Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees
Simple Summary
Abstract
1. Introduction
2. Dimensions of Medicinal Benefits
2.1. Longevity
2.2. Immune Function and Protection Against Disease
2.3. Detoxification
3. Plant Secondary Metabolites with Medicinal Benefits
3.1. Longevity
3.2. Immune Function and Microbiome
3.3. Defense Against Disease Agents
3.4. Detoxification
4. Considerations and Future Directions
4.1. Complications with Inferring Benefit from Chemistry
4.2. Medicinal Benefits of Pollen, Nectar, and Resin Beyond Phytochemistry
4.3. To What Extent Is PSM Content Driving Bee Foraging Behavior?
4.4. Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plowright, R.C.; Thomson, J.D.; Lefkovitch, L.P.; Plowright, C.M.S. An Experimental Study of the Effect of Colony Resource Level Manipulation on Foraging for Pollen by Worker Bumble Bees (Hymenoptera: Apidae). Can. J. Zool. 1993, 71, 1393–1396. [Google Scholar]
- Nguyen, H.; Nieh, J.C. Colony and Individual Forager Responses to Food Quality in the New World Bumble Bee, Bombus occidentalis. J. Insect Behav. 2012, 25, 60–69. [Google Scholar] [CrossRef]
- Ruedenauer, F.A.; Spaethe, J.; Leonhardt, S.D. Hungry for Quality—Individual Bumblebees Forage Flexibly to Collect High-Quality Pollen. Behav. Ecol. Sociobiol. 2016, 70, 1209–1217. [Google Scholar] [CrossRef]
- Kriesell, L.; Hilpert, A.; Leonhardt, S.D. Different but the Same: Bumblebee Species Collect Pollen of Different Plant Sources but Similar Amino Acid Profiles. Apidologie 2017, 48, 102–116. [Google Scholar] [CrossRef]
- Leach, M.E.; Drummond, F. A Review of Native Wild Bee Nutritional Health. Int. J. Ecol. 2018, 2018, 10. [Google Scholar] [CrossRef]
- Leach, M.; Dibble, A.C.; Stack, L.B.; Perkins, L.B.; Drummond, F.A. The Effect of Plant Nutrition on Bee Flower Visitation. J. Kans. Entomol. Soc. 2021, 94, 277–300. [Google Scholar] [CrossRef]
- Biella, P.; Tommasi, N.; Akter, A.; Guzzetti, L.; Klecka, J.; Sandionigi, A.; Labra, M.; Galimberti, A. Foraging Strategies Are Maintained despite Workforce Reduction: A Multidisciplinary Survey on the Pollen Collected by a Social Pollinator. PLoS ONE 2019, 14, e0227453. [Google Scholar] [CrossRef]
- O’Connell, M.; Jordan, Z.; McGilvray, E.; Cohen, H.; Liere, H.; Lin, B.B.; Philpott, S.M.; Jha, S. Reap What You Sow: Local Plant Composition Mediates Bumblebee Foraging Patterns within Urban Garden Landscapes. Urban Ecosyst. 2021, 24, 391–404. [Google Scholar] [CrossRef]
- Furse, S.; Martel, C.; Yusuf, A.; Shearman, G.C.; Koch, H.; Stevenson, P.C. Sterol Composition in Plants Is Specific to Pollen, Leaf, Pollination and Pollinator. Phytochemistry 2023, 214, 214. [Google Scholar] [CrossRef]
- Brodschneider, R.; Crailsheim, K. Nutrition and Health in Honey Bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Wright, G.A.; Nicolson, S.W.; Shafir, S. Nutritional Physiology and Ecology of Honey Bees. Annu. Rev. Entomol. 2018, 63, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Harmon-Threatt, A.N.; Kremen, C. Bumble Bees Selectively Use Native and Exotic Species to Maintain Nutritional Intake across Highly Variable and Invaded Local Floral Resource Pools. Ecol. Entomol. 2015, 40, 471–478. [Google Scholar] [CrossRef]
- Macías, F.A.; Galindo, J.L.G.; Galindo, J.C.G. Evolution and Current Status of Ecological Phytochemistry. Phytochemistry 2007, 68, 2917–2936. [Google Scholar] [CrossRef]
- Iriti, M.; Faoro, F. Chemical Diversity and Defence Metabolism: How Plants Cope with Pathogens and Ozone Pollution. Int. J. Mol. Sci. 2009, 10, 3371–3399. [Google Scholar] [CrossRef] [PubMed]
- Wöll, S.; Kim, S.H.; Greten, H.J.; Efferth, T. Animal Plant Warfare and Secondary Metabolite Evolution. Nat. Prod. Bioprospect 2013, 3, 1–7. [Google Scholar] [CrossRef]
- Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary Metabolites in Plant Innate Immunity: Conserved Function of Divergent Chemicals. New Phytol. 2015, 206, 948–964. [Google Scholar] [CrossRef] [PubMed]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of Secondary Metabolites in Plant Defense against Pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.-H.; Xuan, T.D.; Khanh, T.D.; Tran, H.-D.; Trung, N.T. Allelochemicals and Signaling Chemicals in Plants. Molecules 2019, 24, 2737. [Google Scholar] [CrossRef]
- Salam, U.; Ullah, S.; Tang, Z.-H.; Elateeq, A.A.; Khan, Y.; Khan, J.; Khan, A.; Ali, S. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors. Life 2023, 13, 706. [Google Scholar] [CrossRef] [PubMed]
