population Decline Associated with Regional Distribution of Insecticide-Treated Bed Nets in Western Nyanza Province, Kenya. Malar. J. 2010, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, S.M.; Magesa, S.M.; Mbogo, C.; Mosha, F.; Midega, J.; Burt, A. Genomic Signatures of Population Decline in the Malaria Mosquito Anopheles gambiae. Malar. J. 2016, 15, 182. [Google Scholar] [CrossRef] [PubMed]
- Msugupakulya, B.J.; Urio, N.H.; Jumanne, M.; Ngowo, H.S.; Selvaraj, P.; Okumu, F.O.; Wilson, A.L. Changes in Contributions of Different Anopheles Vector Species to Malaria Transmission in East and Southern Africa from 2000 to 2022. Parasites Vectors 2023, 16, 408. [Google Scholar] [CrossRef] [PubMed]
- Mubemba, B.; Mburu, M.M.; Changula, K.; Muleya, W.; Moonga, L.C.; Chambaro, H.M.; Kajihara, M.; Qiu, Y.; Orba, Y.; Hayashida, K.; et al. Current Knowledge of Vector-Borne Zoonotic Pathogens in Zambia: A Clarion Call to Scaling-up “One Health” Research in the Wake of Emerging and Re-Emerging Infectious Diseases. PLoS Neglected Trop. Dis. 2022, 16, e0010193. [Google Scholar] [CrossRef] [PubMed]
- Okoro, O.J.; Deme, G.G.; Okoye, C.O.; Eze, S.C.; Odii, E.C.; Gbadegesin, J.T.; Okeke, E.S.; Oyejobi, G.K.; Nyaruaba, R.; Ebido, C.C. Understanding Key Vectors and Vector-Borne Diseases Associated with Freshwater Ecosystem across Africa: Implications for Public Health. Sci. Total Environ. 2023, 862, 160732. [Google Scholar] [CrossRef]
- Degefa, T.; Githeko, A.K.; Lee, M.-C.; Yan, G.; Yewhalaw, D. Patterns of Human Exposure to Early Evening and Outdoor Biting Mosquitoes and Residual Malaria Transmission in Ethiopia. Acta Trop. 2021, 216, 105837. [Google Scholar] [CrossRef] [PubMed]
- Swei, A.; Couper, L.I.; Coffey, L.L.; Kapan, D.; Bennett, S. Patterns, Drivers, and Challenges of Vector-Borne Disease Emergence. Vector-Borne Zoonotic Dis. 2020, 20, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Antonio-Nkondjio, C.; Kerah, C.H.; Simard, F.; Awono-Ambene, P.; Chouaibou, M.; Tchuinkam, T.; Fontenille, D. Complexity of the Malaria Vectorial System in Cameroon: Contribution of Secondary Vectors to Malaria Transmission. J. Med. Entomol. 2006, 43, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Fornadel, C.M.; Norris, L.C.; Franco, V.; Norris, D.E. Unexpected Anthropophily in the Potential Secondary Malaria Vectors Anopheles coustani s.l. and Anopheles squamosus in Macha, Zambia. Vector-Borne Zoonotic Dis. 2011, 11, 1173. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.H. Residual Malaria: Limitations of Current Vector Control Strategies to Eliminate Transmission in Residual Foci. J. Infect. Dis. 2021, 223, S55–S60. [Google Scholar] [CrossRef]
- Tabue, R.N.; Nem, T.; Atangana, J.; Bigoga, J.D.; Patchoke, S.; Tchouine, F.; Fodjo, B.Y.; Leke, R.G.; Fondjo, E. Anopheles ziemanni a Locally Important Malaria Vector in Ndop Health District, North West Region of Cameroon. Parasites Vectors 2014, 7, 262. [Google Scholar] [CrossRef] [PubMed]
- Montoya, L.F.; Alafo, C.; Martí-Soler, H.; Máquina, M.; Comiche, K.; Cuamba, I.; Munguambe, K.; Cator, L.; Aide, P.; Galatas, B.; et al. Overlaying Human and Mosquito Behavioral Data to Estimate Residual Exposure to Host-Seeking Mosquitoes and the Protection of Bednets in a Malaria Elimination Setting Where Indoor Residual Spraying and Nets Were Deployed Together. PLoS ONE 2022, 17, e0270882. [Google Scholar] [CrossRef]
