Global Trends in Research on Biological Control Agents of Drosophila suzukii: A Systematic Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy, Screening, and Eligibility Criteria
2.2. Data Extraction
2.3. Data Analysis
3. Results
3.1. Publications Evaluating BCAs for SWD
3.1.1. Parasitoids
3.1.2. Entomopathogens
3.1.3. Predators
3.2. Evaluation of Publications on Biological Control Agents of Spotted-Wing Drosophila
3.2.1. Methodology and Scope of Studies
3.2.2. Evidence of Success
3.2.3. Countries with Research on BCAs Against SWD
4. Discussion
4.1. Frequently Reported Parasitoids for SWD Biological Control
4.2. Frequently Reported Entomopathogens
4.3. Frequently Studied Predators
4.4. Research Trends and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tait, G.; Mermer, S.; Stockton, D.; Lee, J.; Avosani, S.; Abrieux, A.; Anfora, G.; Beers, E.; Biondi, A.; Burrack, H.; et al. Drosophila suzukii (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. J. Econ. Entomol. 2021, 114, 1950–1974. [Google Scholar] [CrossRef] [PubMed]
- Wollmann, J.; Schlesener, D.C.H.; Mendes, S.R.; Krüger, A.P.; Martins, L.N.; Bernardi, D.; Garcia, M.S.; Garcia, F.R.M. Infestation Index of Drosophila suzukii (Diptera: Drosophilidae) in Small Fruit in Southern Brazil. Arq. Inst. Biol. 2020, 87, e0432018. [Google Scholar] [CrossRef]
- Schöneberg, T.; Arsenault-Benoit, A.; Taylor, C.M.; Butler, B.R.; Dalton, D.T.; Walton, V.M.; Petran, A.; Rogers, M.A.; Diepenbrock, L.M.; Burrack, H.J.; et al. Pruning of Small Fruit Crops Can Affect Habitat Suitability for Drosophila Suzukii. Agric. Ecosyst. Environ. 2020, 294, 106860. [Google Scholar] [CrossRef]
- European and Mediterranean Plant Protection Organization. Factsheet Drosophila suzukii (Diptera: Drosophilidae) Spotted Wing Drosophila—A Pest from the EPPO Alert List. Available online: http://www.eppo.org/QUARANTINE/Alert_List/insects/Drosophila_suzukii_factsheet_12-2010.pdf (accessed on 26 September 2023).
- Cini, A.; Ioriatti, C.; Anfora, G. A Review of the Invasion of Drosophila suzukii in Europe and a Draft Research Agenda for Integrated Pest Management. Bull. Insectology 2012, 65, 149–160. [Google Scholar]
- Nunes, A.M.; Schlesener, D.C.H.; Souza, D.S.; Neumann, A.M.; Garcia, F.R.M. Primeiros Registros de Drosophila suzukii (Diptera: Drosophilidae) Em Agroecossistemas Na Metade Sul Do Rio Grande Do Sul. In Proceedings of the XXV Congresso Brasileiro De Entomologia, Goiânia, Brazil, 14–18 September 2014; Sociedade Brasileira de Entomologia: Goiânia, Brazil, 2014; p. 1344. Available online: https://www.seb.org.br/admin/files/book/book_nTi2y3ZTHwRm.pdf (accessed on 5 August 2024).
- Hauser, M. A Historic Account of the Invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the Continental United States, with Remarks on Their Identification. Pest Manag. Sci. 2011, 67, 1352–1357. [Google Scholar] [CrossRef]
- Andreazza, F.; Bernardi, D.; dos Santos, R.S.S.; Garcia, F.R.M.; Oliveira, E.E.; Botton, M.; Nava, D.E. Drosophila Suzukii in Southern Neotropical Region: Current Status and Future Perspectives. Neotrop. Entomol. 2017, 46, 591–605. [Google Scholar] [CrossRef]
- Ouantar, M.; Anfora, G.; Boharoud, R.; Chebli, B. First Report of Drosophila suzukii (Diptera: Drosophiladae) in North Africa. Moroc. J. Agric. Sci. 2020, 1, 277–279. Available online: https://www.techagro.org/index.php/MJAS/article/view/869 (accessed on 25 July 2024).