- Dofuor, A.K.; Osei-Owusu, J.; Osabutey, A.F.; Lutuf, H.; Antwi-Agyakwa, A.K.; Andoh-Mensah, S.; Asante, K.; Aidoo, O.F. Plant-Insect Interactions under Agroecosystems: An Overview of Ecological Implications for Future Research. Cogent Food Agric. 2024, 10, 2379606. [Google Scholar] [CrossRef]
- Jacobsen, D.J.; Raguso, R.A. Lingering Effects of Herbivory and Plant Defenses on Pollinators. Curr. Biol. 2018, 28, R1164–R1169. [Google Scholar] [CrossRef] [PubMed]
- Fitch, G.; Figueroa, L.L.; Koch, H.; Stevenson, P.C.; Adler, L.S. Understanding Effects of Floral Products on Bee Parasites: Mechanisms, Synergism, and Ecological Complexity. Int. J. Parasitol. Parasites Wildl. 2022, 17, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Barascou, L.; Sene, D.; Barraud, A.; Michez, D.; Lefebvre, V.; Medrzycki, P.; Di Prisco, G.; Strobl, V.; Yañez, O.; Neumann, P.; et al. Pollen Nutrition Fosters Honeybee Tolerance to Pesticides. R. Soc. Open Sci. 2021, 8, 210818. [Google Scholar] [CrossRef] [PubMed]
- Ardalani, H.; Vidkjær, N.H.; Kryger, P.; Fiehn, O.; Fomsgaard, I.S. Metabolomics Unveils the Influence of Dietary Phytochemicals on Residual Pesticide Concentrations in Honey Bees. Environ. Int. 2021, 152, 106503. [Google Scholar] [CrossRef]
- Schmehl, D.R.; Teal, P.E.A.; Frazier, J.L.; Grozinger, C.M. Genomic Analysis of the Interaction between Pesticide Exposure and Nutrition in Honey Bees (Apis mellifera). J. Insect Physiol. 2014, 71, 177–190. [Google Scholar] [CrossRef]
- Janousek, W.M.; Douglas, M.R.; Cannings, S.; Clément, M.A.; Delphia, C.M.; Everett, J.G.; Hatfield, R.G.; Keinath, D.A.; Uhuad Koch, J.B.; McCabe, L.M.; et al. Recent and Future Declines of a Historically Widespread Pollinator Linked to Climate, Land Cover, and Pesticides. Proc. Natl. Acad. Sci. USA 2023, 120, e2211223120. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee Declines Driven by Combined Stress from Parasites, Pesticides, and Lack of Flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Dicks, L.V.; Breeze, T.D.; Ngo, H.T.; Senapathi, D.; An, J.; Aizen, M.A.; Basu, P.; Buchori, D.; Galetto, L.; Garibaldi, L.A.; et al. A Global-Scale Expert Assessment of Drivers and Risks Associated with Pollinator Decline. Nat. Ecol. Evol. 2021, 5, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Folly, A.J.; Koch, H.; Farrell, I.W.; Stevenson, P.C.; Brown, M.J.F. Agri-Environment Scheme Nectar Chemistry Can Suppress the Social Epidemiology of Parasites in an Important Pollinator. Proc. R. Soc. B Biol. Sci. 2021, 288, 20210363. [Google Scholar] [CrossRef]
- Schweitzer, L. Medicinal VOCs in Plants Recommended for Prairie Strips and Pollinator Gardens as Prophylactic and Curative Support for Pollinating Insects: A Review. Agric. Rev. 2021, 42, 166–174. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.; Borba, R.S.; Wilson, M.; Spivak, M. Propolis Counteracts Some Threats to Honey Bee Health. Insects 2017, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Simone, M.; Evans, J.D.; Spivak, M. Resin Collection and Social Immunity in Honey Bees. Evolution 2009, 63, 3016–3022. [Google Scholar] [CrossRef] [PubMed]
- Drescher, N.; Wallace, H.M.; Katouli, M.; Massaro, C.F.; Leonhardt, S.D. Diversity Matters: How Bees Benefit from Different Resin Sources. Oecologia 2014, 176, 943–953. [Google Scholar] [CrossRef]
- Drescher, N.; Klein, A.M.; Schmitt, T.; Leonhardt, S.D. A Clue on Bee Glue: New Insight into the Sources and Factors Driving Resin Intake in Honeybees (Apis mellifera). PLoS ONE 2019, 14, e0210594. [Google Scholar] [CrossRef]
- Bava, R.; Castagna, F.; Ruga, S.; Nucera, S.; Caminiti, R.; Serra, M.; Bulotta, R.M.; Lupia, C.; Marrelli, M.; Conforti, F.; et al. Plants and Their Derivatives as Promising Therapeutics for Sustainable Control of Honeybee (Apis mellifera) Pathogens. Pathogens 2023, 12, 1260. [Google Scholar] [CrossRef] [PubMed]
- Heinze, J.; Schrempf, A. Aging and Reproduction in Social Insects—A Mini-Review. Gerontology 2008, 54, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Vaamonde, C.; Raine, N.E.; Koning, J.W.; Brown, R.M.; Pereboom, J.J.M.; Ings, T.C.; Ramos-Rodriguez, O.; Jordan, W.C.; Bourke, A.F.G. Lifetime Reproductive Success and Longevity of Queens in an Annual Social Insect. J. Evol. Biol. 2009, 22, 983–996. [Google Scholar] [CrossRef] [PubMed]