- Lobo, N.F.; Laurent, B.S.; Sikaala, C.H.; Hamainza, B.; Chanda, J.; Chinula, D.; Krishnankutty, S.M.; Mueller, J.D.; Deason, N.A.; Hoang, Q.T.; et al. Unexpected Diversity of Anopheles Species in Eastern Zambia: Implications for Evaluating Vector Behavior and Interventions Using Molecular Tools. Sci. Rep. 2015, 5, 17952. [Google Scholar] [CrossRef]
- Chinula, D.; Hamainza, B.; Chizema, E.; Kavishe, D.R.; Sikaala, C.H.; Killeen, G.F. Proportional Decline of Anopheles quadriannulatus and Increased Contribution of An. arabiensis to the An. gambiae Complex Following Introduction of Indoor Residual Spraying with Pirimiphos-Methyl: An Observational, Retrospective Secondary Analysis of Pre-Existing Data from South-East Zambia. Parasites Vectors 2018, 11, 544. [Google Scholar] [CrossRef]
- Stevenson, J.C.; Pinchoff, J.; Muleba, M.; Lupiya, J.; Chilusu, H.; Mwelwa, I.; Mbewe, D.; Simubali, L.; Jones, C.M.; Chaponda, M.; et al. Spatio-Temporal Heterogeneity of Malaria Vectors in Northern Zambia: Implications for Vector Control. Parasites Vectors 2016, 9, 510. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, M.E.; Searle, K.M.; Kobayashi, T.; Shields, T.M.; Hamapumbu, H.; Simubali, L.; Mudenda, T.; Thuma, P.E.; Stevenson, J.C.; Moss, W.J.; et al. Understudied Anopheline Contribute to Malaria Transmission in a Low-Transmission Setting in the Choma District, Southern Province, Zambia. Am. J. Trop. Med. Hyg. 2022, 106, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Saili, K.; de Jager, C.; Sangoro, O.P.; Nkya, T.E.; Masaninga, F.; Mwenya, M.; Sinyolo, A.; Hamainza, B.; Chanda, E.; Fillinger, U.; et al. Anopheles rufipes Implicated in Malaria Transmission Both Indoors and Outdoors alongside Anopheles funestus and Anopheles arabiensis in Rural South-East Zambia. Malar. J. 2023, 22, 95. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.M.; Ciubotariu, I.I.; Muleba, M.; Lupiya, J.; Mbewe, D.; Simubali, L.; Mudenda, T.; Gebhardt, M.E.; Carpi, G.; Malcolm, A.N.; et al. Multiple Novel Clades of Anopheline Mosquitoes Caught Outdoors in Northern Zambia. Front. Trop. Dis. 2021, 2, 780664. [Google Scholar] [CrossRef]
- Govella, N.J.; Okumu, F.O.; Killeen, G.F. Insecticide-Treated Nets Can Reduce Malaria Transmission by Mosquitoes Which Feed Outdoors. Am. J. Trop. Med. Hyg. 2010, 82, 415–419. [Google Scholar] [CrossRef]
- Theobald, F.V. A Monograph of the Culicidae, or Mosquitoes: Mainly Compiled from the Collections Received at the British Museum from Various Parts of the World in Connection with the Investigation into the Cause of Malaria Conducted by the Colonial Office and the Royal Society; Order of the Trustees: London, UK, 1907; Volume IV, pp. 1–700. [Google Scholar]
- Hoffman, J.E.; Ciubotariu, I.I.; Simubali, L.; Mudenda, T.; Moss, W.J.; Carpi, G.; Norris, D.E.; Stevenson, J.C. Southern and Central Africa International Centers of Excellence for Malaria Research. Phylogenetic Complexity of Morphologically Identified Anopheles squamosus in Southern Zambia. Insects 2021, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Jupp, P.G.; McIntosh, B.M.; Nevill, E.M. A Survey of the Mosquito and Culicoides Faunas at Two Localities in the Karoo Region of South Africa with Some Observations of Bionomics. Onderstepoort J. Vet. Res. 1980, 47, 1–6. [Google Scholar] [PubMed]
- Main, B.J.; Lee, Y.; Collier, T.C.; Norris, L.C.; Brisco, K.; Fofana, A.; Cornel, A.J.; Lanzaro, G.C. Complex Genome Evolution in Anopheles coluzzii Associated with Increased Insecticide Usage in Mali. Mol. Ecol. 2015, 24, 5145–5157. [Google Scholar] [CrossRef] [PubMed]
