Development of the Endo-Reproductive System and the Effect of Mating Status on Egg Development in Adult Hermetia illucens L.
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sources of Test Insects
2.2. Rearing Methods
2.3. Recording of the Anatomy of the Reproductive System
2.4. Data Measurement and Analysis
3. Results and Analysis
3.1. Endo-Reproductive System of Adult H. illucens
3.2. Developmental Processes of the Endo-Reproductive Organs of Adult H. illucens
3.2.1. Development of the Testicle
3.2.2. Developmental Grading of the Ovaries
3.2.3. Development of the Seminal Vesicle
3.3. Effects of Mating Status on the Egg Development Process
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Yao, H.; Chapman, S.J.; Su, J.; Wang, C. Changes in gut bacterial communities and the incidence of antibiotic resistance genes during degradation of antibiotics by black soldier fly larvae. Environ. Int. 2020, 142, 105834. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, C.; Yao, H. Comprehensive Resource Utilization of Waste Using the Black Soldier Fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae). Animals 2019, 9, 349. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.H.; Chen, Y.H.; Yu, Z.N.; Cheng, P. Progress of research on the feed value of black gadfly larvae and prepupae. Chin. Bull. Entomol. 2009, 46, 41–45. (In Chinese) [Google Scholar]
- Tang, X.Q.; Lu, J. Artificial breeding of black gadfly and its application. Agric. Dev. Equip. 2015, 152–155. (In Chinese) [Google Scholar]
- Wong, M.H.; Ok, Y.S.; Naidu, R. Biological-waste as resource, with a focus on food waste PREFACE. Environ. Sci. Pollut. Res. 2016, 23, 7071–7073. [Google Scholar] [CrossRef]
- Wong, M.H.; Mo, W.Y.; Choi, W.M.; Cheng, Z.; Man, Y.B. Recycle food wastes into high quality fish feeds for safe and quality fish production. Environ. Pollut. 2016, 219, 631–638. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Tomberlin, J.K.; Vanlaerhoven, S. Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste. Environ. Entomol. 2015, 44, 406–410. [Google Scholar] [CrossRef]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M.P. Reduction of Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. J. Food Prot. 2004, 67, 685–690. [Google Scholar] [CrossRef]
- Parodi, A.; Gerrits, W.J.; Van Loon, J.J.; De Boer, I.J.; Aarnink, A.J.; Van Zanten, H.H. Black soldier fly reared on pig manure: Bioconversion efficiencies, nutrients in the residual material, greenhouse gas and ammonia emissions. Waste Manag. 2021, 126, 674–683. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Chen, M.; Deng, X.; Pei, Y.; Zhang, J.; Chen, H.; Yang, S. Biochar Can Improve Absorption of Nitrogen in Chicken Manure by Black Soldier Fly. Life 2023, 13, 938. [Google Scholar] [CrossRef]
- Ahmad, I.K.; Peng, N.T.; Amrul, N.F.; Basri, N.E.A.; Jalil, N.A.A.; Azman, N.A. Potential Application of Black Soldier Fly Larva Bins in Treating Food Waste. Insects 2023, 14, 434. [Google Scholar] [CrossRef] [PubMed]
- Basri, N.E.A.; Azman, N.A.; Ahmad, I.K.; Suja, F.; Jalil, N.A.A.; Amrul, N.F. Potential Applications of Frass Derived from Black Soldier Fly Larvae Treatment of Food Waste: A Review. Foods 2022, 11, 2664. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Ichiki, R.T.; Shimoda, M.; Morioka, S. Small-scale rearing of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), in the laboratory: Low-cost and year-round rearing. Appl. Entomol. Zool. 2016, 51, 161–166. [Google Scholar] [CrossRef]
- Paz, A.S.P.; Carrejo, N.S.; Rodríguez, C.H.G. Effects of Larval Density and Feeding Rates on the Bioconversion of Vegetable Waste Using Black Soldier Fly Larvae Hermetia illucens (L.), (Diptera: Stratiomyidae). Waste Biomass Valorization 2015, 6, 1059–1065. [Google Scholar]
- Ramos-Bueno, R.P.; González-Fernández, M.J.; Sánchez-Muros-Lozano, M.J.; García-Barroso, F.; Guil-Guerrero, J.L. Fatty acid profiles and cholesterol content of seven insect species assessed by several extraction systems. Eur. Food Res. Technol. 2016, 242, 1471–1477. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Liu, W.R.; Liu, M.K. Morphological characteristics of internal reproductive system of Bactrocera minax. Environ. Monit. Entomol. 2024, 46, 296–306. [Google Scholar]