- Amdam, G.V. Social Context, Stress, and Plasticity of Aging. Aging Cell 2011, 10, 18–27. [Google Scholar] [CrossRef]
- Perry, C.J.; Søvik, E.; Myerscough, M.R.; Barron, A.B. Rapid Behavioral Maturation Accelerates Failure of Stressed Honey Bee Colonies. Proc. Natl. Acad. Sci. USA 2015, 112, 3427–3432. [Google Scholar] [CrossRef]
- Eyer, M.; Dainat, B.; Neumann, P.; Dietemann, V. Social Regulation of Ageing by Young Workers in the Honey Bee, Apis mellifera. Exp. Gerontol. 2017, 87, 84–91. [Google Scholar] [CrossRef]
- Figueroa, L.L.; Sadd, B.M.; Tripodi, A.D.; Strange, J.P.; Colla, S.R.; Davies Adams, L.; Duennes, M.A.; Evans, E.C.; Lehmann, D.M.; Moylett, H.; et al. Endosybionts That Threaten Commercially Raise and Wild Bumble Bees (Bombus Spp.). J. Pollinat. Ecol. 2023, 33, 14–36. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.C.; Strange, J.P.; Sadd, B.M.; Tripodi, A.D.; Figueroa, L.L.; Davies Adams, L.; Colla, S.R.; Duennes, M.A.; Lehmann, D.M.; Moylett, H.; et al. Parasites, Parasitoids, and Hive Products That Are Potentially Deleterious to Wild and Commercially Raised Bumble Bees (Bombus Spp.) in North America. J. Pollinat. Ecol. 2023, 33, 37–53. [Google Scholar] [CrossRef]
- Nekoei, S.; Rezvan, M.; Khamesipour, F.; Mayack, C.; Molento, M.B.; Revainera, P.D. A Systematic Review of Honey Bee (Apis Mellifera, Linnaeus, 1758) Infections and Available Treatment Options. Vet. Med. Sci. 2023, 9, 1848–1860. [Google Scholar] [CrossRef]
- Murray, T.E.; Coffey, M.F.; Kehoe, E.; Horgan, F.G. Pathogen Prevalence in Commercially Reared Bumble Bees and Evidence of Spillover in Conspecific Populations. Biol. Conserv. 2013, 159, 269–276. [Google Scholar] [CrossRef]
- Hicks, B.J.; Pilgrim, B.L.; Perry, E.; Marshall, H.D. Observations of Native Bumble Bees inside of Commercial Colonies of Bombus impatiens (Hymenoptera: Apidae) and the Potential for Pathogen Spillover. Can. Entomol. 2018, 150, 520–531. [Google Scholar] [CrossRef]
- Burnham, P.A.; Alger, S.A.; Case, B.; Boncristiani, H.; Hébert-Dufresne, L.; Brody, A.K. Flowers as Dirty Doorknobs: Deformed Wing Virus Transmitted between Apis mellifera and Bombus impatiens through Shared Flowers. J. Appl. Ecol. 2021, 58, 2065–2074. [Google Scholar] [CrossRef]
- Brosi, B.J.; Delaplane, K.S.; Boots, M.; De Roode, J.C. Ecological and Evolutionary Approaches to Managing Honeybee Disease. Nat. Ecol. Evol. 2017, 1, 1250–1262. [Google Scholar] [CrossRef]
- Fürst, M.A.; McMahon, D.P.; Osborne, J.L.; Paxton, R.J.; Brown, M.J.F. Disease Associations between Honeybees and Bumblebees as a Threat to Wild Pollinators. Nature 2014, 506, 364–366. [Google Scholar] [CrossRef]
- Nanetti, A.; Bortolotti, L.; Cilia, G. Pathogens Spillover from Honey Bees to Other Rrthropods. Pathogens 2021, 10, 1044. [Google Scholar] [CrossRef]
- Goulson, D.; Lye, G.C.; Darvill, B. Decline and Conservation of Bumble Bees. Annu. Rev. Entomol. 2008, 53, 191–208. [Google Scholar] [CrossRef]
- Harpur, B.A.; Zayed, A. Accelerated Evolution of Innate Immunity Proteins in Social Insects: Adaptive Evolution or Relaxed Con-straint? Mol. Biol. Evol. 2013, 30, 1665–1674. [Google Scholar] [CrossRef]
- Tsakas, S.; Marmaras, V.J. Insect Immunity and Its Signalling: An Overview. Invertebr. Surviv. J. 2010, 7, 228–238. [Google Scholar]
- Vilcinskas, A. Evolutionary Plasticity of Insect Immunity. J. Insect Physiol. 2013, 59, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Viljakainen, L. Evolutionary Genetics of Insect Innate Immunity. Brief. Funct. Genom. 2015, 14, 407–412. [Google Scholar] [CrossRef]
- Fowler, A.E.; Irwin, R.E.; Adler, L.S. Parasite Defense Mechanisms in Bees: Behavior, Immunity, Antimicrobials, and Symbionts. Emerg. Top. Life Sci. 2020, 4, 59–76. [Google Scholar]
- Gillespie, J.P.; Kanost, M.R.; Trenczek, T. Biological Mediators of Insect Immunity. Annu. Rev. Entomol. 1997, 42, 611–643. [Google Scholar] [PubMed]
- Kaltenpoth, M.; Engl, T. Defensive Microbial Symbionts in Hymenoptera. Funct. Ecol. 2014, 28, 315–327. [Google Scholar] [CrossRef]
- Chambers, M.C.; Schneider, D.S. Pioneering Immunology: Insect Style. Curr. Opin. Immunol. 2012, 24, 10–14. [Google Scholar] [CrossRef]
- Masri, L.; Cremer, S. Individual and Social Immunisation in Insects. Trends Immunol. 2014, 35, 471–482. [Google Scholar] [CrossRef]
- Cremer, S.; Armitage, S.A.O.; Schmid-Hempel, P. Social Immunity. Curr. Biol. 2007, 17, 693–702. [Google Scholar] [CrossRef]