- Chacón-Cerdas, R.; Gonzalez-Herrera, A.; Alvarado-Marchena, L.; González-Fuentes, F. Report of the Establishment of Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae) in Central America. Entomol. Commun. 2024, 6, ec06003. [Google Scholar] [CrossRef]
- Garcia, F.R.M.; Lasa, R.; Funes, C.F.; Buzzetti, K. Drosophila suzukii Management in Latin America: Current Status and Perspectives. J. Econ. Entomol. 2022, 115, 1008–1023. [Google Scholar] [CrossRef]
- Dreves, A.J.; Walton, V.; Fisher, G.A. A New Pest Attacking Healthy Ripening Fruit in Oregon: Spotted Wing Drosophila. Available online: https://catalog.extension.oregonstate.edu/em8991 (accessed on 16 July 2023).
- Lee, J.C.; Dreves, A.J.; Cave, A.M.; Kawai, S.; Isaacs, R.; Miller, J.C.; Van Timmeren, S.; Bruck, D.J. Infestation of Wild and Ornamental Noncrop Fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 2015, 108, 117–129. [Google Scholar] [CrossRef]
- Kirschbaum, D.S.; Funes, C.F.; Buonocore-Biancheri, M.J.; Suárez, L.; Ovruski, S.M. The Biology and Ecology of Drosophila suzukii (Diptera: Drosophilidae). In Drosophila suzukii Management; Springer International Publishing: Cham, Switzerland, 2020; pp. 41–91. [Google Scholar]
- Walsh, D.B.; Bolda, M.P.; Goodhue, R.E.; Dreves, A.J.; Lee, J.; Bruck, D.J.; Walton, V.M.; O’Neal, S.D.; Zalom, F.G. Drosophila suzukii (Diptera: Drosophilidae): Invasive Pest of Ripening Soft Fruit Expanding Its Geographic Range and Damage Potential. J. Integr. Pest Manag. 2011, 2, G1–G7. [Google Scholar] [CrossRef]
- Walton, V.M.; Burrack, H.J.; Dalton, D.T.; Isaacs, R.; Wiman, N.; Ioriatti, C. Past, Present and Future of Drosophila suzukii: Distribution, Impact and Management in United States Berry Fruits. Acta Hortic. 2016, 1117, 87–94. [Google Scholar] [CrossRef]
- De Ros, G. The Economic Analyses of the Drosophila Suzukii’s Invasions: A Mini-Review. Neotrop. Entomol. 2024, 53, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Bolda, M.P.; Goodhue, R.E.; Zalom, F.G. Spotted Wing Drosophila: Potential Economic Impact of Newly Established Pest. ARE Update 2010, 13, 5–8. Available online: https://s.giannini.ucop.edu/uploads/giannini_public/81/fe/81feb5c9-f722-4018-85ec-64519d1bbc95/v13n3_2.pdf (accessed on 16 July 2023).
- DiGiacomo, G.; Hadrich, J.; Hutchison, W.D.; Peterson, H.; Rogers, M. Economic Impact of Spotted Wing Drosophila (Diptera: Drosophilidae) Yield Loss on Minnesota Raspberry Farms: A Grower Survey. J. Integr. Pest Manag. 2019, 10, 11. [Google Scholar] [CrossRef]
- De Ros, G.; Anfora, G.; Grassi, A.; Ioriatti, C. The Potential Economic Impact of Drosophila Suzukii on Small Fruits Production in Trentino (Italy). In Proceedings of the 8th International Conference of Integrated Fruit Production, Kusadasi, Turkey, 7–12 October 2012; Ioriatti, C., Altindisli, F.O., Børve, J., Escudero-Colomar, L.A., Lucchi, A., Molinari, F., Eds.; 2013; pp. 317–321. Available online: https://iobc-wprs.org/product/iobc-wprs-bulletin-vol-91-2013/ (accessed on 16 July 2023).
