Exploring Bacterial Communities and Functions in Phytophagous Halyomorpha halys and Predatory Arma chinensis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Cultivation
2.2. Sample Preparation
2.3. DNA Extraction and 16S rRNA Sequencing
2.4. Data Analysis
3. Results
3.1. Overall Distribution of Bacteria Within Different Organs
3.2. Microbiota Composition of the Reproductive Organs
3.3. Microbiota Composition in the Gut
3.4. Microbiota Composition of the Salivary Glands
3.5. Prediction of the Function of the Variable Tissue Microflora in A. chinensis and H. halys
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, S.; Wu, Y.; Liu, Y.; Zhao, P.; Chen, Z.; Song, F.; Li, H.; Cai, W. Comparative mitogenomics and phylogenetic analyses of Pentatomoidea (Hemiptera: Heteroptera). Genes 2021, 12, 1306. [Google Scholar] [CrossRef]
- Koch, R.L.; Pezzini, D.T.; Michel, A.P.; Hunt, T.E. Identification, biology, impacts, and management of stink bugs (Hemiptera: Heteroptera: Pentatomidae) of soybean and corn in the Midwestern United States. J. Integr. Pest. Manag. 2017, 8, 1–14. [Google Scholar] [CrossRef]
- Roca-Cusachs, M.; Kim, J.; Park, J.; Jung, S. Taxonomic review of the predatory stink bugs of the Korean peninsula (Heteroptera: Pentatomidae: Asopinae), with a key to the Korean species and a discussion of their usefulness as biological control agents. J. Asia Pac. Entomol. 2020, 23, 113–123. [Google Scholar] [CrossRef]
- Francati, S.; Masetti, A.; Martinelli, R.; Mirandola, D.; Anteghini, G.; Busi, R.; Dalmonte, F.; Spinelli, F.; Burgio, G.; Dindo, M.L. Halyomorpha Halys (Hemiptera: Pentatomidae) on Kiwifruit in Northern Italy: Phenology, Infestation, and Natural Enemies Assessment. J. Econ. Entomol. 2021, 114, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Conti, E.; Avila, G.; Barratt, B.; Cingolani, F.; Colazza, S.; Guarino, S.; Hoelmer, K.; Laumann, R.A.; Maistrello, L.; Martel, G.; et al. Biological control of invasive stink bugs: Review of global state and future prospects. Entomol. Exp. Appl. 2021, 169, 28–51. [Google Scholar] [CrossRef]
- Liu, J.; Liao, J.; Li, C. Bottom-up effects of drought on the growth and development of potato, Leptinotarsa decemlineata Say and Arma chinensis Fallou. Pest. Manag. Sci. 2022, 78, 4353–4360. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Liao, J.H.; Li, C. Biological performance of Arma chinensis on three preys Antheraea pernyi, Plodia interpunctella and Leptinotarsa decemlineata. Int. J. Pest. Manag. 2023, 2023, 1–8. [Google Scholar] [CrossRef]
- Sparks, M.E.; Bansal, R.; Benoit, J.B.; Blackburn, M.B.; Chao, H.; Chen, M.Y.; Cheng, S.; Childers, C.; Dinh, H.; Doddapaneni, H.V.; et al. Brown marmorated stink bug, Halyomorpha halys (Stål), genome: Putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest. BMC Genom. 2020, 21, 227. [Google Scholar] [CrossRef]
- Fu, L.; Lin, C.; Xu, W.; Cheng, H.; Liu, D.; Ma, L.; Su, Z.; Yan, X.; Dong, X.; Liu, C. Chromosome-level genome assembly of predatory Arma chinensis. Sci. Data 2024, 11, 1235. [Google Scholar] [CrossRef]
- Zou, D.; Wang, M.; Zhang, L.; Zhang, Y.; Zhang, X.; Chen, H. Taxonomic and bionomic notes on Arma chinensis (Fallou) (Hemiptera: Pentatomidae: Asopinae). Zootaxa 2012, 3382, 41–52. [Google Scholar] [CrossRef]
- Zhan, H.; Chen, J.; Mi, Q.; Li, W.; Zhang, F.; Zhang, J. Development, fecundity and nymph morphology, of the Brown marmorated stink bug Halyomorpha halys (Stål). Chin. J. Appl. Entomol. 2020, 57, 392–399. [Google Scholar]
- Shao, Y.; Mason, C.J.; Felton, G.W. Toward an integrated understanding of the Lepidoptera microbiome. Annu. Rev. Entomol. 2024, 69, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Engel, P.; Moran, N.A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef] [PubMed]