- Cotter, S.C.; Kilner, R.M. Personal Immunity versus Social Immunity. Behav. Ecol. 2010, 21, 663–668. [Google Scholar] [CrossRef]
- Meunier, J. Social Immunity and the Evolution of Group Living in Insects. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 19–21. [Google Scholar] [CrossRef]
- Stanley, D.A.; Russell, A.L.; Morrison, S.J.; Rogers, C.; Raine, N.E. Investigating the Impacts of Field-Realistic Exposure to a Neonicotinoid Pesticide on Bumblebee Foraging, Homing Ability and Colony Growth. J. Appl. Ecol. 2016, 53, 1440–1449. [Google Scholar] [CrossRef] [PubMed]
- Botías, C.; David, A.; Hill, E.M.; Goulson, D. Quantifying Exposure of Wild Bumblebees to Mixtures of Agrochemicals in Agricultural and Urban Landscapes. Environ. Pollut. 2017, 222, 73–82. [Google Scholar] [CrossRef]
- Camp, A.A.; Lehmann, D.M. Impacts of Neonicotinoids on the Bumble Bees Bombus terrestris and Bombus impatiens Examined through the Lens of an Adverse Outcome Pathway Framework. Environ. Toxicol. Chem. 2021, 40, 309–322. [Google Scholar] [CrossRef]
- Schmolke, A.; Galic, N.; Feken, M.; Thompson, H.; Sgolastra, F.; Pitts-Singer, T.; Elston, C.; Pamminger, T.; Hinarejos, S. Assessment of the Vulnerability to Pesticide Exposures across Bee Species. Environ. Toxicol. Chem. 2021, 40, 2640–2651. [Google Scholar] [CrossRef]
- Muth, F.; Francis, J.S.; Leonard, A.S. Modality-Specific Impairment of Learning by a Neonicotinoid Pesticide. Biol. Lett. 2019, 15, 20190359. [Google Scholar] [CrossRef]
- Switzer, C.M.; Combes, S.A. The Neonicotinoid Pesticide, Imidacloprid, Affects Bombus impatiens (Bumblebee) Sonication Behavior When Consumed at Doses below the LD50. Ecotoxicology 2016, 25, 1150–1159. [Google Scholar] [CrossRef]
- Baron, G.L.; Raine, N.E.; Brown, M.J.F. General and Species-Specific Impacts of a Neonicotinoid Insecticide on the Ovary Development and Feeding of Wild Bumblebee Queens. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170123. [Google Scholar] [CrossRef]
- Siviter, H.; Johnson, A.K.; Muth, F. Bumblebees Exposed to a Neonicotinoid Pesticide Make Suboptimal Foraging Decisions. Environ. Entomol. 2021, 50, 1299–1303. [Google Scholar] [CrossRef]
- Tosi, S.; Sfeir, C.; Carnesecchi, E.; vanEngelsdorp, D.; Chauzat, M.P. Lethal, Sublethal, and Combined Effects of Pesticides on Bees: A Meta-Analysis and New Risk Assessment Tools. Sci. Total Environ. 2022, 844, 156857. [Google Scholar] [PubMed]
- Camp, A.A.; Batres, M.A.; Williams, W.C.; Koethe, R.W.; Stoner, K.A.; Lehmann, D.M. Effects of the Neonicotinoid Acetamiprid in Pollen on Bombus Impatiens Microcolony Development. Environ. Toxicol. Chem. 2020, 39, 2560–2569. [Google Scholar] [CrossRef] [PubMed]
- Elhamalawy, O.; Bakr, A.; Eissa, F. Impact of Pesticides on Non-Target Invertebrates in Agricultural Ecosystems. Pestic. Biochem. Physiol. 2024, 202, 105974. [Google Scholar]
- Hladik, M.L.; Vandever, M.; Smalling, K.L. Exposure of Native Bees Foraging in an Agricultural Landscape to Current-Use Pesticides. Sci. Total Environ. 2016, 542, 469–477. [Google Scholar] [CrossRef]
- Kiljanek, T.; Niewiadowska, A.; Gaweł, M.; Semeniuk, S.; Borzęcka, M.; Posyniak, A.; Pohorecka, K. Multiple Pesticide Residues in Live and Poisoned Honeybees—Preliminary Exposure Assessment. Chemosphere 2017, 175, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Main, A.R.; Hladik, M.L.; Webb, E.B.; Goyne, K.W.; Mengel, D. Beyond Neonicotinoids—Wild Pollinators Are Exposed to a Range of Pesticides While Foraging in Agroecosystems. Sci. Total Environ. 2020, 742, 140436. [Google Scholar] [CrossRef]
- Rondeau, S.; Baert, N.; McArt, S.; Raine, N.E. Quantifying Exposure of Bumblebee (Bombus Spp.) Queens to Pesticide Residues When Hibernating in Agricultural Soils. Environ. Pollut. 2022, 309, 119722. [Google Scholar] [CrossRef]
- Zioga, E.; White, B.; Stout, J.C. Honey Bees and Bumble Bees May Be Exposed to Pesticides Differently When Foraging on Agricultural Areas. Sci. Total Environ. 2023, 896, 166214. [Google Scholar] [CrossRef]
- Cameron, S.A.; Sadd, B.M. Global Trends in Bumble Bee Health. Annu. Rev. Entomol. 2020, 65, 209–232. [Google Scholar] [CrossRef] [PubMed]
- Fauser-Misslin, A.; Sadd, B.M.; Neumann, P.; Sandrock, C. Influence of Combined Pesticide and Parasite Exposure on Bumblebee Colony Traits in the Laboratory. J. Appl. Ecol. 2014, 51, 450–459. [Google Scholar] [CrossRef]