- Buzzetti Morales, K. The Spotted Wing Drosophila in the South of the World: Chilean Case and Its First Productive Impacts. In Invasive Species—Introduction Pathways, Economic Impact, and Possible Management Options; IntechOpen: London, UK, 2020. [Google Scholar]
- Benito, N.P.; Lopes-da-Silva, M.; Santos, R.S.S. dos Potential Spread and Economic Impact of Invasive Drosophila suzukii in Brazil. Pesqui. Agropecu. Bras. 2016, 51, 571–578. [Google Scholar] [CrossRef]
- Goodhue, R.E.; Bolda, M.; Farnsworth, D.; Williams, J.C.; Zalom, F.G. Spotted Wing Drosophila Infestation of California Strawberries and Raspberries: Economic Analysis of Potential Revenue Losses and Control Costs. Pest Manag. Sci. 2011, 67, 1396–1402. [Google Scholar] [CrossRef]
- Dam, D.; Molitor, D.; Beyer, M. Natural Compounds for Controlling Drosophila Suzukii. A Review. Agron. Sustain. Dev. 2019, 39, 53. [Google Scholar] [CrossRef]
- Shawer, R. Chemical Control of Drosophila suzukii. In Drosophila suzukii Management; Springer International Publishing: Cham, Switzerland, 2020; pp. 133–142. [Google Scholar]
- Giunti, G.; Benelli, G.; Palmeri, V.; Laudani, F.; Ricupero, M.; Ricciardi, R.; Maggi, F.; Lucchi, A.; Guedes, R.N.C.; Desneux, N.; et al. Non-Target Effects of Essential Oil-Based Biopesticides for Crop Protection: Impact on Natural Enemies, Pollinators, and Soil Invertebrates. Biol. Control 2022, 176, 105071. [Google Scholar] [CrossRef]
- Gress, B.E.; Zalom, F.G. Identification and Risk Assessment of Spinosad Resistance in a California Population of Drosophila suzukii. Pest Manag. Sci. 2019, 75, 1270–1276. [Google Scholar] [CrossRef]
- Wang, X.; Daane, K.M.; Hoelmer, K.A.; Lee, J.C. Biological Control of Spotted-Wing Drosophila: An Update on Promising Agents. In Drosophila suzukii Management; Springer International Publishing: Cham, Switzerland, 2020; pp. 143–167. [Google Scholar]
- Cogo, F.D. Introdução à Revisão Sistemática e Meta-Análise Aplicadas à Agricultura, 1st ed.; Cogo, F.D., Ed.; Editora UEMG: Belo Horizonte, Brazil, 2020. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Calvo, J.; Forshage, M.; Buffington, M.L. Circumscription of the Ganaspis brasiliensis (Ihering, 1905) Species Complex (Hymenoptera, Figitidae), and the Description of Two New Species Parasitizing the Spotted Wing Drosophila, Drosophila suzukii Matsumura, 1931 (Diptera, Drosophilidae). J. Hymenopt. Res. 2024, 97, 441–470. [Google Scholar] [CrossRef]
- Wickham, H.; Chang, W.; Wickham, M.H. Package ‘Ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version 2016, 2, 1–189. Available online: https://search.r-project.org/CRAN/refmans/ggplot2/html/ggplot2-package.html (accessed on 16 July 2023).
- Gearty, W.; Jones, L.A. Rphylopic: An R Package for Fetching, Transforming, and Visualising PhyloPic Silhouettes. Methods Ecol. Evol. 2023, 14, 2700–2708. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://r-project.org/index.html (accessed on 15 November 2024).
- Wang, X.; Hogg, B.N.; Hougardy, E.; Nance, A.H.; Daane, K.M. Potential Competitive Outcomes among Three Solitary Larval Endoparasitoids as Candidate Agents for Classical Biological Control of Drosophila Suzukii. Biol. Control 2019, 130, 18–26. [Google Scholar] [CrossRef]
- Kacsoh, B.Z.; Schlenke, T.A. High Hemocyte Load Is Associated with Increased Resistance against Parasitoids in Drosophila Suzukii, a Relative of D. Melanogaster. PLoS ONE 2012, 7, e34721. [Google Scholar] [CrossRef]
