Baseline Susceptibility of Plutella xylostella and Spodoptera exigua to Fluxametamide in China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Chemicals
2.3. Bioassays
2.4. Statistical Analysis
2.5. Diagnostic Concentrations of Fluxametamide
3. Results
3.1. Baseline Susceptibility of P. xylostella and Diagnostic Concentration
3.2. Baseline Susceptibility of S. exigua and Diagnostic Concentration
3.3. Toxicity of Fluxametamide to Selected Field Populations
3.4. Toxicity of Fluxametamide to Laboratory-Resistant Populations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gope, A.; Chakraborty, G.; Ghosh, S.M.; Sau, S.; Mondal, K.; Biswas, A.; Sarkar, S.; Sarkar, P.K.; Roy, D. Toxicity and Sublethal Effects of Fluxametamide on the Key Biological Parameters and Life History Traits of Diamondback Moth Plutella xylostella (L.). Agronomy 2022, 12, 1656. [Google Scholar] [CrossRef]
- Che, W.; Shi, T.; Wu, Y.; Yang, Y. Insecticide Resistance Status of Field Populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. J. Econ. Entomol. 2013, 106, 1855–1862. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, M.; Ullah, F.; Khan, M.M.; Li, X.; Zhang, Z.; Shah, S.; Imran, M.; Assiri, M.A.; Fernández-Grandon, G.M.; Desneux, N.; et al. Metabolic-Based Insecticide Resistance Mechanism and Ecofriendly Approaches for Controlling of Beet Armyworm Spodoptera exigua: A Review. Environ. Sci. Pollut. Res. 2022, 29, 1746–1762. [Google Scholar] [CrossRef]
- Jamtsho, T.; Banu, N.; Kinley, C. Critical Review on Past, Present and Future Scope of Diamondback Moth Management. Plant Arch. 2021, 21, 1199–1210. [Google Scholar] [CrossRef]
- Zalucki, M.P.; Shabbir, A.; Silva, R.; Adamson, D.; Shu-Sheng, L.; Furlong, M.J. Estimating the Economic Cost of One of the World’s Major Insect Pests, Plutella xylostella (Lepidoptera: Plutellidae): Just How Long Is a Piece of String? J. Econ. Entomol. 2012, 105, 1115–1129. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, X.; Yuan, J.; Wang, S.; Xu, B.; Wang, S.; Zhang, Y.; Wu, Q. Insecticide Resistance Monitoring of the Diamondback Moth (Lepidoptera: Plutellidae) Populations in China. J. Econ. Entomol. 2021, 114, 1282–1290. [Google Scholar] [CrossRef]
- Baxter, S.W.; Zhao, J.-Z.; Gahan, L.J.; Shelton, A.M.; Tabashnik, B.E.; Heckel, D.G. Novel Genetic Basis of Field-evolved Resistance to Bt Toxins in Plutella xylostella. Insect Mol. Biol. 2005, 14, 327–334. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Cushing, N.L.; Finson, N.; Johnson, M.W. Field Development of Resistance to Bacillus Thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 1990, 83, 1671–1676. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, J.; Lin, Y.; Li, X.; Liu, M.; Hafeez, M.; Huang, J.; Zhang, Z.; Chen, L.; Ren, X.; et al. Spodoptera exigua Multiple Nucleopolyhedrovirus Increases the Susceptibility to Insecticides: A Promising Efficient Way for Pest Resistance Management. Biology 2023, 12, 260. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Pan, X.; Wang, Q.; Tao, Y.; Chen, Z.; Jiang, D.; Wu, C.; Dong, F.; Xu, J.; Liu, X.; et al. Development of S-Fluxametamide for Bioactivity Improvement and Risk Reduction: Systemic Evaluation of the Novel Insecticide Fluxametamide at the Enantiomeric Level. Environ. Sci. Technol. 2019, 53, 13657–13665. [Google Scholar] [CrossRef] [PubMed]