- Logan, T.M.; Linthicum, K.J.; Thande, P.C.; Wagateh, J.N.; Roberts, C.R. Mosquito Species Collected from a Marsh in Western Kenya during the Long Rains. J. Am. Mosq. Control. Assoc. 1991, 7, 395–399. [Google Scholar]
- Konate, L.; Diagne, N.; Brahimi, K.; Faye, O.; Legros, F.; Rogier, C.; Petrarca, V.; Trape, J.F. Biology of the Vectors and Transmission of Plasmodium falciparum, P. malariae and P. ovale in a Village in the Savanna of West Africa (Dielmo, Senegal). Parasite 1994, 1, 325–333. [Google Scholar] [CrossRef]
- Gillies, M.; Coetzee, M. A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). Publ. S. Afr. Inst. Med. Res. 1987, 55, 1–143. [Google Scholar]
- Coetzee, M. Key to the Females of Afrotropical Anopheles Mosquitoes (Diptera: Culicidae). Malar. J. 2020, 19, 70. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Kyalo, D.; Amratia, P.; Mundia, C.W.; Mbogo, C.M.; Coetzee, M.; Snow, R.W. A Geo-Coded Inventory of Anophelines in the Afrotropical Region South of the Sahara: 1898–2016. Wellcome Open Res. 2017, 2, 57. [Google Scholar] [CrossRef]
- UNSD—Methodology. Available online: https://unstats.un.org/unsd/methodology/m49/ (accessed on 21 February 2024).
- QGIS Association QGIS Geographic Information System. Available online: https://www.qgis.org/ (accessed on 21 February 2024).
- Natural Earth Tiles Natural Earth Vector and Raster Tiles. Available online: https://www.naturalearthdata.com/ (accessed on 22 February 2024).
- Evans, A.M. A Short Illustrated Guide to the Anophelines of Tropical and South Africa; University Press Ltd.: Liverpool, UK; Hodder and Stoughton Ltd.: London, UK, 1927. [Google Scholar]
- Glick, J.I. Illustrated Key to the Female Anopheles of Southwestern Asia and Egypt (Diptera: Culicidae); Walter Reed Biosystematics Unit: Silver Spring, MD, USA, 1992. [Google Scholar]
- de Meillon, B. Species and Varieties of Malaria Vectors in Africa and Their Bionomics. Bull. World Health Organ. 1951, 4, 419–441. [Google Scholar]
- Irish, S.R.; Kyalo, D.; Snow, R.W.; Coetzee, M. Updated List of Anopheles Species (Diptera: Culicidae) by Country in the Afrotropical Region and Associated Islands. Zootaxa 2020, 4747, zootaxa.4747.3.1. [Google Scholar] [CrossRef] [PubMed]
- Cornel, A.J.; Lee, Y.; Almeida, A.P.G.; Johnson, T.; Mouatcho, J.; Venter, M.; de Jager, C.; Braack, L. Mosquito Community Composition in South Africa and Some Neighboring Countries. Parasites Vectors 2018, 11, 331. [Google Scholar] [CrossRef] [PubMed]
- Degefa, T.; Yewhalaw, D.; Zhou, G.; Atieli, H.; Githeko, A.K.; Yan, G. Evaluation of Human-Baited Double Net Trap and Human-Odour-Baited CDC Light Trap for Outdoor Host-Seeking Malaria Vector Surveillance in Kenya and Ethiopia. Malar. J. 2020, 19, 174. [Google Scholar] [CrossRef]
- Adugna, T.; Yewhelew, D.; Getu, E. Bloodmeal Sources and Feeding Behavior of Anopheline Mosquitoes in Bure District, Northwestern Ethiopia. Parasites Vectors 2021, 14, 166. [Google Scholar] [CrossRef]
- Finney, M.; McKenzie, B.A.; Rabaovola, B.; Sutcliffe, A.; Dotson, E.; Zohdy, S. Widespread Zoophagy and Detection of Plasmodium spp. in Anopheles Mosquitoes in Southeastern Madagascar. Malar. J. 2021, 20, 25. [Google Scholar] [CrossRef]
- Guarido, M.M.; Govender, K.; Riddin, M.A.; Schrama, M.; Gorsich, E.E.; Brooke, B.D.; Almeida, A.P.G.; Venter, M. Detection of Insect-Specific Flaviviruses in Mosquitoes (Diptera: Culicidae) in Northeastern Regions of South Africa. Viruses 2021, 13, 2148. [Google Scholar] [CrossRef]