- Rossi Stacconi, M.V.; Amiresmaeili, N.; Biondi, A.; Carli, C.; Caruso, S.; Dindo, M.L.; Francati, S.; Gottardello, A.; Grassi, A.; Lupi, D.; et al. Host Location and Dispersal Ability of the Cosmopolitan Parasitoid Trichopria Drosophilae Released to Control the Invasive Spotted Wing Drosophila. Biol. Control 2018, 117, 188–196. [Google Scholar] [CrossRef]
- Gonzalez-Cabrera, J.; Moreno-Carrillo, G.; Sanchez-Gonzalez, J.A.; Mendoza-Ceballos, M.Y.; Arredondo-Bernal, H.C. Single and Combined Release of Trichopria drosophilae (Hymenoptera: Diapriidae) to Control Drosophila suzukii (Diptera: Drosophilidae). Neotrop. Entomol. 2019, 48, 949–956. [Google Scholar] [CrossRef]
- Daane, K.M.; Wang, X.-G.; Biondi, A.; Miller, B.; Miller, J.C.; Riedl, H.; Shearer, P.W.; Guerrieri, E.; Giorgini, M.; Buffington, M.; et al. First Exploration of Parasitoids of Drosophila suzukii in South Korea as Potential Classical Biological Agents. J. Pest Sci. 2016, 89, 823–835. [Google Scholar] [CrossRef]
- Girod, P.; Lierhmann, O.; Urvois, T.; Turlings, T.C.J.; Kenis, M.; Haye, T. Host Specificity of Asian Parasitoids for Potential Classical Biological Control of Drosophila Suzukii. J. Pest Sci. 2018, 91, 1241–1250. [Google Scholar] [CrossRef]
- Seehausen, M.L.; Valenti, R.; Fontes, J.; Meier, M.; Marazzi, C.; Mazzi, D.; Kenis, M. Large-Arena Field Cage Releases of a Candidate Classical Biological Control Agent for Spotted Wing Drosophila Suggest Low Risk to Non-Target Species. J. Pest Sci. 2022, 95, 1057–1065. [Google Scholar] [CrossRef]
- Biondi, A.; Wang, X.; Daane, K.M. Host Preference of Three Asian Larval Parasitoids to Closely Related Drosophila Species: Implications for Biological Control of Drosophila suzukii. J. Pest Sci. 2021, 94, 273–283. [Google Scholar] [CrossRef]
- Daane, K.M.; Wang, X.; Hogg, B.N.; Biondi, A. Potential Host Ranges of Three Asian Larval Parasitoids of Drosophila suzukii. J. Pest Sci. 2021, 94, 1171–1182. [Google Scholar] [CrossRef]
- Beers, E.H.; Beal, D.; Smytheman, P.; Abram, P.K.; Schmidt-Jeffris, R.; Moretti, E.; Daane, K.M.; Looney, C.; Lue, C.-H.; Buffington, M. First Records of Adventive Populations of the Parasitoids Ganaspis brasiliensis and Leptopilina japonica in the United States. J. Hymenopt. Res. 2022, 91, 11–25. [Google Scholar] [CrossRef]
- Lisi, F.; Mansour, R.; Cavallaro, C.; Alınç, T.; Porcu, E.; Ricupero, M.; Zappalà, L.; Desneux, N.; Biondi, A. Sublethal Effects of Nine Insecticides on Drosophila suzukii and Its Major Pupal Parasitoid Trichopria drosophilae. Pest Manag. Sci. 2023, 79, 5003–5014. [Google Scholar] [CrossRef]
- Fellin, L.; Grassi, A.; Puppato, S.; Saddi, A.; Anfora, G.; Ioriatti, C.; Rossi-Stacconi, M.V. First Report on Classical Biological Control Releases of the Larval Parasitoid Ganaspis brasiliensis against Drosophila suzukii in Northern Italy. BioControl 2023, 68, 1–12. [Google Scholar] [CrossRef]
- Gariepy, T.D.; Abram, P.K.; Adams, C.; Beal, D.; Beers, E.; Beetle, J.; Biddinger, D.; Brind’Amour, G.; Bruin, A.; Buffington, M.; et al. Widespread Establishment of Adventive Populations of Leptopilina japonica (Hymenoptera, Figitidae) in North America and Development of a Multiplex PCR Assay to Identify Key Parasitoids of Drosophila suzukii (Diptera, Drosophilidae). NeoBiota 2024, 93, 63–90. [Google Scholar] [CrossRef]