- Elston, K.M.; Leonard, S.P.; Geng, P.; Bialik, S.B.; Robinson, E.; Barrick, J.E. Engineering insects from the endosymbiont out. Trends Microbiol. 2022, 30, 79–96. [Google Scholar] [CrossRef]
- Douglas, A.E.; Multi-Partner, H. How multi-partner Endosymbioses function. Nat. Rev. Microbiol. 2016, 14, 731–743. [Google Scholar] [CrossRef]
- Skidmore, I.H.; Hansen, A.K. The evolutionary development of plant-feeding insects and their nutritional endosymbionts. Insect Sci. 2017, 24, 910–928. [Google Scholar] [CrossRef]
- Douglas, A.E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 2009, 23, 38–47. [Google Scholar] [CrossRef]
- Salem, H.; Kirsch, R.; Pauchet, Y.; Berasategui, A.; Fukumori, K.; Moriyama, M.; Cripps, M.; Windsor, D.; Fukatsu, T.; Gerardo, N.M. Symbiont digestive range reflects Host Plant Breadth in Herbivorous Beetles. Curr. Biol. 2020, 30, 2875–2886.e4. [Google Scholar] [CrossRef]
- Reis, F.; Kirsch, R.; Pauchet, Y.; Bauer, E.; Bilz, L.C.; Fukumori, K.; Fukatsu, T.; Kölsch, G.; Kaltenpoth, M. Bacterial symbionts support larval sap feeding and adult folivory in (semi-)aquatic reed beetles. Nat. Commun. 2020, 11, 2964. [Google Scholar] [CrossRef]
- Damodaram, K.J.P.; Ayyasamy, A.; Kempraj, V. Commensal bacteria aid mate-selection in the fruit fly, Bactrocera dorsalis. Microb. Ecol. 2016, 72, 725–729. [Google Scholar] [CrossRef]
- Zhang, S.K.; Shu, J.P.; Xue, H.J.; Zhang, W.; Zhang, Y.B.; Liu, Y.N.; Fang, L.X.; Wang, Y.D.; Wang, H.J. The gut microbiota in camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems 2020, 5, e00692-19. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Kojour, M.A.M.; Han, Y.S. Recent trends in insect gut immunity. Front. Immunol. 2023, 14, 1272143. [Google Scholar] [CrossRef] [PubMed]
- Kaltenpoth, M.; Engl, T. Defensive microbial symbionts in Hymenoptera. Funct. Ecol. 2014, 28, 315–327. [Google Scholar] [CrossRef]
- Wu, W.; Shan, H.W.; Li, J.M.; Zhang, C.X.; Chen, J.P.; Mao, Q. Roles of bacterial symbionts in transmission of plant virus by hemipteran vectors. Front. Microbiol. 2022, 13, 805352. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.E.; Wang, Q.Q.; Wu, R.B.; Paradkar, P.N.; Hoffmann, A.A.; Wang, G.H. Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens. ISME J. 2023, 17, 1143–1152. [Google Scholar] [CrossRef]
- Lange, C.; Boyer, S.; Bezemer, T.M.; Lefort, M.C.; Dhami, M.K.; Biggs, E.; Groenteman, R.; Fowler, S.V.; Paynter, Q.; Verdecia Mogena, A.M.; et al. Impact of intraspecific variation in insect microbiomes on host phenotype and evolution. ISME J. 2023, 17, 1798–1807. [Google Scholar] [CrossRef]
- Liberti, J.; Engel, P. The gut microbiota—Brain axis of insects. Curr. Opin. Insect Sci. 2020, 39, 6–13. [Google Scholar] [CrossRef]
- Pernice, M.; Simpson, S.J.; Ponton, F. Towards an integrated understanding of gut microbiota using insects as model systems. J. Insect Physiol. 2014, 69, 12–18. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.M.; Zhang, K.X.; Yin, Y.S.; Zhang, X.Y.; Zhang, Q.; Kong, X.X.; Tang, L.; Zhang, R.; Zhang, Z. Serratia marcescens in the Intestine of Housefly Larvae Inhibits host growth by interfering with gut microbiota. Parasit. Vectors 2023, 16, 196. [Google Scholar] [CrossRef]
- Bansal, R.; Michel, A.P.; Sabree, Z.L. The crypt-dwelling primary bacterial symbiont of the polyphagous pentatomid pest Halyomorpha halys (Hemiptera: Pentatomidae). Environ. Entomol. 2014, 43, 617–625. [Google Scholar] [CrossRef]
- Matsuura, Y.; Hosokawa, T.; Serracin, M.; Tulgetske, G.M.; Miller, T.A.; Fukatsu, T. Bacterial Symbionts of a Devastating Coffee Plant Pest, the Stinkbug Antestiopsis thunbergii (Hemiptera: Pentatomidae). Appl. Environ. Microbiol. 2014, 80, 3769–3775. [Google Scholar] [CrossRef] [PubMed]