- Haileselassie, W.; Zemene, E.; Lee, M.-C.; Zhong, D.; Zhou, G.; Taye, B.; Dagne, A.; Deressa, W.; Kazura, J.W.; Yan, G.; et al. The Effect of Irrigation on Malaria Vector Bionomics and Transmission Intensity in Western Ethiopia. Parasites Vectors 2021, 14, 516. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, Y.; Pemba, D.; Kumala, J.; Gowelo, S.; Higa, Y.; Futami, K.; Sawabe, K.; Tsuda, Y. DNA Barcoding of Mosquitoes Collected Through a Nationwide Survey in 2011 and 2012 in Malawi, Southeast Africa. Acta Trop. 2021, 213, 105742. [Google Scholar] [CrossRef]
- Membere, O.; Bawo, D.D.S.; Onwuteaka, J.; Ugbomeh, A.P.; Nwosu, O.R. Abundance and Diversity of Insects Associated with Rhizophora mangle and Avicennia germinans in Bundu-Ama Mangrove Ecosystem of the Niger Delta, Nigeria. Sci. Afr. 2021, 14, e01058. [Google Scholar] [CrossRef]
- Nicholas, K.; Bernard, G.; Bryson, N.; Mukabane, K.; Kilongosi, M.; Ayuya, S.; Mulama, D.H. Abundance and Distribution of Malaria Vectors in Various Aquatic Habitats and Land Use Types in Kakamega County, Highlands of Western Kenya. Ethiop. J. Health Sci. 2021, 31, 247–256. [Google Scholar] [CrossRef]
- Zemene, E.; Belay, D.B.; Tiruneh, A.; Lee, M.-C.; Yewhalaw, D.; Yan, G. Malaria Vector Dynamics and Utilization of Insecticide-Treated Nets in Low-Transmission Setting in Southwest Ethiopia: Implications for Residual Transmission. BMC Infect. Dis. 2021, 21, 882. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, R.L. Detection of Anopheles caustani Laveran, 1900 and Anopheles squamosus Theobald, 1901 on the Territory of the Yemen Arab Republic. Meditsinskaya Parazitol. I Parazit. Bolezn. 1971, 40, 441–443. [Google Scholar]
- Fontenille, D.; Rakotoarivony, I.; Rajaonarivelo, E.; Lepers, J. p Etude des Culicidae dans le Firaisam-pokontany d’Ambohimanjaka aux Environs de Tananarive: Résultats d’une Enquête Longitudinale, en Particulier sur la Transmission Vectorielle du Paludisme. Arch. L’institut Pasteur Madag. 1988, 55, 231–243. [Google Scholar]
- Andrianaivolambo, L.; Domarle, O.; Randrianarivelojosia, M.; Ratovonjato, J.; Le Goff, G.; Talman, A.; Ariey, F.; Robert, V. Anthropophilic Mosquitoes and Malaria Transmission in the Eastern Foothills of the Central Highlands of Madagascar. Acta Trop. 2010, 116, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Kenea, O.; Balkew, M.; Gebre-Michael, T. Environmental Factors Associated with Larval Habitats of Anopheline Mosquitoes (Diptera: Culicidae) in Irrigation and Major Drainage Areas in the Middle Course of the Rift Valley, Central Ethiopia. J. Vector Borne Dis. 2011, 48, 85–92. [Google Scholar] [PubMed]
- Ratovonjato, J.; Olive, M.-M.; Tantely, L.M.; Andrianaivolambo, L.; Tata, E.; Razainirina, J.; Jeanmaire, E.; Reynes, J.-M.; Elissa, N. Detection, Isolation, and Genetic Characterization of Rift Valley Fever Virus from Anopheles (Anopheles) coustani, Anopheles (Anopheles) squamosus, and Culex (Culex) antennatus of the Haute Matsiatra Region, Madagascar. Vector Borne Zoonotic Dis. 2011, 11, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Masaninga, F.; Muleba, M.; Masendu, H.; Songolo, P.; Mweene-Ndumba, I.; Mazaba-Liwewe, M.; Kamuliwo, M.; Ameneshewa, B.; Siziya, S.; Babaniyi, O. Distribution of Yellow Fever Vectors in Northwestern and Western Provinces, Zambia. Asian Pac. J. Trop. Med. 2014, 7, S88–S92. [Google Scholar] [CrossRef] [PubMed]