- Siviter, H.; Matthews, A.J.; Brown, M.J.F. A Combined LD50for Agrochemicals and Pathogens in Bumblebees (Bombus Terrestris [Hymenoptera: Apidae]). Environ. Entomol. 2022, 51, 378–384. [Google Scholar] [CrossRef]
- Botías, C.; Jones, J.C.; Pamminger, T.; Bartomeus, I.; Hughes, W.O.H.; Goulson, D. Multiple Stressors Interact to Impair the Performance of Bumblebee Bombus Terrestris Colonies. J. Anim. Ecol. 2021, 90, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Pettis, J.S.; vanEngelsdorp, D.; Johnson, J.; Dively, G. Pesticide Exposure in Honey Bees Results in Increased Levels of the Gut Pathogen Nosema. Naturwissenschaften 2012, 99, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Grassl, J.; Holt, S.; Cremen, N.; Peso, M.; Hahne, D.; Baer, B. Synergistic Effects of Pathogen and Pesticide Exposure on Honey Bee (Apis mellifera) Survival and Immunity. J. Invertebr. Pathol. 2018, 159, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Czerwinski, M.A.; Sadd, B.M. Detrimental Interactions of Neonicotinoid Pesticide Exposure and Bumblebee Immunity. J. Exp. Zool. A Ecol. Integr. Physiol. 2017, 327, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Askri, D.; Straw, E.A.; Arafah, K.; Voisin, S.N.; Bocquet, M.; Brown, M.J.F.; Bulet, P. Parasite and Pesticide Impacts on the Bumblebee (Bombus Terrestris) Haemolymph Proteome. Int. J. Mol. Sci. 2023, 24, 5384. [Google Scholar] [CrossRef] [PubMed]
- Brandt, A.; Grikscheit, K.; Siede, R.; Grosse, R.; Meixner, M.D.; Büchler, R. Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin. Sci. Rep. 2017, 7, 4673. [Google Scholar] [CrossRef]
- Wang, K.; Cai, M.; Sun, J.; Chen, H.; Lin, Z.; Wang, Z.; Niu, Q.; Ji, T. Atrazine Exposure Can Dysregulate the Immune System and Increase the Susceptibility against Pathogens in Honeybees in a Dose-Dependent Manner. J. Hazard. Mater. 2023, 452, 131179. [Google Scholar] [CrossRef]
- Cullen, M.G.; Thompson, L.J.; Carolan, J.C.; Stout, J.C.; Stanley, D.A. Fungicides, Herbicides and Bees: A Systematic Review of Existing Research and Methods. PLoS ONE 2019, 14, e0225743. [Google Scholar] [CrossRef]
- Dirilgen, T.; Herbertsson, L.; O’Reilly, A.D.; Mahon, N.; Stanley, D.A. Moving Past Neonicotinoids and Honeybees: A Systematic Review of Existing Research on Other Insecticides and Bees. Environ. Res. 2023, 235, 116612. [Google Scholar] [CrossRef]
- Lundin, O.; Rundlöf, M.; Smith, H.G.; Fries, I.; Bommarco, R. Neonicotinoid Insecticides and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification of Knowledge Gaps. PLoS ONE 2015, 10, 0136928. [Google Scholar] [CrossRef]
- Zuntini, A.R.; Carruthers, T.; Maurin, O.; Bailey, P.C.; Leempoel, K.; Brewer, G.E.; Epitawalage, N.; Françoso, E.; Gallego-Paramo, B.; McGinnie, C.; et al. Phylogenomics and the Rise of the Angiosperms. Nature 2024, 629, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Irwin, R.E.; Cook, D.; Richardson, L.L.; Manson, J.S.; Gardner, D.R. Secondary Compounds in Floral Rewards of Toxic Rangeland Plants: Impacts on Pollinators. J. Agric. Food Chem. 2014, 62, 7335–7344. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.L.; Bowers, M.D.; Irwin, R.E. Nectar Chemistry Mediates the Behavior of Parasitized Bees: Consequences for Plant Fitness. Ecology 2016, 97, 325–337. [Google Scholar] [CrossRef]
- Wiese, N.; Fischer, J.; Heidler, J.; Lewkowski, O.; Degenhardt, J.; Erler, S. The Terpenes of Leaves, Pollen, and Nectar of Thyme (Thymus Vulgaris) Inhibit Growth of Bee Disease-Associated Microbes. Sci. Rep. 2018, 8, 14634. [Google Scholar] [CrossRef]
- McKey, D. Adaptive Patterns in Alkaloid Physiology. Am. Nat. 1974, 108, 305–320. [Google Scholar] [CrossRef]
- McKey, D. The Distribution of Secondary Compounds within Plants. In Herbivores: Their Interactions with Secondary Plant Metabolites; Rosenthal, G.A., Janzen, D.H., Eds.; Academic Press: New York, NY, USA, 1979; pp. 55–133. [Google Scholar]
- Hunziker, P.; Lambertz, S.K.; Weber, K.; Crocoll, C.; Halkier, B.A.; Schulz, A. Herbivore Feeding Preference Corroborates Optimal Defense Theory for Specialized Metabolites within Plants. Proc. Natl. Acad. Sci. USA 2021, 118, e2111977118. [Google Scholar] [CrossRef]
- Fowler, A.E.; Giacomini, J.J.; Connon, S.J.; Irwin, R.E.; Adler, L.S. Sunflower Pollen Reduces a Gut Pathogen in the Model Bee Species, Bombus impatiens, but Has Weaker Effects in Three Wild Congeners. Proc. R. Soc. B Biol. Sci. 2022, 289, 0211909. [Google Scholar] [CrossRef]