- Tafesh-Edwards, G.; Eleftherianos, I. The role of Drosophila microbiota in gut homeostasis and immunity. Gut Microbes 2023, 15, 2208503. [Google Scholar] [CrossRef]
- Brown, J.J.; Jandová, A.; Jeffs, C.T.; Higgie, M.; Nováková, E.; Lewis, O.T.; Hrček, J. Microbiome structure of a wild Drosophila community along tropical elevational gradients and comparison to laboratory lines. Appl. Environ. Microbiol. 2023, 89, e0009923. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wang, D.D.; Li, J.P.; Wei, C.; He, H. Transovarial transmission of bacteriome-associated symbionts in the cicada Pycna repanda (Hemiptera: Cicadidae). Appl. Environ. Microbiol. 2020, 86, e02957-19. [Google Scholar] [CrossRef] [PubMed]
- Geerinck, M.W.J.; Van Hee, S.; Gloder, G.; Crauwels, S.; Colazza, S.; Jacquemyn, H.; Cusumano, A.; Lievens, B. Diversity and composition of the microbiome associated with eggs of the Southern green stinkbug, Nezara viridula (Hemiptera: Pentatomidae). MicrobiologyOpen 2022, 11, e1337. [Google Scholar] [CrossRef]
- Perlmutter, J.I.; Bordenstein, S.R. Microorganisms in the reproductive tissues of arthropods. Nat. Rev. Microbiol. 2020, 18, 97–111. [Google Scholar] [CrossRef]
- Bellinvia, S.; Johnston, P.R.; Mbedi, S.; Otti, O. Mating changes the genital microbiome in both sexes of the common bedbug Cimex lectularius across populations. Proc. Biol. Sci. 2020, 287, 20200302. [Google Scholar] [CrossRef]
- Franzini, P.Z.N.; Ramond, J.B.; Scholtz, C.H.; Sole, C.L.; Ronca, S.; Cowan, D.A. The gut microbiomes of two Pachysoma Macleay desert dung beetle species (Coleoptera: Scarabaeidae: Scarabaeinae) feeding on different diets. PLoS ONE 2016, 11, e0161118. [Google Scholar] [CrossRef]
- Sudakaran, S.; Kost, C.; Kaltenpoth, M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 2017, 25, 375–390. [Google Scholar] [CrossRef]
- Karamipour, N.; Fathipour, Y.; Mehrabadi, M. Corrigendum: Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma lineatum (Hemiptera: Pentatomidae). Sci. Rep. 2017, 7, 40271. [Google Scholar] [CrossRef]
- Wierz, J.C.; Gimmel, M.L.; Huthmacher, S.; Engl, T.; Kaltenpoth, M. Evolutionary history of tyrosine-supplementing endosymbionts in pollen-feeding beetles. ISME J. 2024, 18, wrae080. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.; Bauer, E.; Strauss, A.S.; Vogel, H.; Marz, M.; Kaltenpoth, M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc. Biol. Sci. 2014, 281, 20141838. [Google Scholar] [CrossRef] [PubMed]
- Fourie, A.; Venter, S.N.; Slippers, B.; Fourie, G. Pantoea bathycoeliae sp. nov and Sodalis sp. are core gut microbiome symbionts of the two-spotted stink bug. Front. Microbiol. 2023, 14, 1284397. [Google Scholar] [CrossRef] [PubMed]
- Fukatsu, T.; Koga, R.; Smith, W.A.; Tanaka, K.; Nikoh, N.; Sasaki-Fukatsu, K.; Yoshizawa, K.; Dale, C.; Clayton, D.H. Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies. Appl. Environ. Microbiol. 2007, 73, 6660–6668. [Google Scholar] [CrossRef]
- Doudoumis, V.; Blow, F.; Saridaki, A.; Augustinos, A.; Dyer, N.A.; Goodhead, I.; Solano, P.; Rayaisse, J.B.; Takac, P.; Mekonnen, S.; et al. Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations. Sci. Rep. 2017, 7, 4699. [Google Scholar] [CrossRef]
- Janson, E.M.; Stireman, J.O.; Singer, M.S.; Abbot, P. Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 2008, 62, 997–1012. [Google Scholar] [CrossRef]
- Hosokawa, T.; Matsuura, Y.; Kikuchi, Y.; Fukatsu, T. Recurrent evolution of gut symbiotic bacteria in pentatomid stinkbugs. Zool. Lett. 2016, 2, 24. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. Dada2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The Silva ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 28 July 2024).