- Wang, X.-G.; Kaçar, G.; Biondi, A.; Daane, K.M. Foraging Efficiency and Outcomes of Interactions of Two Pupal Parasitoids Attacking the Invasive Spotted Wing Drosophila. Biol. Control 2016, 96, 64–71. [Google Scholar] [CrossRef]
- Chabert, S.; Allemand, R.; Poyet, M.; Eslin, P.; Gibert, P. Ability of European Parasitoids (Hymenoptera) to Control a New Invasive Asiatic Pest, Drosophila Suzukii. Biol. Control 2012, 63, 40–47. [Google Scholar] [CrossRef]
- Thistlewood, H.M.; Gibson, G.A.; Gillespie, D.R.; Fitzpatrick, S.M. Drosophila suzukii (Matsumura), Spotted Wing Drosophila (Diptera: Drosophilidae). In Biological Control Programmes in Canada 2001–2012; Mason, P.G., Gillespie, D.R., Eds.; CAB International: Wallinford, UK, 2013; pp. 152–155. [Google Scholar]
- Bonneau, P.; Renkema, J.; Fournier, V.; Firlej, A. Ability of Muscidifurax Raptorellus and Other Parasitoids and Predators to Control Drosophila suzukii Populations in Raspberries in the Laboratory. Insects 2019, 10, 68. [Google Scholar] [CrossRef]
- Krüger, A.P.; Scheunemann, T.; Vieira, J.G.A.; Morais, M.C.; Bernardi, D.; Nava, D.E.; Garcia, F.R.M. Effects of Extrinsic, Intraspecific Competition and Host Deprivation on the Biology of Trichopria anastrephae (Hymenoptera: Diapriidae) Reared on Drosophila suzukii (Diptera: Drosophilidae). Neotrop. Entomol. 2019, 48, 957–965. [Google Scholar] [CrossRef] [PubMed]
- da Costa Oliveira, D.; Stupp, P.; Martins, L.N.; Wollmann, J.; Geisler, F.C.S.; Cardoso, T.D.N.; Bernardi, D.; Garcia, F.R.M. Interspecific Competition in Trichopria Anastrephae parasitism (Hymenoptera: Diapriidae) and Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae) Parasitism on Pupae of Drosophila suzukii (Diptera: Drosophilidae). Phytoparasitica 2021, 49, 207–215. [Google Scholar] [CrossRef]
- Fleury, F.; Gibert, P.; Ris, N.; Allemand, R. Chapter 1 Ecology and Life History Evolution of Frugivorous Drosophila Parasitoids. Adv. Parasitol. 2009, 70, 3–44. [Google Scholar] [PubMed]
- Kremmer, L.; Thaon, M.; Borowiec, N.; David, J.; Poirié, M.; Gatti, J.-L.; Ris, N. Field Monitoring of Drosophila Suzukii and Associated Communities in South Eastern France as a Pre-Requisite for Classical Biological Control. Insects 2017, 8, 124. [Google Scholar] [CrossRef]
- Trivellone, V.; Meier, M.; Cara, C.; Pollini Paltrinieri, L.; Gugerli, F.; Moretti, M.; Wolf, S.; Collatz, J. Multiscale Determinants Drive Parasitization of Drosophilidae by Hymenopteran Parasitoids in Agricultural Landscapes. Insects 2020, 11, 334. [Google Scholar] [CrossRef]
- Collatz, J.; Romeis, J. Flowers and Fruits Prolong Survival of Drosophila Pupal Parasitoids. J. Appl. Entomol. 2021, 145, 629–634. [Google Scholar] [CrossRef]
- Wolf, S.; Boycheva-Woltering, S.; Romeis, J.; Collatz, J. Trichopria Drosophilae Parasitizes Drosophila suzukii in Seven Common Non-Crop Fruits. J. Pest Sci. 2020, 93, 627–638. [Google Scholar] [CrossRef]
- Vieira, J.G.A.; Krüger, A.P.; Scheuneumann, T.; Morais, M.C.; Speriogin, H.J.; Garcia, F.R.M.; Nava, D.E.; Bernardi, D. Some Aspects of the Biology of Trichopria anastrephae (Hymenoptera: Diapriidae), a Resident Parasitoid Attacking Drosophila suzukii (Diptera: Drosophilidae) in Brazil. J. Econ. Entomol. 2019, 113, 81–87. [Google Scholar] [CrossRef]
- Vieira, J.G.A.; Krüger, A.P.; Scheuneumann, T.; Garcez, A.M.; Morais, M.C.; Garcia, F.R.M.; Nava, D.E.; Bernardi, D. Effect of Temperature on the Development Time and Life-time Fecundity of Trichopria anastrephae Parasitizing Drosophila suzukii. J. Appl. Entomol. 2020, 144, 857–865. [Google Scholar] [CrossRef]