- Munhenga, G.; Brooke, B.D.; Spillings, B.; Essop, L.; Hunt, R.H.; Midzi, S.; Govender, D.; Braack, L.; Koekemoer, L.L. Field Study Site Selection, Species Abundance and Monthly Distribution of Anopheline Mosquitoes in the Northern Kruger National Park, South Africa. Malar. J. 2014, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Nepomichene, T.N.J.J.; Tata, E.; Boyer, S. Malaria Case in Madagascar, Probable Implication of a New Vector, Anopheles coustani. Malar. J. 2015, 14, 475. [Google Scholar] [CrossRef]
- St. Laurent, B.; Cooke, M.; Krishnankutty, S.M.; Asih, P.; Mueller, J.D.; Kahindi, S.; Ayoma, E.; Oriango, R.M.; Thumloup, J.; Drakeley, C.; et al. Molecular Characterization Reveals Diverse and Unknown Malaria Vectors in the Western Kenyan Highlands. Am. J. Trop. Med. Hyg. 2016, 94, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Tantely, M.L.; Le Goff, G.; Boyer, S.; Fontenille, D. An Updated Checklist of Mosquito Species (Diptera: Culicidae) from Madagascar. Parasite 2016, 23, 20. [Google Scholar] [CrossRef]
- Hakizimana, E.; Karema, C.; Munyakanage, D.; Githure, J.; Mazarati, J.; Tongren, J.; Takken, W.; Binagwaho, A.; Koenraadt, S. Spatio-Temporal Distribution of Mosquitoes and Risk of Malaria Infection in Rwanda. Acta Trop. 2018, 182, 149–157. [Google Scholar] [CrossRef]
- Sang, R.; Arum, S.; Chepkorir, E.; Mosomtai, G.; Tigoi, C.; Sigei, F.; Lwande, O.W.; Landmann, T.; Affognon, H.; Ahlm, C.; et al. Distribution and Abundance of Key Vectors of Rift Valley Fever and Other Arboviruses in Two Ecologically Distinct Counties in Kenya. PLoS Neglected Trop. Dis. 2017, 11, e0005341. [Google Scholar] [CrossRef]
- Fontenille, D.; Rakotoarivony, I. Reappearance of Anopheles funestus as a Malaria Vector in the Antananarivo Region, Madagascar. Trans. R. Soc. Trop. Med. Hyg. 1988, 82, 644–645. [Google Scholar] [CrossRef]
- Elissa, N.; Karch, S.; Bureau, P.; Ollomo, B.; Lawoko, M.; Yangari, P.; Ebang, B.; Georges, A.J. Malaria Transmission in a Region of Savanna-Forest Mosaic, Haut-Ogooué, Gabon. J. Am. Mosq. Control. Assoc. 1999, 15, 15–23. [Google Scholar]
- Killeen, G.F.; Fillinger, U.; Knols, B.G. Advantages of Larval Control for African Malaria Vectors: Low Mobility and Behavioural Responsiveness of Immature Mosquito Stages Allow High Effective Coverage. Malar. J. 2002, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Foster, W.A.; Walker, E.D. Mosquitoes (Culicidae). In Medical and Veterinary Entomology, 3rd ed.; Mullen, G.R., Durden, L.A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 261–325. ISBN 978-0-12-814043-7. [Google Scholar]
- Nepomichene, T.N.; Andrianaivolambo, L.; Boyer, S.; Bourgouin, C. Efficient Method for Establishing F1 Progeny from Wild Populations of Anopheles Mosquitoes. Malar. J. 2017, 16, 21. [Google Scholar] [CrossRef]
- Muspratt, J. Destruction of the Larvae of Anopheles gambiae Giles by a Coelomomyces Fungus. Bull. World Health Organ. 1963, 29, 81–86. [Google Scholar] [PubMed]
- Couch, J.N. Mass Production of Coelomomyces, a Fungus That Kills Mosquitoes. Proc. Natl. Acad. Sci. USA 1972, 69, 2043–2047. [Google Scholar] [CrossRef]
- Elliott, R. The Influence of Vector Behavior on Malaria Transmission. Am. J. Trop. Med. Hyg. 1972, 21, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The Importance of Vector Control for the Control and Elimination of Vector-Borne Diseases. PLoS Neglected Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef]
- CDC Anopheles Species Mosquitos. Available online: https://www.cdc.gov/mosquitoes/about/life-cycle-of-anopheles-mosquitoes.html (accessed on 26 January 2022).