- Peiffer, M.; Felton, G.W. Insights into the saliva of the Brown marmorated stink bug Halyomorpha halys (Hemiptera: Pentatomidae). PLoS ONE 2014, 9, e88483. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H.; Huang, X.L. Strong linkage between symbiotic bacterial community and host age and morph in a hemipteran social insect. Microb. Ecol. 2023, 86, 1213–1225. [Google Scholar] [CrossRef] [PubMed]
- Sinkins, S.P.; Gould, F. Gene drive systems for insect disease vectors. Nat. Rev. Genet. 2006, 7, 427–435. [Google Scholar] [CrossRef]
- De Vooght, L.; Caljon, G.; Van Hees, J.; Van Den Abbeele, J. Paternal transmission of a secondary symbiont during mating in the viviparous tsetse fly. Mol. Biol. Evol. 2015, 32, 1977–1980. [Google Scholar] [CrossRef]
- Wang, A.; Yao, Z.; Zheng, W.; Zhang, H. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 Pyrosequencing. PLoS ONE 2014, 9, e106988. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, Y.; Su, Y.; Wei, C. Bacterial communities in bacteriomes, ovaries and testes of three geographical populations of a sap-feeding insect, Platypleura kaempferi (Hemiptera: Cicadidae). Curr. Microbiol. 2021, 78, 1778–1791. [Google Scholar] [CrossRef]
- Scolari, F.; Attardo, G.M.; Aksoy, E.; Weiss, B.; Savini, G.; Takac, P.; Abd-Alla, A.; Parker, A.G.; Aksoy, S.; Malacrida, A.R. Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans. BMC Microbiol. 2018, 18, 169. [Google Scholar] [CrossRef] [PubMed]
- McNamara, K.B.; Dungan, A.M.; Blackall, L.L.; Simmons, L.W. Microbial biomarkers as indicators of sperm viability in an insect. R. Soc. Open Sci. 2024, 11, 240734. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, M.J.; Perlman, S.J. The defensive Spiroplasma. Curr. Opin. Insect Sci. 2019, 32, 36–41. [Google Scholar] [CrossRef]
- Pollmann, M.; Moore, L.D.; Krimmer, E.; D’Alvise, P.; Hasselmann, M.; Perlman, S.J.; Ballinger, M.J.; Steidle, J.L.M.; Gottlieb, Y. Highly transmissible cytoplasmic incompatibility by the extracellular insect symbiont Spiroplasma. iScience 2022, 25, 104335. [Google Scholar] [CrossRef]
- Kakizawa, S.; Hosokawa, T.; Oguchi, K.; Miyakoshi, K.; Fukatsu, T. Spiroplasma as Facultative Bacterial symbionts of Stinkbugs. Front. Microbiol. 2022, 13, 1044771. [Google Scholar] [CrossRef]
- Tláskal, V.; Pylro, V.S.; Žifčáková, L.; Baldrian, P. Ecological divergence within the enterobacterial genus Sodalis: From insect symbionts to inhabitants of decomposing deadwood. Front. Microbiol. 2021, 12, 668644. [Google Scholar] [CrossRef] [PubMed]
- Herren, J.K.; Paredes, J.C.; Schüpfer, F.; Arafah, K.; Bulet, P.; Lemaitre, B. Insect endosymbiont proliferation is limited by lipid availability. eLife 2014, 3, e02964. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wu, P.F.; Cui, S.Y.; Ali, A.; Zheng, G. Divergence in gut bacterial community between females and males in the wolf spider Pardosa astrigera. Ecol. Evol. 2022, 12, e8823. [Google Scholar] [CrossRef] [PubMed]
- Owashi, Y.; Minami, T.; Kikuchi, T.; Yoshida, A.; Nakano, R.; Kageyama, D.; Adachi-Hagimori, T. Microbiome of zoophytophagous biological control agent Nesidiocoris tenuis. Microb. Ecol. 2023, 86, 2923–2933. [Google Scholar] [CrossRef]