- Figueroa, L.L.; Fowler, A.; Lopez, S.; Amaral, V.E.; Koch, H.; Stevenson, P.C.; Irwin, R.E.; Adler, L.S. Sunflower Spines and beyond: Mechanisms and Breadth of Pollen That Reduce Gut Pathogen Infection in the Common Eastern Bumble Bee. Funct. Ecol. 2023, 37, 1757–1769. [Google Scholar] [CrossRef]
- Płażek, A.; Słomka, A.; Kopeć, P.; Dziurka, M.; Hornyák, M.; Sychta, K.; Pastuszak, J.; Dubert, F. Effects of High Temperature on Embryological Development and Hormone Profile in Flowers and Leaves of Common Buckwheat (Fagopyrum esculentum Moench). Int. J. Mol. Sci. 2019, 20, 1705. [Google Scholar] [CrossRef]
- Costa, C.; Lodesani, M.; Maistrello, L. Effect of Thymol and Resveratrol Administered with Candy or Syrup on the Development of Nosema ceranae and on the Longevity of Honeybees (Apis mellifera L.) in Laboratory Conditions. Apidologie 2010, 41, 141–150. [Google Scholar] [CrossRef]
- Braglia, C.; Alberoni, D.; Porrini, M.P.; Garrido, M.P.; Baffoni, L.; Di Gioia, D. Screening of Dietary Ingredients against the Honey Bee Parasite Nosema Ceranae. Pathogens 2021, 10, 1117. [Google Scholar] [CrossRef] [PubMed]
- Palmer-Young, E.C.; Tozkar, C.O.; Schwarz, R.S.; Chen, Y.; Irwin, R.E.; Adler, L.S.; Evans, J.D. Nectar and Pollen Phytochemicals Stimulate Honey Bee (Hymenoptera: Apidae) Immunity to Viral Infection. J. Econ. Entomol. 2017, 110, 1959–1972. [Google Scholar] [CrossRef]
- Fowler, A.E.; McFrederick, Q.S.; Adler, L.S. Pollen Diet Diversity Does Not Affect Gut Bacterial Communities or Melanization in a Social and Solitary Bee Species. Microb. Ecol. 2024, 87, 25. [Google Scholar] [CrossRef]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. Honey Constituents Up-Regulate Detoxification and Immunity Genes in the Western Honey Bee Apis mellifera. Proc. Natl. Acad. Sci. USA 2013, 110, 8842–8846. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. A Dietary Phytochemical Alters Caste-Associated Gene Expression in Honey Bees. Sci. Adv. 2015, 1, e1500795. [Google Scholar] [CrossRef] [PubMed]
- Negri, P.; Ramirez, L.; Quintana, S.; Szawarski, N.; Maggi, M.; Conte, Y.L.; Lamattina, L.; Eguaras, M. Dietary Supplementation of Honey Bee Larvae with Arginine and Abscisic Acid Enhances Nitric Oxide and Granulocyte Immune Responses after Trauma. Insects 2017, 8, 85. [Google Scholar] [CrossRef]
- Negri, P.; Maggi, M.D.; Ramirez, L.; De Feudis, L.; Szwarski, N.; Quintana, S.; Eguaras, M.J.; Lamattina, L. Abscisic Acid Enhances the Immune Response in Apis mellifera and Contributes to the Colony Fitness. Apidologie 2015, 46, 542–557. [Google Scholar] [CrossRef]
- Geldert, C.; Abdo, Z.; Stewart, J.E.; Arathi, H.S. Dietary Supplementation with Phytochemicals Improves Diversity and Abundance of Honey Bee Gut Microbiota. J. Appl. Microbiol. 2021, 130, 1705–1720. [Google Scholar] [CrossRef]
- Boncristiani, D.L.; Tauber, J.P.; Palmer-Young, E.C.; Cao, L.; Collins, W.; Grubbs, K.; Lopez, J.A.; Meinhardt, L.W.; Nguyen, V.; Oh, S.; et al. Impacts of Diverse Natural Products on Honey Bee Viral Loads and Health. Appl. Sci. 2021, 11, 10732. [Google Scholar] [CrossRef]
- Michaud, K.M.; Irwin, R.E.; Barber, N.A.; Adler, L.S. Preinfection Effects of Nectar Secondary Compounds on a Bumble Bee Gut Pathogen. Environ. Entomol. 2019, 48, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Koch, H.; Woodward, J.; Langat, M.K.; Brown, M.J.F.; Stevenson, P.C. Flagellum Removal by a Nectar Metabolite Inhibits Infectivity of a Bumblebee Parasite. Curr. Biol. 2019, 29, 3494–3500. [Google Scholar] [CrossRef]
- Koch, H.; Welcome, V.; Kendal-Smith, A.; Thursfield, L.; Farrell, I.W.; Langat, M.K.; Brown, M.J.F.; Stevenson, P.C. Host and Gut Microbiome Modulate the Antiparasitic Activity of Nectar Metabolites in a Bumblebee Pollinator. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20210162. [Google Scholar] [CrossRef]
- Mao, W.; Schuler, M.A.; Berenbaum, M.R. Disruption of Quercetin Metabolism by Fungicide Affects Energy Production in Honey Bees (Apis mellifera). Proc. Proc. Natl. Acad. Sci. USA 2017, 114, 2538–2543. [Google Scholar] [CrossRef] [PubMed]
- Mitton, G.A.; Szawarski, N.; Mitton, F.M.; Iglesias, A.; Eguaras, M.J.; Ruffinengo, S.R.; Maggi, M.D. Impacts of Dietary Supplementation with P-Coumaric Acid and Indole-3-Acetic Acid on Survival and Biochemical Response of Honey Bees Treated with Tau-Fluvalinate. Ecotoxicol. Environ. Saf. 2020, 189, 109917. [Google Scholar] [CrossRef] [PubMed]