- Russell, T.L.; Beebe, N.W.; Cooper, R.D.; Lobo, N.F.; Burkot, T.R. Successful Malaria Elimination Strategies Require Interventions That Target Changing Vector Behaviours. Malar. J. 2013, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Jamet, H.; Curtis, C. Mosquito Behavior and Vector Control. Annu. Rev. Entomol. 2005, 50, 53–70. [Google Scholar] [CrossRef]
- Kibret, S.; Wilson, G.G. Increased Outdoor Biting Tendency of Anopheles arabiensis and Its Challenge for Malaria Control in Central Ethiopia. Public Health 2016, 141, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Midega, J.T.; Smith, D.L.; Olotu, A.; Mwangangi, J.M.; Nzovu, J.G.; Wambua, J.; Nyangweso, G.; Mbogo, C.M.; Christophides, G.K.; Marsh, K.; et al. Wind Direction and Proximity to Larval Sites Determines Malaria Risk in Kilifi District in Kenya. Nat. Commun. 2012, 3, 674. [Google Scholar] [CrossRef] [PubMed]
- Huestis, D.L.; Dao, A.; Diallo, M.; Sanogo, Z.L.; Samake, D.; Yaro, A.S.; Ousman, Y.; Linton, Y.-M.; Krishna, A.; Veru, L.; et al. Windborne Long-Distance Migration of Malaria Mosquitoes in the Sahel. Parasites Vectors 2019, 574, 404–408. [Google Scholar] [CrossRef]
- Lukubwe, O.; Mwema, T.; Joseph, R.; Maliti, D.; Iitula, I.; Katokele, S.; Uusiku, P.; Walusimbi, D.; Ogoma, S.B.; Gueye, C.S.; et al. Baseline Characterization of Entomological Drivers of Malaria Transmission in Namibia: A Targeted Operational Entomological Surveillance Strategy. Parasites Vectors 2023, 16, 220. [Google Scholar] [CrossRef]
- Oaks, S.C.; Mitchell, V.S.; Pearson, G.W.; Carpenter, C.C.J. Vector Biology, Ecology, and Control. In Malaria: Obstacles and Opportunities; National Academies Press: Washington, DC, USA, 1991; ISBN 0-309-54389-4. [Google Scholar]
- Graumans, W.; Jacobs, E.; Bousema, T.; Sinnis, P. When Is a Plasmodium-Infected Mosquito an Infectious Mosquito? Trends Parasitol. 2020, 36, 705–716. [Google Scholar] [CrossRef]
- Parham, P.E.; Waldock, J.; Christophides, G.K.; Hemming, D.; Agusto, F.; Evans, K.J.; Fefferman, N.; Gaff, H.; Gumel, A.; LaDeau, S.; et al. Climate, Environmental and Socio-Economic Change: Weighing up the Balance in Vector-Borne Disease Transmission. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20130551. [Google Scholar] [CrossRef]
- Mwema, T.; Lukubwe, O.; Joseph, R.; Maliti, D.; Iitula, I.; Katokele, S.; Uusiku, P.; Walusimbi, D.; Ogoma, S.B.; Tambo, M.; et al. Human and Vector Behaviors Determine Exposure to Anopheles in Namibia. Parasites Vectors 2022, 15, 436. [Google Scholar] [CrossRef]
- Gillies, M.T. The Role of Secondary Vectors of Malaria in North-East Tanganyika. Trans. R. Soc. Trop. Med. Hyg. 1964, 58, 154–158. [Google Scholar] [CrossRef]
- Stevenson, J.C.; Simubali, L.; Mbambara, S.; Musonda, M.; Mweetwa, S.; Mudenda, T.; Pringle, J.C.; Jones, C.M.; Norris, D.E. Detection of Plasmodium falciparum Infection in Anopheles squamosus (Diptera: Culicidae) in an Area Targeted for Malaria Elimination, Southern Zambia. J. Med. Entomol. 2016, 53, 1482–1487. [Google Scholar] [CrossRef]