- Pons, I.; Scieur, N.; Dhondt, L.; Renard, M.E.; Renoz, F.; Hance, T. Pervasiveness of the symbiont Serratia symbiotica in the aphid natural environment: Distribution, diversity and evolution at a multitrophic level. FEMS Microbiol. Ecol. 2022, 98, fiac012. [Google Scholar] [CrossRef]
- Burke, G.R.; Moran, N.A. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol. Evol. 2011, 3, 195–208. [Google Scholar] [CrossRef]
- Pons, I.; Renoz, F.; Noël, C.; Hance, T. New insights into the nature of symbiotic associations in aphids: Infection process, biological effects and transmission mode of cultivable Serratia symbiotica bacteria. Appl. Environ. Microbiol. 2019, 85, e02445-18. [Google Scholar] [CrossRef]
- Monnin, D.; Jackson, R.; Kiers, E.T.; Bunker, M.; Ellers, J.; Henry, L.M. Parallel evolution in the integration of a co-obligate aphid symbiosis. Curr. Biol. 2020, 30, 1949–1957.e6. [Google Scholar] [CrossRef]
- Oliver, K.M.; Russell, J.A.; Moran, N.A.; Hunter, M.S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. USA 2003, 100, 1803–1807. [Google Scholar] [CrossRef]
- Burke, G.; Fiehn, O.; Moran, N. Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME J. 2010, 4, 242–252. [Google Scholar] [CrossRef]
- Heyworth, E.R.; Ferrari, J. A facultative endosymbiont in aphids can provide diverse ecological benefits. J. Evol. Biol. 2015, 28, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Marín, A. Coeur d’acier, A.; Clamens, A.L.; Orvain, C.; Cruaud, C.; Barbe, V.; Jousselin, E. A Freeloader? The Highly Eroded Yet Large Genome of the Serratia symbiotica Symbiont of Cinara strobi. Genome Biol. Evol. 2018, 10, 2178–2189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, H.; He, K.; Xiao, Y.; Chen, M.; Zuo, Z.; Shu, R.; Geng, Y.; Jin, S.; Mei, Y.; et al. The interaction of Serratia bacteria and harmonine in harlequin ladybird confers an interspecies competitive edge. Proc. Natl. Acad. Sci. USA 2025, 122, e2417873121. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.S.; Laport, M.S.; Lorosa, E.S.; Jurberg, J.; Dos Santos, K.R.N.; da Silva Neto, M.A.C.; da Costa Rachid, C.T.C.; Atella, G.C. Bacterial Community Composition in the Salivary Glands of Triatomines (Hemiptera: Reduviidae). PLoS Negl. Trop. Dis. 2018, 12, e0006739. [Google Scholar] [CrossRef]
- Li, X.; Tian, L.; Li, H.; Cai, W. Ultrastructural variations of antennae and labia are associated with feeding habit shifts in stink bugs (Heteroptera: Pentatomidae). Biology 2021, 10, 1161. [Google Scholar] [CrossRef]
- Wang, Y.; Brożek, J.; Dai, W. Comparative morphology of the mouthparts in three predatory stink bugs (Heteroptera: Asopinae) reveals feeding specialization of stylets and sensilla. Insects 2020, 11, 762. [Google Scholar] [CrossRef]
- Ahmad, A.; Parveen, S.; Brozek, J.; Dey, D. Antennal sensilla in phytophagous and predatory pentatomids (Hemiptera: Pentatomidae) a comparative study of four genera. Zool. Anz. 2016, 261, 48–55. [Google Scholar] [CrossRef]
- Ye, F.; Kment, P.; Rédei, D.; Luo, J.-Y.; Wang, Y.-H.; Kuechler, S.M.; Zhang, W.-W.; Chen, P.-P.; Wu, H.-Y.; Wu, Y.-Z.; et al. Diversification of the phytophagous lineages of true bugs (Insecta: Hemiptera: Heteroptera) shortly after that of the flowering plants. Cladistics 2022, 38, 403–428. [Google Scholar] [CrossRef]