- Du, T.L.; Van Der Westhuizen, F.H.; Botes, L. Aloe ferox Leaf Gel Phytochemical Content, Antioxidant Capacity, and Possible Health Benefits. J. Agric. Food Chem. 2007, 55, 6891–6896. [Google Scholar] [CrossRef]
- Yang, L.; Fang, Y.; Liu, R.; He, J. Phytochemical Analysis, Anti-Inflammatory, and Antioxidant Activities of Dendropanax dentiger Roots. Biomed. Res. Int. 2020, 2020, 13. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, P. Farang (Psidium guajava L.) Dried Leaf Extracts: Phytochemical Profiles, Antioxidant, Anti-Biabetic, and Anti-Hemolytic Properties for Ruminant Health and Production. Molecules 2022, 27, 6008. [Google Scholar] [CrossRef]
- Ayadi, J.; Debouba, M.; Rahmani, R.; Bouajila, J. Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules 2022, 27, 8987. [Google Scholar] [CrossRef]
- Sharma, V.; Chaudhary, U. Pharmacognostic and Phytochemical Screening of Helicteres isora Roots. Asian J. Pharm. Clin. Res. 2016, 9, 96–101. [Google Scholar] [CrossRef]
- Weimer, P.; Spies, L.M.; Haubert, R.; de Lima, J.A.S.; Maluf, R.W.; Rossi, R.C.; Suyenaga, E.S. Anti-Inflammatory Activity of Brunfelsia uniflora Root Extract: Phytochemical Characterization and Pharmacologic Potential of This under-Investigated Species. Nat. Prod. Res. 2021, 35, 6122–6128. [Google Scholar] [CrossRef]
- Mitharwal, S.; Kumar, A.; Chauhan, K.; Taneja, N.K. Nutritional, Phytochemical Composition and Potential Health Benefits of Taro (Colocasia esculenta L.) Leaves: A Review. Food Chem. 2022, 383, 132406. [Google Scholar] [PubMed]
- Yisimayili, Z.; Chao, Z. A Review on Phytochemicals, Metabolic Profiles and Pharmacokinetics Studies of the Different Parts (Juice, Seeds, Peel, Flowers, Leaves and Bark) of Pomegranate (Punica granatum L.). Food Chem. 2022, 395, 133600. [Google Scholar] [PubMed]
- Chau, K.D.; Rehan, S.M. Nutritional Profiling of Common Eastern North American Pollen Species with Implications for Bee Diet and Pollinator Health. Apidologie 2024, 55, 9. [Google Scholar] [CrossRef]
- McAulay, M.K.; Forrest, J.R.K. How Do Sunflower Pollen Mixtures Affect Survival of Queenless Microcolonies of Bumblebees (Bombus impatiens)? Arthropod Plant Interact. 2019, 13, 517–529. [Google Scholar] [CrossRef]
- Anthony, W.E.; Palmer-Young, E.C.; Leonard, A.S.; Irwin, R.E.; Adler, L.S. Testing Dose-Dependent Effects of the Nectar Alkaloid Anabasine on Trypanosome Parasite Loads in Adult Bumble Bees. PLoS ONE 2015, 10, 0142496. [Google Scholar] [CrossRef]
- Palmer-Young, E.C.; Sadd, B.M.; Irwin, R.E.; Adler, L.S. Synergistic Effects of Floral Phytochemicals against a Bumble Bee Parasite. Ecol. Evol. 2017, 7, 1836–1849. [Google Scholar] [CrossRef]
- Biller, O.M.; Adler, L.S.; Irwin, R.E.; McAllister, C.; Palmer-Young, E.C. Possible Synergistic Effects of Thymol and Nicotine against Crithidia bombi Parasitism in Bumble Bees. PLoS ONE 2015, 10, e0144668. [Google Scholar] [CrossRef]
- Figueroa, L.L.; Grincavitch, C.; McArt, S.H. Crithidia bombi Can Infect Two Solitary Bee Species While Host Survivorship Depends on Diet. Parasitology 2021, 148, 435–442. [Google Scholar] [CrossRef]
- Conroy, T.J.; Palmer-Young, E.C.; Irwin, R.E.; Adler, L.S. Food Limitation Affects Parasite Load and Survival of Bombus impatiens (Hymenoptera: Apidae) Infected with Crithidia (Trypanosomatida: Trypanosomatidae). Environ. Entomol. 2016, 45, 1212–1219. [Google Scholar] [CrossRef]
- Manlik, O.; Mundra, S.; Schmid-Hempel, R.; Schmid-Hempel, P. Impact of Climate Change on Parasite Infection of an Important Pollinator Depends on Host Genotypes. Glob. Change Biol. 2023, 29, 69–80. [Google Scholar] [CrossRef]
- Moore, B.D.; Andrew, R.L.; Külheim, C.; Foley, W.J. Explaining Intraspecific Diversity in Plant Secondary Metabolites in an Ecological Context. New Phytol. 2014, 201, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Delle-Vedove, R.; Schatz, B.; Dufay, M. Understanding Intraspecific Variation of Floral Scent in Light of Evolutionary Ecology. Ann. Bot. 2017, 120, 1–20. [Google Scholar] [CrossRef]
- Palmer-Young, E.C.; Farrell, I.W.; Adler, L.S.; Milano, N.J.; Egan, P.A.; Junker, R.R.; Irwin, R.E.; Stevenson, P.C. Chemistry of Floral Rewards: Intra- and Interspecific Variability of Nectar and Pollen Secondary Metabolites across Taxa. Ecol. Monogr. 2019, 89, e01335. [Google Scholar] [CrossRef]