- Schlesener, D.C.H.; Wollmann, J.; de Bastos Pazini, J.; Padilha, A.C.; Grützmacher, A.D.; Garcia, F.R.M. Insecticide Toxicity to Drosophila suzukii (Diptera: Drosophilidae) Parasitoids: Trichopria anastrephae (Hymenoptera: Diapriidae) and Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae). J. Econ. Entomol. 2019, 112, 1197–1206. [Google Scholar] [CrossRef]
- Krüger, A.P.; Garcez, A.M.; Scheunemann, T.; Nava, D.E.; Garcia, F.R.M. Trichopria Anastrephae as a Biological Control Agent of Drosophila Suzukii in Strawberries. Neotrop. Entomol. 2024, 53, 216–224. [Google Scholar] [CrossRef]
- Hiebert, N.; Carrau, T.; Bartling, M.; Vilcinskas, A.; Lee, K.-Z. Identification of Entomopathogenic Bacteria Associated with the Invasive Pest Drosophila suzukii in Infested Areas of Germany. J. Invertebr. Pathol. 2020, 173, 107389. [Google Scholar] [CrossRef] [PubMed]
- Bing, X.; Winkler, J.; Gerlach, J.; Loeb, G.; Buchon, N. Identification of Natural Pathogens from Wild Drosophila suzukii. Pest Manag. Sci. 2021, 77, 1594–1606. [Google Scholar] [CrossRef] [PubMed]
- Alnajjar, G.; Drummond, F.A.; Groden, E. Laboratory and Field Susceptibility of Drosophila suzukii Matsumura (Diptera: Drosophilidae) to Entomopathogenic Fungal Mycoses. J. Agric. Urban Entomol. 2017, 33, 111–132. [Google Scholar] [CrossRef]
- Gutierrez-Palomares, V.M.; Paulino-Alonso, L.; Gutierrez, J.Z.; Alatorre-Rosas, R. Pathogenicity and Virulence of Isaria javanica, Metarhizium anisopliae, and Beauveria bassiana Strains for Control of Drosophila Suzukii (Matsumura). Southwest. Entomol. 2021, 46, 853–860. [Google Scholar] [CrossRef]
- Galland, C.D.; Lalaymia, I.; Declerck, S.; Verheggen, F. Efficacy of Entomopathogenic Fungi against the Fruit Fly Drosophila Suzukii and Their Side Effects on Predator and Pollinator Insects. Entomol. Gen. 2023, 43, 1203–1210. [Google Scholar] [CrossRef]
- Foye, S.; Steffan, S.A. A Rare, Recently Discovered Nematode, Oscheius onirici (Rhabditida: Rhabditidae), Kills Drosophila suzukii (Diptera: Drosophilidae) Within Fruit. J. Econ. Entomol. 2020, 113, 1047–1051. [Google Scholar] [CrossRef]
- dos Santos, J.J.; de Brida, A.L.; Jean-Baptiste, M.C.; Bernardi, D.; Wilcken, S.R.S.; Leite, L.G.; Garcia, F.R.M. Effectiveness of Steinernema rarum PAM 25 (Rhabditida: Steinernematidae) Against Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 2022, 115, 967–971. [Google Scholar] [CrossRef]
- Garriga, A.; Toubarro, D.; Simões, N.; Morton, A.; García-del-Pino, F. The Modulation Effect of the Steinernema carpocapsae—Xenorhabdus Nematophila Complex on Immune-Related Genes in Drosophila suzukii Larvae. J. Invertebr. Pathol. 2023, 196, 107870. [Google Scholar] [CrossRef]
- Linscheid, Y.; Kessel, T.; Vilcinskas, A.; Lee, K.-Z. Pathogenicity of La Jolla Virus in Drosophila suzukii Following Oral Administration. Viruses 2022, 14, 2158. [Google Scholar] [CrossRef]
- Bruner-Montero, G.; Luque, C.M.; Cesar, C.S.; Ding, S.D.; Day, J.P.; Jiggins, F.M. Hunting Drosophila Viruses from Wild Populations: A Novel Isolation Approach and Characterisation of Viruses. PLoS Pathog. 2023, 19, e1010883. [Google Scholar] [CrossRef] [PubMed]
- Englert, C.; Herz, A. Acceptability of Drosophila suzukii as Prey for Common Predators Occurring in Cherries and Berries. J. Appl. Entomol. 2019, 143, 387–396. [Google Scholar] [CrossRef]