- Li, H.; Leavengood John, M.; Chapman Eric, G.; Burkhardt, D.; Song, F.; Jiang, P.; Liu, J.; Zhou, X.; Cai, W. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc. R. Soc. B 2017, 284, 20171223. [Google Scholar] [CrossRef]
- Ding, X.; Ge, S.; Chen, J.; Qi, L.; Wei, J.; Zhang, H.; Hao, C.; Zhao, Q. Differences between phytophagous and predatory species in Pentatomidae based on the mitochondrial genome. Ecol. Evol. 2024, 14, e70320. [Google Scholar] [CrossRef]
- Ma, L.; Duan, Y.; Wu, Y.; Yang, H.; Deng, H.; Liu, X.; Zhao, T.; Zhao, Y.; Tian, L.; Song, F.; et al. Comparative genomic analyses on assassin bug Rhynocoris fuscipes (Hemiptera: Reduviidae) reveal genetic bases governing the diet-shift. iScience 2024, 27, 110411. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Wang, Z.; Yan, X.; Lin, C.; Chen, Y.; Ma, L.; Fu, L.; Dong, X.; Liu, C. Predaceous and phytophagous Pentatomidae insects exhibit contrasting susceptibilities to Imidacloprid. Int. J. Mol. Sci. 2025, 26, 690. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Sun, J.; Meng, Y.; Yang, C.; Chen, Z.; Wu, Y.; Tian, L.; Song, F.; Cai, W.; Zhang, X.; et al. The impact of environmental habitats and diets on the gut microbiota diversity of true bugs (Hemiptera: Heteroptera). Biology 2022, 11, 1039. [Google Scholar] [CrossRef]
- Savio, C.; Mugo-Kamiri, L.; Upfold, J.K. Bugs in bugs: The role of probiotics and prebiotics in maintenance of health in mass-reared insects. Insects 2022, 13, 376. [Google Scholar] [CrossRef] [PubMed]
- Jing, T.Z.; Qi, F.H.; Wang, Z.Y. Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome 2020, 8, 38. [Google Scholar] [CrossRef]
- Douglas, A.E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 2015, 60, 17–34. [Google Scholar] [CrossRef]
- Ruiu, L. Insect pathogenic bacteria in integrated pest management. Insects 2015, 6, 352–367. [Google Scholar] [CrossRef]
- Taylor, C.M.; Coffey, P.L.; DeLay, B.D.; Dively, G.P. The importance of gut symbionts in the development of the Brown marmorated stink bug, Halyomorpha halys (Stål). PLoS ONE 2014, 9, e90312. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Yan, X.; Lin, C.; Chen, Y.; Ma, L.; Fu, L.; Dong, X.; Liu, C. Exploring Bacterial Communities and Functions in Phytophagous Halyomorpha halys and Predatory Arma chinensis. Insects 2025, 16, 146. https://doi.org/10.3390/insects16020146
Cheng H, Yan X, Lin C, Chen Y, Ma L, Fu L, Dong X, Liu C. Exploring Bacterial Communities and Functions in Phytophagous Halyomorpha halys and Predatory Arma chinensis. Insects. 2025; 16(2):146. https://doi.org/10.3390/insects16020146
Chicago/Turabian StyleCheng, Hongmei, Xiaoyu Yan, Changjin Lin, Yu Chen, Le Ma, Luyao Fu, Xiaolin Dong, and Chenxi Liu. 2025. "Exploring Bacterial Communities and Functions in Phytophagous Halyomorpha halys and Predatory Arma chinensis" Insects 16, no. 2: 146. https://doi.org/10.3390/insects16020146
APA StyleCheng, H., Yan, X., Lin, C., Chen, Y., Ma, L., Fu, L., Dong, X., & Liu, C. (2025). Exploring Bacterial Communities and Functions in Phytophagous Halyomorpha halys and Predatory Arma chinensis. Insects, 16(2), 146. https://doi.org/10.3390/insects16020146