- Asahi, M.; Kobayashi, M.; Kagami, T.; Nakahira, K.; Furukawa, Y.; Ozoe, Y. Fluxametamide: A Novel Isoxazoline Insecticide That Acts via Distinctive Antagonism of Insect Ligand-Gated Chloride Channels. Pestic. Biochem. Physiol. 2018, 151, 67–72. [Google Scholar] [CrossRef]
- Umetsu, N.; Shirai, Y. Development of Novel Pesticides in the 21st Century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef]
- Ozoe, Y.; Asahi, M.; Ozoe, F.; Nakahira, K.; Mita, T. The Antiparasitic Isoxazoline A1443 Is a Potent Blocker of Insect Ligand-Gated Chloride Channels. Biochem. Biophys. Res. Commun. 2010, 391, 744–749. [Google Scholar] [CrossRef]
- Maienfisch, P.; Mangelinckx, I.S. (Eds.) Recent Highlights in the Discovery and Optimization of Crop Protection Products; Academic Press: Amsterdam, The Netherlands, 2021; ISBN 978-0-12-821035-2. [Google Scholar]
- Roush, R.T.; Miller, G.L. Considerations for Design of Insecticide Resistance Monitoring Programs. J. Econ. Entomol. 1986, 79, 293–298. [Google Scholar] [CrossRef]
- Yin, C.; Wang, R.; Luo, C.; Zhao, K.; Wu, Q.; Wang, Z.; Yang, G. Monitoring, Cross-Resistance, Inheritance, and Synergism of Plutella xylostella (Lepidoptera: Plutellidae) Resistance to Pyridalyl in China. J. Econ. Entomol. 2019, 112, 329–334. [Google Scholar] [CrossRef]
- Wang, X.; Shi, T.; Tang, P.; Liu, S.; Hou, B.; Jiang, D.; Lu, J.; Yang, Y.; Carrière, Y.; Wu, Y. Baseline Susceptibility of Helicoverpa Armigera, Plutella xylostella, and Spodoptera Frugiperda to the Meta-Diamide Insecticide Broflanilide. Insect Sci. 2023, 30, 1118–1128. [Google Scholar] [CrossRef]
- Zuo, Y.; Shi, Y.; Zhang, F.; Guan, F.; Zhang, J.; Feyereisen, R.; Fabrick, J.A.; Yang, Y.; Wu, Y. Genome Mapping Coupled with CRISPR Gene Editing Reveals a P450 Gene Confers Avermectin Resistance in the Beet Armyworm. PLoS Genet. 2021, 17, e1009680. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Feng, Z.-R.; Zhang, S.; Pei, X.-G.; Zeng, B.; Zheng, C.; Gao, C.-F.; Yu, X.-Y. Baseline Determination, Susceptibility Monitoring and Risk Assessment to Triflumezopyrim in Nilaparvata Lugens (Stål). Pestic. Biochem. Physiol. 2020, 167, 104608. [Google Scholar] [CrossRef]
- Halliday, R.W.; Burnhaw, K.P. Choosing the Optimal Diagnostic Dose for Monitoring Insecticide Resistance. J. Econ. Entomol. 1990, 83, 1151–1159. [Google Scholar] [CrossRef]
- Available online: https://www.pesticideresistance.org/ (accessed on 10 January 2024).
- Jutsum, A.R.; Heaney, S.P.; Perrin, B.M.; Wege, P.J. Pesticide Resistance: Assessment of Risk and the Development and Implementation of Eþective Management Strategies. Pestic. Sci. 1998, 54, 435–446. [Google Scholar] [CrossRef]