- Andriamandimby, S.F.; Viarouge, C.; Ravalohery, J.-P.; Reynes, J.-M.; Sailleau, C.; Tantely, M.L.; Elissa, N.; Cardinale, E.; Sall, A.A.; Zientara, S.; et al. Detection in and Circulation of Bluetongue Virus Among Domestic Ruminants in Madagascar. Vet. Microbiol. 2015, 176, 268–273. [Google Scholar] [CrossRef]
- Hartman, A. Rift Valley Fever. Clin. Lab. Med. 2017, 37, 285–301. [Google Scholar] [CrossRef] [PubMed]
- CDC Rift Valley Fever. Available online: https://www.cdc.gov/vhf/rvf/index.html (accessed on 11 March 2024).
- USDA Bluetongue. Available online: https://www.aphis.usda.gov/livestock-poultry-disease/cattle/bluetongue (accessed on 24 August 2023).
- Nguyen, V.T.; Collier, T.C.; Seok, S.; Wang, X.; Mburu, M.M.; Simubali, L.; Gebhardt, M.E.; Norris, D.E.; Lee, Y. The First Genome Sequence of Anopheles squamous from Macha, Zambia. F1000Research 2023, 12, 330. [Google Scholar] [CrossRef]
- Longo-Pendy, N.M.; Boundenga, L.; Kutomy, P.O.O.; Mbou-Boutambe, C.; Makanga, B.; Moukodoum, N.; Obame-Nkoghe, J.; Makouloutou, P.N.; Mounioko, F.; Akone-Ella, R.; et al. Systematic Review on Diversity and Distribution of Anopheles Species in Gabon: A Fresh Look at the Potential Malaria Vectors and Perspectives. Pathogens 2022, 11, 668. [Google Scholar] [CrossRef]
- Sougoufara, S.; Ottih, E.C.; Tripet, F. The Need for New Vector Control Approaches Targeting Outdoor Biting Anopheline Malaria Vector Communities. Parasites Vectors 2020, 13, 295. [Google Scholar] [CrossRef]
- Afrane, Y.A.; Mweresa, N.G.; Wanjala, C.L.; Gilbreath III, T.M.; Zhou, G.; Lee, M.-C.; Githeko, A.K.; Yan, G. Evaluation of Long-Lasting Microbial Larvicide for Malaria Vector Control in Kenya. Malar. J. 2016, 15, 577. [Google Scholar] [CrossRef]
- Stevenson, J.C.; Norris, D.E. Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa. Insects 2016, 8, 1. [Google Scholar] [CrossRef]
Geographic Region | Country | First Documented Occurrence |
---|---|---|
Eastern Africa | Eritrea | 1941 |
Ethiopia | 1920 | |
Burundi | 1935 | |
Kenya | 1900 | |
Madagascar | 1902 | |
Malawi | 2012 | |
Mozambique | 1901 | |
Rwanda | 1933 | |
Somalia | 1951 | |
South Sudan | 1903 | |
Tanzania | 1902 | |
Uganda | 1907 | |
Zambia | 1941 | |
Zimbabwe | 1901 | |
Middle Africa | Angola | 1904 |
Cameroon | 1907 | |
Central African Republic | 1950 | |
Chad | 1950 | |
Republic of Congo | 1943 | |
Democratic Republic of the Congo | 1902 | |
Gabon | 1999 | |
Northern Africa | Sudan | 1903 |
Southern Africa | Botswana | 1961 |
Eswatini | 1974 | |
Namibia | 1950 | |
South Africa | 1905 | |
Western Africa | Benin | 1950 |
Burkina Faso | 1948 | |
Cote d’Ivoire | 1950 | |
Gambia | 1902 | |
Ghana | 1911 | |
Guinea | 1950 | |
Guinea-Bissau | 1946 | |
Liberia | 1902 | |
Mali | 1909 | |
Mauritania | 1945 | |