- Scolari, F.; Gomulski, L.M.; Ribeiro, J.M.C.; Siciliano, P.; Meraldi, A.; Falchetto, M.; Gabrieli, P. Transcriptional profiles of mating-responsive genes from testes and male accessory glands of the Mediterranean fruit fly, Ceratitis capitata. PLoS ONE 2018, 7, e46812. [Google Scholar] [CrossRef]
- Chaitra, B.; Saraswathi; Mamtha, R.; Kiran, T.; Manjulakumari, D. Tracking the changes in protein profile during mating in male accessory glands of Helicoverpa armigera (H). J. Entomol. Res. 2020, 44, 1–6. [Google Scholar] [CrossRef]
- Clifton, M.E.; Correa, S.; Rivera-Perez, C.; Nouzova, M.; Noriega, F.G. Male Aedes aegypti mosquitoes use JH III transferred during copulation to influence previtellogenic ovary physiology and affect the reproductive output of female mosquitoes. J. Insect Physiol. 2014, 64, 40–47. [Google Scholar] [CrossRef]
- Muller, K.; Thiéry, D.; Moret, Y.; Moreau, J. Male larval nutrition affects adult reproductive success in wild European grapevine moth (Lobesia botrana). Behav. Ecol. Sociobiol. 2015, 69, 39–47. [Google Scholar] [CrossRef]
- Torres-Vila, L.M.; Rodríguez-Molina, M.C.; Stockel, J. Delayed mating reduces reproductive output of female European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae). Bull. Entomol. Res. 2002, 92, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Zhou, Q.; Zhou, K.L.; Zhou, J.H.; Li, Q. Sensilla of adult Hermetia illucens observed with scanning electron microscope(II): Labellum, haltere and externalia. J. Chin. Electron. Microsc. Soc. 2018, 37, 183–189. (In Chinese) [Google Scholar]
- Zhou, K.L.; Zhou, Q.; Li, Z.Y.; Li, Q.; Zhou, J.H. Sensilla of adult Hermetia illucens L. (Diptera: Stratiomyidae) observed with scanning electron microscope (I): Antenna and maxillary palpus. J. Chin. Electron. Microsc. Soc. 2018, 37, 84–90. (In Chinese) [Google Scholar]
- Zhang, X.Y. The pupae and ovary developmental grade of Bactrocera tau. J. Zhejiang Agric. Sci. 2018, 59, 2184–2186+2189. (In Chinese) [Google Scholar]
- He, J.P. Studies on Oogenesis and Spermatheca of Oedaleus infernals Suassure. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2002. (In Chinese). [Google Scholar]
- Dominique, P.S.; Pierre, M. Morphological types of spermatheca in Coreidae: Bearing on intra-familial classification and tribal-groupings (Hemiptera: Heteroptera). Zootaxa 2020, 4834, 451–501. [Google Scholar]
- Lawson, F.A.; Thomas, J.C. Ultrastructural comparison of the spermathecae in Periplaneta americana (Blattaria: Blattidae). J. Kans. Entomol. Soc. 1970, 43, 418–434. [Google Scholar]
- Winnick, C.G.; Holwell, G.I.; Herberstein, M.E. Internal reproductive anatomy of the praying mantid Ciulfina klassi (Mantodea: Liturgusidae). Arthropod Struct. Dev. 2009, 38, 60–69. [Google Scholar] [CrossRef]
- da Silva, I.B.; Costa-Leonardo, A.M. Mating mediates morphophysiological changes in the spermathecae of Coptotermes gestroi queens. Entomol. Exp. Appl. 2023, 171, 361–373. [Google Scholar] [CrossRef]
- Li, K.; Yang, Y.; Mao, L.; Zhang, J.; Geng, J.; Yin, H. Morphology and fine organization of the spermatheca of Haplotropis brunneriana (Orthoptera: Pamphagidae). Rev. Bras. Entomol. 2017, 61, 323–329. [Google Scholar] [CrossRef]
- Ou, Y.Q.; Mo, R.J. Classification of ovarian stages of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). J. Biosaf. 2014, 23, 24–29. (In Chinese) [Google Scholar]
- Chaudhury, M.F.B.; Raun, E.S. Spermatogenesis and testicular development of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyraustidae). Ann. Entomol. Soc. Am. 1966, 59, 1157–1159. [Google Scholar] [CrossRef]
- Hiroyoshi, S.; Reddy, G.V.P. Field and laboratory studies on the ecology, reproduction, and adult diapause of the Asian comma butterfly, Polygonia c-aureum L. (Lepidoptera: Nymphalidae). Insects 2018, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Yu, G.H.; Xia, Q. Advances in black gadfly research. Anim. Breed. Feed. 2015, 4–7. (In Chinese) [Google Scholar] [CrossRef]
- Pascini, T.V.; Martins, G.F. The insect spermatheca: An overview. Zoology 2016, 121, 56–71. [Google Scholar] [CrossRef]