- Tamilselvan, R.; Kennedy, J.S.; Suganthi, A. Monitoring the Resistance and Baseline Susceptibility of Plutella xylostella (L.) (Lepidoptera: Plutellidae) against Spinetoram in Tamil Nadu, India. Crop Prot. 2021, 142, 105491. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Shen, A.; Wu, Y. Baseline Susceptibility of the Diamondback Moth (Lepidoptera: Plutellidae) to Chlorantraniliprole in China. J. Econ. Entomol. 2010, 103, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.E.; De Siqueira, H.A.A.; Silva, T.B.M.; De Campos, M.R.; Barros, R. Baseline Susceptibility to Chlorantraniliprole of Brazilian Populations of Plutella xylostella. Crop Prot. 2012, 35, 97–101. [Google Scholar] [CrossRef]
- Khakame, S.K.; Wang, X.; Wu, Y. Baseline Toxicity of Metaflumizone and Lack of Cross Resistance Between Indoxacarb and Metaflumizone in Diamondback Moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 2013, 106, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, J.; Zhang, P.; Lin, W.; Lin, Q.; Li, Z.; Hang, F.; Zhang, Z.; Lu, Y. Baseline Susceptibility of Plutella xylostella (Lepidoptera: Plutellidae) to the Novel Insecticide Spinetoram in China. J. Econ. Entomol. 2015, 108, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Leite, N.A.; Pereira, R.M.; Durigan, M.R.; Amado, D.; Fatoretto, J.; Medeiros, F.C.L.; Omoto, C. Susceptibility of Brazilian Populations of Helicoverpa Armigera and Helicoverpa Zea (Lepidoptera: Noctuidae) to Vip3Aa20. J. Econ. Entomol. 2018, 111, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Arif, M.I.; Ahmad, Z. Susceptibility of Helicoverpa Armigera (Lepidoptera: Noctuidae) to New Chemistries in Pakistan. Crop Prot. 2003, 22, 539–544. [Google Scholar] [CrossRef]
- Kranthi, S.; Dhawad, C.S.; Naidu, S.; Bharose, A.; Chaudhary, A.; Sangode, V.; Nehare, S.K.; Bajaj, S.R.; Kranthi, K.R. Susceptibility of the Cotton Bollworm, Helicoverpa Armigera (Hubner) (Lepidoptera: Noctuidae) to the Bacillus Thuringiensis Toxin Cry2Ab before and after the Introduction of Bollgard-II. Crop Prot. 2009, 28, 371–375. [Google Scholar] [CrossRef]
- Bird, L.J. Baseline Susceptibility of Helicoverpa Armigera (Lepidoptera: Noctuidae) to Indoxacarb, Emamectin Benzoate, and Chlorantraniliprole in Australia. J. Econ. Entomol. 2015, 108, 294–300. [Google Scholar] [CrossRef]
- Lai, T.; Li, J.; Su, J. Monitoring of Beet Armyworm Spodoptera exigua (Lepidoptera: Noctuidae) Resistance to Chlorantraniliprole in China. Pestic. Biochem. Physiol. 2011, 101, 198–205. [Google Scholar] [CrossRef]
- Aldini, G.M.; Wijonarko, A.; de Putter, H.; Hengsdijk, H.; Trisyono, Y.A. Insecticide Resistance in Spodoptera exigua (Lepidoptera: Noctuidae) Populations in Shallot Areas of Java, Indonesia. J. Econ. Entomol. 2021, 114, 2505–2511. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Qian, C.; Tang, T.; Shen, N.; Wu, W.; Wang, J.; Han, Z.; Zhao, C. Lethal and Sublethal Effects of Fluxametamide on Rice-Boring Pest, Rice Stem Borer Chilo Suppressalis. Agronomy 2022, 12, 2429. [Google Scholar] [CrossRef]
- Ichinose, K. Efficacy of Fluxametamide for Control of Two Sweetpotato Weevil Species, 2019. Arthropod Manag. Tests 2021, 46, tsab064. [Google Scholar] [CrossRef]
- Wang, F.; Chen, S.; Shi, Y.; Wu, S.; Yang, Y.; Wang, X. Transgenic Expression of SeCYP9A186 and PxFMO2 Confers Resistance to Emamectin Benzoate in Plutella xylostella. Pest Manag. Sci. 2024, ps.8598. [Google Scholar] [CrossRef] [PubMed]