Niger | 1961 | |
Nigeria | 1909 | |
Senegal | 1908 | |
Sierra Leone | 1898 | |
Togo | 1902 | |
Western Asia | Yemen | 1965 |
Geographic Region | Country | Mean % An. squamosus | % An. squamosus Range | References |
---|---|---|---|---|
Eastern Africa | Ethiopia | 7.0 | 0.34–27.2 | [23,56,59,67] |
Kenya | 38.8 | 0.26–68.0 | [41,72,75] | |
Madagascar | 68.0 | 2.76–97.4 | [57,66,68,71,73,76] | |
Malawi | 9.5 | - | [60] | |
Mozambique | 8.7 | 2.3–32 | [29] | |
Rwanda | 0.004 | [74] | ||
Zambia | 10.0 | 0.5–41.4 | [45] | |
Middle Africa | Gabon | 0.23 | - | [77] |
Southern Africa | South Africa | 18.8 | 0.12–100 | [39,54,70] |
Western Africa | Senegal | 0.1 | - | [42] |
Identified Blood Meal | Sample Size | Proportion (%) | References |
---|---|---|---|
Chicken | 1 | 0.1 | [57] |
Human and Animal | 3 | 0.5 | [33] |
Dog | 5 | 0.8 | [33] |
Cow and Pig | 12 | 1.8 | [57] |
Human | 26 | 3.9 | [33,57] |
Cow and Human | 40 | 6.0 | [56,57] |
Cow and Goat | 50 | 7.5 | [33] |
Pig | 60 | 9.0 | [26,33] |
Non-human | 65 | 9.7 | [33] |
Goat | 158 | 23.6 | [26,33,38] |
Cow | 250 | 37.3 | [26,33,38,56] |
Total | 670 |
Disease/Pathogen | Detection Method | Country | References |
---|---|---|---|
Malaria | ELISA, Salivary gland dissection | Kenya, Madagascar, Mali, Mozambique, Namibia, Tanzania, Zambia | [29,33,46,95,96,97] |
Rift Valley fever | PCR | Madagascar | [68] |
Bluetongue | Indirect Immunofluorescence assay | Madagascar | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.T.; Dryden, D.S.; Broder, B.A.; Tadimari, A.; Tanachaiwiwat, P.; Mathias, D.K.; Thongsripong, P.; Reeves, L.E.; Ali, R.L.M.N.; Gebhardt, M.E.; et al. A Comprehensive Review: Biology of Anopheles squamosus, an Understudied Malaria Vector in Africa. Insects 2025, 16, 110. https://doi.org/10.3390/insects16020110
Nguyen VT, Dryden DS, Broder BA, Tadimari A, Tanachaiwiwat P, Mathias DK, Thongsripong P, Reeves LE, Ali RLMN, Gebhardt ME, et al. A Comprehensive Review: Biology of Anopheles squamosus, an Understudied Malaria Vector in Africa. Insects. 2025; 16(2):110. https://doi.org/10.3390/insects16020110
Chicago/Turabian StyleNguyen, Valerie T., Dalia S. Dryden, Brooke A. Broder, Ayaan Tadimari, Primrose Tanachaiwiwat, Derrick K. Mathias, Panpim Thongsripong, Lawrence E. Reeves, Renee L. M. N. Ali, Mary E. Gebhardt, and et al. 2025. "A Comprehensive Review: Biology of Anopheles squamosus, an Understudied Malaria Vector in Africa" Insects 16, no. 2: 110. https://doi.org/10.3390/insects16020110
APA StyleNguyen, V. T., Dryden, D. S., Broder, B. A., Tadimari, A., Tanachaiwiwat, P., Mathias, D. K., Thongsripong, P., Reeves, L. E., Ali, R. L. M. N., Gebhardt, M. E., Saili, K., Simubali, L., Simulundu, E., Norris, D. E., & Lee, Y. (2025). A Comprehensive Review: Biology of Anopheles squamosus, an Understudied Malaria Vector in Africa. Insects, 16(2), 110. https://doi.org/10.3390/insects16020110