- Chai, Z.Q.; Wang, F.B.; Guo, M.F.; Wei, Q.H.; Chen, X.F. Research of Stratiomyidae and its utilization. Guangdong Agric. Sci. 2012, 39, 182–185+195. (In Chinese) [Google Scholar]
- Pascini, T.V.; Ramalho-Ortigão, M.; Martins, G.F. Morphological and morphometrical assessment of spermathecae of Aedes aegypti females. Memórias Inst. Oswaldo Cruz 2012, 107, 705–712. [Google Scholar] [CrossRef]
- Pascini, T.V.; Ramalho-Ortigäo, J.M.; Martins, G.F. The fine structure of the spermatheca in Anopheles aquasalis (Diptera: Culicidae). Ann. Entomol. Soc. Am. 2013, 106, 857–867. [Google Scholar] [CrossRef]
- da Silva, I.B.; Costa-Leonardo, A.M. Mating- and oviposition-dependent changes of the spermatheca and colleterial glands in the pest termite Cryptotermes brevis (Blattaria, Isoptera, Kalotermitidae). Protoplasma 2024, 261, 213–225. [Google Scholar] [CrossRef]
- Túler, A.C.; Silva-Torres, C.S.A.; Teixeira, V.W.; Teixeira, A.A.C.; Guedes, C.A.; D’Assunçao, C.G.; Brayner, F.A.; Alves, L.C. Histology of the spermateca and stored sperm of Tenuisvalvae notata (Coleoptera: Coccinellidae). Physiol. Entomol. 2018, 43, 180–187. [Google Scholar] [CrossRef]
- Davey, K.G.; Webster, G.F. The structure and secretion of the spermatheca of Rhnodnius prolixus Stäl: A histochemical study. Can. J. Zool. 1967, 45, 653–657. [Google Scholar] [CrossRef]
- Sindhu, L.; Guo, S.; Song, Y.; Li, L.; Cui, H.; Guo, W.; Men, X. Dissection and Grading of Ovarian Development in Wild-Type Female Insects. J. Visualized Exp. 2023, 197, e65644. [Google Scholar] [CrossRef] [PubMed]
- Lange, A.B.; Loughton, B.G. An oviposition-stimulating factor in the male accessory reproductive gland of the locust, Locusta migratoria. Gen. Comp. Endocrinol. 1985, 57, 208–215. [Google Scholar] [CrossRef]
- Jin, Z.Y.; Gong, H. Male accessory gland derived factors can stimulate oogenesis and enhance oviposition in Helicoverpa armigera (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 2001, 46, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Baulding, J.; Palli, S.R. Proteomics of Tribolium castaneum seminal fluid proteins: Identification of an angiotensin-converting enzyme as a key player in regulation of reproduction. J. Proteom. 2013, 78, 83–93. [Google Scholar] [CrossRef]
- Meuti, M.E.; Short, S.M. Physiological and Environmental Factors Affecting the Composition of the Ejaculate in Mosquitoes and Other Insects. Insects 2019, 10, 74. [Google Scholar] [CrossRef]
- Mesich, J.M.; Richards, M.H. Effect of a juvenile hormone analogue (methoprene) on ovarian development and survival in the Eastern Carpenter Bee (Xylocopa virginica). Insectes Sociaux 2024, 1–9. [Google Scholar] [CrossRef]
- Qin, Q.Y.; Zhang, B.; Fang, B.; Chang, Y.P.; Li, X.; An, S.H.; Zhao, W.L. Juvenile hormone controls trehalose metabolism by regulating trehalase 2 activity in ovarian development of Helicoverpa armigera. Insect Mol. Biol. 2024, 34, 249–262. [Google Scholar] [CrossRef]
- Wang, C.; Ye, X.M.; Du, J.; Kong, X.; Wang, L. Effect of different CP/ME ratios diets on growth performance of Hermetia illucens. Feed Res. 2023, 46, 84–89. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Li, L.; Hu, F.; Wang, Y.; Zhang, Y.; Zhou, Z.; Zhou, Q. Development of the Endo-Reproductive System and the Effect of Mating Status on Egg Development in Adult Hermetia illucens L. Insects 2025, 16, 330. https://doi.org/10.3390/insects16040330
Chen X, Li L, Hu F, Wang Y, Zhang Y, Zhou Z, Zhou Q. Development of the Endo-Reproductive System and the Effect of Mating Status on Egg Development in Adult Hermetia illucens L. Insects. 2025; 16(4):330. https://doi.org/10.3390/insects16040330
Chicago/Turabian StyleChen, Xiangying, Lingqiao Li, Fan Hu, Yan Wang, Yijun Zhang, Zihao Zhou, and Qiong Zhou. 2025. "Development of the Endo-Reproductive System and the Effect of Mating Status on Egg Development in Adult Hermetia illucens L." Insects 16, no. 4: 330. https://doi.org/10.3390/insects16040330
APA StyleChen, X., Li, L., Hu, F., Wang, Y., Zhang, Y., Zhou, Z., & Zhou, Q. (2025). Development of the Endo-Reproductive System and the Effect of Mating Status on Egg Development in Adult Hermetia illucens L. Insects, 16(4), 330. https://doi.org/10.3390/insects16040330