- Oplopoiou, M.; Elias, J.; Slater, R.; Bass, C.; Zimmer, C.T. Characterization of Emamectin Benzoate Resistance in the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag. Sci. 2024, 80, 498–507. [Google Scholar] [CrossRef]
- Jiang, D.; Yu, Z.; He, Y.; Wang, F.; Gu, Y.; Davies, T.G.E.; Fan, Z.; Wang, X.; Wu, Y. Key Role of the Ryanodine Receptor I4790K Mutation in Mediating Diamide Resistance in Plutella xylostella. Insect Biochem. Mol. Biol. 2024, 168, 104107. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Hua, W.; Wang, K.; Song, J.; Zhu, B.; Gao, X.; Liang, P. A Novel V263I Mutation in the Glutamate-Gated Chloride Channel of Plutella xylostella (L.) Confers a High Level of Resistance to Abamectin. Int. J. Biol. Macromol. 2023, 230, 123389. [Google Scholar] [CrossRef]
- Steinbach, D.; Gutbrod, O.; Lümmen, P.; Matthiesen, S.; Schorn, C.; Nauen, R. Geographic Spread, Genetics and Functional Characteristics of Ryanodine Receptor Based Target-Site Resistance to Diamide Insecticides in Diamondback Moth, Plutella xylostella. Insect Biochem. Mol. Biol. 2015, 63, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, S.; Shi, X.; Song, D.; Zhang, Y.; Li, J.; Wu, G.; Liu, Y.; Li, M.; Liang, P.; Wari, D.; et al. Frequencies of the M918I Mutation in the Sodium Channel of the Diamondback Moth in China, Thailand and Japan and Its Association with Pyrethroid Resistance. Pestic. Biochem. Physiol. 2012, 102, 142–145. [Google Scholar] [CrossRef]
- Troczka, B.; Zimmer, C.T.; Elias, J.; Schorn, C.; Bass, C.; Davies, T.G.E.; Field, L.M.; Williamson, M.S.; Slater, R.; Nauen, R. Resistance to Diamide Insecticides in Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae) Is Associated with a Mutation in the Membrane-Spanning Domain of the Ryanodine Receptor. Insect Biochem. Mol. Biol. 2012, 42, 873–880. [Google Scholar] [CrossRef] [PubMed]
Strain | n † | Slope ± SE ‡ | LC50(95%FL) (mg/L) § | LC99(95%FL) (mg/L) ¶ | χ2 (df) | Resistance Ratio * |
---|---|---|---|---|---|---|
XY-PS | 320 | 2.559 ± 0.304 | 0.040 (0.029–0.052) | 0.321 (0.189–0.872) | 5.801 (5) | - |
XA1 | 320 | 2.660 ± 0.299 | 0.047 (0.028–0.075) | 0.350 (0.167–2.748) | 15.20 (5) | 1.18 |
AY | 320 | 3.156 ± 0.389 | 0.060 (0.042–0.083) | 0.329 (0.191–1.123) | 8.824 (5) | 1.50 |
HF | 320 | 1.979 ± 0.206 | 0.062 (0.049–0.077) | 0.924 (0.576–1.845) | 4.851 (5) | 1.55 |
HZ1 | 320 | 2.344 ± 0.269 | 0.104 (0.082–0.128) | 1.027 (0.665–1.993) | 1.389 (5) | 2.60 |
XY | 320 | 2.392 ± 0.329 | 0.151 (0.061–0.274) | 1.423 (0.568–92.98) | 17.79 (5) | 3.78 |
FZ2 | 320 | 1.673 ± 0.176 | 0.207 (0.162–0.268) | 5.083 (2.734–12.77) | 2.613 (5) | 5.16 |
GZ1 | 320 | 3.329 ± 0.414 | 0.247 (0.207–0.293) | 1.234 (0.877–2.113) | 2.921 (5) | 6.18 |
HZ | 320 | 2.334 ± 0.269 | 0.104 (0.082–0.128) | 1.027 (0.665–1.993) | 1.389 (5) | 2.60 |
KM | 320 | 2.221 ± 0.233 | 0.085 (0.059–0.120) | 0.952 (0.502–3.161) | 7.447 (5) | 2.13 |
TH1 | 320 | 2.412 ± 0.262 | 0.080 (0.055–0.112) | 0.733 (0.392–2.551) | 8.209 (5) | 2.00 |
Strain | n † | Slope ± SE ‡ | LC50 (95%FL) (mg/L) § | LC99 (95%FL) (mg/L) ¶ | χ2 (df) | Resistance Ratio * |
---|---|---|---|---|---|---|
FLSS | 320 | 2.496 ± 0.347 | 0.211 (0.135–0.306) | 0.420 (0.296–0.714) | 3.527 (5) | - |