- Ballman, E.S.; Collins, J.A.; Drummond, F.A. Pupation Behavior and Predation on Drosophila suzukii (Diptera: Drosophilidae) Pupae in Maine Wild Blueberry Fields. J. Econ. Entomol. 2017, 110, 2308–2317. [Google Scholar] [CrossRef] [PubMed]
- Siffert, A.; Cahenzli, F.; Kehrli, P.; Daniel, C.; Dekumbis, V.; Egger, B.; Furtwengler, J.; Minguely, C.; Stäheli, N.; Widmer, F.; et al. Predation on Drosophila suzukii within Hedges in the Agricultural Landscape. Insects 2021, 12, 305. [Google Scholar] [CrossRef]
- Renkema, J.M.; Telfer, Z.; Gariepy, T.; Hallett, R.H. Dalotia Coriaria as a Predator of Drosophila suzukii: Functional Responses, Reduced Fruit Infestation and Molecular Diagnostics. Biol. Control 2015, 89, 1–10. [Google Scholar] [CrossRef]
- Bourne, A.; Fountain, M.T.; Wijnen, H.; Shaw, B. Potential of the European Earwig (Forficula auricularia) as a Biocontrol Agent of the Soft and Stone Fruit Pest Drosophila suzukii. Pest Manag. Sci. 2019, 75, 3340–3345. [Google Scholar] [CrossRef]
- Garcez, A.M.; Krüger, A.P.; Nava, D.E. Intrinsic Competition between 2 Pupal Parasitoids of Drosophila suzukii (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 2023, 116, 145–153. [Google Scholar] [CrossRef]
- Cusumano, A.; Peri, E.; Bradleigh Vinson, S.; Colazza, S. Interspecific Extrinsic and Intrinsic Competitive Interactions in Egg Parasitoids. BioControl 2012, 57, 719–734. [Google Scholar] [CrossRef]
- Harvey, J.A.; Poelman, E.H.; Tanaka, T. Intrinsic Inter- and Intraspecific Competition in Parasitoid Wasps. Annu. Rev. Entomol. 2013, 58, 333–351. [Google Scholar] [CrossRef]
- Valente, C.; Afonso, C.; Gonçalves, C.I.; Branco, M. Assessing the Competitive Interactions between Two Egg Parasitoids of the Eucalyptus Snout Beetle, Gonipterus Platensis, and Their Implications for Biological Control. Biol. Control 2019, 130, 80–87. [Google Scholar] [CrossRef]
- Woltz, J.M.; Lee, J.C. Pupation Behavior and Larval and Pupal Biocontrol of Drosophila suzukii in the Field. Biol. Control 2017, 110, 62–69. [Google Scholar] [CrossRef]
- Deguine, J.-P.; Atiama-Nurbel, T.; Douraguia, E.; Rousse, P. The Augmentorium, a Tool for Agroecological Crop Protection. Design, Implementation and Evaluation on Farm Conditions on Reunion Island. Cah. Agric. 2011, 20, 261–265. [Google Scholar] [CrossRef]
- Puppato, S.; Grassi, A.; Cristofaro, A.; Ioriatti, C. Augmentorium: A Sustainable Technique for Conservation Biological Control of Drosophila suzukii; IOBC: New York, NY, USA, 2024; pp. 178–181. Available online: https://iobc-wprs.org/product/augmentorium-a-sustainable-technique-for-conservation-biological-control-of-drosophila-suzukii/ (accessed on 30 July 2024).
- Georghiou, G.P.; Lagunes-Tejeda, A. The Occurrence of Pesticide Resistance in Arthropods: An Index of Cases Reported Through 1989; FAO: Rome, Italy, 2012. [Google Scholar]
- Lopes, C.V.A.; Albuquerque, G.S.C. de Agrotóxicos e Seus Impactos Na Saúde Humana e Ambiental: Uma Revisão Sistemática. Saúde Debate 2018, 42, 518–534. [Google Scholar] [CrossRef]
- Lee, J.C.; Wang, X.; Daane, K.M.; Hoelmer, K.A.; Isaacs, R.; Sial, A.A.; Walton, V.M. Biological Control of Spotted-Wing Drosophila (Diptera: Drosophilidae)—Current and Pending Tactics. J. Integr. Pest Manag. 2019, 10, 13. [Google Scholar] [CrossRef]
- Wang, X.-G.; Nance, A.H.; Jones, J.M.L.; Hoelmer, K.A.; Daane, K.M. Aspects of the Biology and Reproductive Strategy of Two Asian Larval Parasitoids Evaluated for Classical Biological Control of Drosophila suzukii. Biol. Control 2018, 121, 58–65. [Google Scholar] [CrossRef]
- Schlesener, D.C.H.; Wollmann, J.; Krüger, A.P.; Martins, L.N.; Teixeira, C.M.; Bernardi, D.; Garcia, F.R.M. Effect of Temperature on Reproduction, Development, and Phenotypic Plasticity of Drosophila suzukii in Brazil. Entomol. Exp. Appl. 2020, 168, 817–826. [Google Scholar] [CrossRef]
- Haye, T.; Girod, P.; Cuthbertson, A.G.S.; Wang, X.G.; Daane, K.M.; Hoelmer, K.A.; Baroffio, C.; Zhang, J.P.; Desneux, N. Current SWD IPM Tactics and Their Practical Implementation in Fruit Crops across Different Regions around the World. J. Pest Sci. 2016, 89, 643–651. [Google Scholar] [CrossRef]
Approach | Number of Publications | Mean (%) | Standard Deviation | Variance | Min. Efficiency (%) | Max. Efficiency (%) | Median (%) |
---|---|---|---|---|---|---|---|
Lab | 59 | 59.01 | 23.47 | 550.78 | 7.00 | 98.09 | 64.00 |
Field | 13 | 42.94 | 26.89 | 722.86 | 7.00 | 93.00 | 34.09 |
Greenhouse | 3 | 48.06 | 39.84 | 1587.09 | 17.09 | 93.00 | 34.08 |
Combined | 8 | 45.89 | 31.50 | 992.64 | 7.00 | 93.00 | 47.04 |
BC Agents | E1 (%) | E2 >50% | Approach Effectiveness (%) | Approach Efficiency (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Lab | Field | Greenhouse | Combined | Lab | Field | Greenhouse | Combined | |||
Asobara japonica | 3.6 | 14.0 | 7.1 | 0.0 | 0.0 | 0.0 | 12.7 | 0.0 | 0.0 | 0.0 |
Asobara tabida | 1.2 | 2.6 | 0.9 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 | 0.0 | 3.6 |
Ganaspis brasiliensis | 0.8 | 5.3 | 0.9 | 0.9 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 | 0.0 |
Ganaspis kimorum | 3.2 | 15.8 | 5.3 | 0.9 | 0.9 | 0.0 | 3.6 | 1.8 | 0.0 | 1.8 |
Leptopilina heterotoma | 4.7 | 15.8 | 7.1 | 2.7 | 0.0 | 1.8 | 14.5 | 0.0 | 0.0 | 3.6 |
Leptopilina japonica | 2.8 | 18.4 | 3.5 | 2.7 | 0.0 | 0.0 | 7.3 | 1.8 | 0.0 | 3.6 |
Leptopilina boulardi | 3.6 | 12.3 | 3.5 | 2.7 | 0.0 | 1.8 | 5.5 | 0.0 | 0.0 | 3.6 |
Pachycrepoideus vindemmiae | 11.5 | 34.2 | 15.0 | 7.1 | 0.0 | 4.4 | 18.2 | 0.0 | 0.0 | 3.6 |
Trichopria anastrephae | 2.0 | 7.9 | 3.5 | 0.9 | 0.0 | 0.0 | 5.5 | 0.0 | 0.0 | 0.0 |
Trichopria drosophilae | 14.6 | 38.6 | 21.2 | 5.3 | 1.8 | 7.1 | 20.0 | 0.0 | 0.0 | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abeijon, L.M.; Birkhan, J.; Lee, J.C.; Ovruski, S.M.; Garcia, F.R.M. Global Trends in Research on Biological Control Agents of Drosophila suzukii: A Systematic Review. Insects 2025, 16, 133. https://doi.org/10.3390/insects16020133
Abeijon LM, Birkhan J, Lee JC, Ovruski SM, Garcia FRM. Global Trends in Research on Biological Control Agents of Drosophila suzukii: A Systematic Review. Insects. 2025; 16(2):133. https://doi.org/10.3390/insects16020133
Chicago/Turabian StyleAbeijon, Lenon Morales, Júlia Birkhan, Jana C. Lee, Sérgio Marcelo Ovruski, and Flávio Roberto Mello Garcia. 2025. "Global Trends in Research on Biological Control Agents of Drosophila suzukii: A Systematic Review" Insects 16, no. 2: 133. https://doi.org/10.3390/insects16020133
APA StyleAbeijon, L. M., Birkhan, J., Lee, J. C., Ovruski, S. M., & Garcia, F. R. M. (2025). Global Trends in Research on Biological Control Agents of Drosophila suzukii: A Systematic Review. Insects, 16(2), 133. https://doi.org/10.3390/insects16020133