BJ | 320 | 2.391 ± 0.259 | 0.693 (0.560–0.847) | 6.515 (4.323–11.97) | 3.167 (5) | 3.28 |
XA2 | 320 | 2.843 ± 0.310 | 0.548 (0.455–0.653) | 3.603 (2.529–6.094) | 2.480 (5) | 2.59 |
ZK | 320 | 2.108 ± 0.245 | 0.530 (0.410–0.664) | 6.732 (4.225–13.74) | 2.773 (5) | 2.51 |
NY | 320 | 2.156 ± 0.243 | 0.442 (0.317–0.584) | 5.297 (3.047–13.81) | 5.042 (5) | 2.09 |
WH | 320 | 2.056 ± 0.234 | 0.594 (0.460–0.745) | 8.050 (5.013–16.52) | 4.149 (5) | 2.81 |
HZ | 320 | 2.507 ± 0.378 | 0.404 (0.26 −0.656) | 3.420 (1.490–45.77) | 9.499 (5) | 1.91 |
NC | 320 | 2.291 ± 0.242 | 0.761 (0.493–1.121) | 7.889 (3.957–33.59) | 9.984 (5) | 3.61 |
CS | 320 | 1.955 ± 0.215 | 0.517 (0.403–0.645) | 7.999 (4.943–16.44) | 4.240 (5) | 2.45 |
GZ | 320 | 2.039 ± 0.209 | 0.434 (0.344–0.539) | 5.997 (3.806–11.60) | 2.448 (5) | 2.06 |
GZ2 | 320 | 2.276 ± 0.221 | 0.435 (0.355–0.529) | 4.572 (3.051–8.123) | 3.320 (5) | 2.06 |
ZC | 320 | 2.179 ± 0.276 | 0.243 (0.177–0.335) | 2.846 (1.448–10.59) | 5.411 (5) | 1.15 |
TH2 | 320 | 2.340 ± 0.276 | 0.560 (0.443–0.693) | 5.531 (3.584–10.78) | 3.926 (5) | 2.65 |
FZ1 | 320 | 2.411 ± 0.278 | 0.219 (0.158–0.301) | 2.017 (1.088–6.600) | 6.464 (5) | 1.04 |
Strain | Insecticides | n † | Slope ± SE ‡ | LC50 (95%FL) (mg/L) § | LC99 (95%FL) (mg/L) ¶ | χ2 (df) |
---|---|---|---|---|---|---|
GZ1 | Fluxametamide | 320 | 3.329 ± 0.414 | 0.247 (0.207–0.293) | 1.234 (0.877–2.113) | 2.921 (5) |
Abamectin | 320 | 1.778 ± 0.222 | 332.1 (256.1–444.5) | 6754 (3412–20271) | 4.611 (5) | |
Emamectin benzoate | 320 | 2.619 ± 0.300 | 57.93 (47.11–70.18) | 447.8 (303.0–810.3) | 1.896 (5) | |
Deltamethrin | 320 | 1.924 ± 0.215 | 254.2 (201.3–325.4) | 4115 (2334–9752) | 2.357 (5) | |
NC | Fluxametamide | 320 | 2.291 ± 0.242 | 0.761 (0.493–1.121) | 7.889 (3.957–33.59) | 9.984 (5) |
Abamectin | 320 | 2.179 ± 0.253 | 233.5 (186.0–293.3) | 2729 (1654–5900) | 3.632 (5) | |
Emamectin benzoate | 320 | 3.225 ± 0.398 | 100.8 (83.83–119.9) | 530.6 (376.3–909.6) | 3.186 (5) | |
Deltamethrin | 320 | 2.418 ± 0.285 | 259.3 (210.6–319.3) | 2376 (1507–4810) | 1.291 (5) |
Strain | n † | Slope ± SE ‡ | LC50 (95%FL) (mg/L) § | χ2 (df) |
---|---|---|---|---|
I4790M II | 320 | 3.32 ± 0.29 | 0.048 (0.042–0.052) | 5.25 (4) |
F116V ◎ | 320 | 2.44 ± 0.18 | 0.688 (0.589–0.804) | 4.33 (4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.; Chen, Z.; Chen, W.; Wang, Z. Baseline Susceptibility of Plutella xylostella and Spodoptera exigua to Fluxametamide in China. Insects 2025, 16, 267. https://doi.org/10.3390/insects16030267
Yin C, Chen Z, Chen W, Wang Z. Baseline Susceptibility of Plutella xylostella and Spodoptera exigua to Fluxametamide in China. Insects. 2025; 16(3):267. https://doi.org/10.3390/insects16030267
Chicago/Turabian StyleYin, Chunyan, Ziyi Chen, Wei Chen, and Zhenyu Wang. 2025. "Baseline Susceptibility of Plutella xylostella and Spodoptera exigua to Fluxametamide in China" Insects 16, no. 3: 267. https://doi.org/10.3390/insects16030267
APA StyleYin, C., Chen, Z., Chen, W., & Wang, Z. (2025). Baseline Susceptibility of Plutella xylostella and Spodoptera exigua to Fluxametamide in China. Insects, 16(3), 267. https://doi.org/10.3390/insects16030267