- Giacomini, J.J.; Leslie, J.; Tarpy, D.R.; Palmer-Young, E.C.; Irwin, R.E.; Adler, L.S. Medicinal Value of Sunflower Pollen against Bee Pathogens. Sci. Rep. 2018, 8, 14394. [Google Scholar] [CrossRef] [PubMed]
- LoCascio, G.M.; Aguirre, L.; Irwin, R.E.; Adler, L.S. Pollen from Multiple Sunflower Cultivars and Species Reduces a Common Bumblebee Gut Pathogen. R. Soc. Open Sci. 2019, 6, 90279. [Google Scholar] [CrossRef] [PubMed]
- LoCascio, G.M.; Pasquale, R.; Amponsah, E.; Irwin, R.E.; Adler, L.S. Effect of Timing and Exposure of Sunflower Pollen on a Common Gut Pathogen of Bumble Bees. Ecol. Entomol. 2019, 44, 702–710. [Google Scholar] [CrossRef]
- Adler, L.S.; Fowler, A.E.; Malfi, R.L.; Anderson, P.R.; Coppinger, L.M.; Deneen, P.M.; Lopez, S.; Irwin, R.E.; Farrell, I.W.; Stevenson, P.C. Assessing Chemical Mechanisms Underlying the Effects of Sunflower Pollen on a Gut Pathogen in Bumble Bees. J. Chem. Ecol. 2020, 46, 649–658. [Google Scholar] [CrossRef]
- Giacomini, J.J.; Connon, S.J.; Marulanda, D.; Adler, L.S.; Irwin, R.E. The Costs and Benefits of Sunflower Pollen Diet on Bumble Bee Colony Disease and Health. Ecosphere 2021, 12, 03663. [Google Scholar] [CrossRef]
- Fowler, A.E.; Sadd, B.M.; Bassingthwaite, T.; Irwin, R.E.; Adler, L.S. Consuming Sunflower Pollen Reduced Pathogen Infection but Did Not Alter Measures of Immunity in Bumblebees. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20210160. [Google Scholar] [CrossRef]
- Fowler, A.E.; Kola, E.; Adler, L.S. The Effect of Sunflower Pollen Age and Origin on Pathogen Infection in the Common Eastern Bumble Bee (Apidae: Hymenoptera). J. Econ. Entomol. 2023, 116, 1939–1942. [Google Scholar] [CrossRef] [PubMed]
- Giacomini, J.J.; Adler, L.S.; Reading, B.J.; Irwin, R.E. Differential Bumble Bee Gene Expression Associated with Pathogen Infection and Pollen Diet. BMC Genom. 2023, 24, 157. [Google Scholar] [CrossRef] [PubMed]
- Galen, C.; Blau, S. Caste-specific Patterns of Flower Visitation in Bumble Bees (Bombus kirbyellus) Collecting Nectar from Polemonium viscosum. Ecol. Entomol. 1988, 13, 11–17. [Google Scholar] [CrossRef]
- Raine, N.E.; Chittka, L. The Adaptive Significance of Sensory Bias in a Foraging Context: Floral Colour Preferences in the Bumblebee Bombus Terrestris. PLoS ONE 2007, 2, e556. [Google Scholar] [CrossRef]
- Carvell, C.; Westrich, P.; Meek, W.R.; Pywell, R.F.; Nowakowski, M. Assessing the Value of Annual and Perennial Forage Mixtures for Bumblebees by Direct Observation and Pollen Analysis. Apidologie 2006, 37, 326–340. [Google Scholar] [CrossRef]
- Vaudo, A.D.; Patch, H.M.; Mortensen, D.A.; Tooker, J.F.; Grozinger, C.M. Macronutrient Ratios in Pollen Shape Bumble Bee (Bombus impatiens) Foraging Strategies and Floral Preferences. Proc. Natl. Acad. Sci. USA 2016, 113, E4035–E4042. [Google Scholar] [CrossRef] [PubMed]
- Vaudo, A.D.; Stabler, D.; Patch, H.M.; Tooker, J.F.; Grozinger, C.M.; Wright, G.A. Bumble Bees Regulate Their Intake of Essential Protein and Lipid Pollen Macronutrients. J. Exp. Biol. 2016, 219, 3962–3970. [Google Scholar] [CrossRef]
- Smithson, A.; Macnair, M.R. Frequency-Dependent Selection by Pollinators: Mechanisms and Consequences with Regard to Behaviour of Bumblebees Bombus terrestris (L.) (Hymenoptera: Apidae). J. Evol. Biol. 1996, 9, 571–588. [Google Scholar] [CrossRef]
- Barlow, S.E.; Wright, G.A.; Ma, C.; Barberis, M.; Farrell, I.W.; Marr, E.C.; Brankin, A.; Pavlik, B.M.; Stevenson, P.C. Distasteful Nectar Deters Floral Robbery. Curr. Biol. 2017, 27, 2552–2558.e3. [Google Scholar] [CrossRef] [PubMed]
- Villalona, E.; Ezray, B.D.; Laveaga, E.; Agrawal, A.A.; Ali, J.G.; Hines, H.M. The Role of Toxic Nectar Secondary Compounds in Driving Differential Bumble Bee Preferences for Milkweed Flowers. Oecologia 2020, 193, 619–630. [Google Scholar] [CrossRef]
- Adler, L.S.; Irwin, R.E. Ecological Costs and Benefits of Defenses in Nectar. Ecology 2005, 86, 2968–2978. [Google Scholar] [CrossRef]
- Adler, L.S.; Irwin, R.E. Nectar Alkaloids Decrease Pollination and Female Reproduction in a Native Plant. Oecologia 2012, 168, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Baracchi, D.; Brown, M.J.F.; Chittka, L. Weak and Contradictory Effects of Self-Medication with Nectar Nicotine by Parasitized Bumblebees. F1000Res 2015, 4, 73. [Google Scholar] [CrossRef] [PubMed]
- Gherman, B.I.; Denner, A.; Bobiş, O.; Dezmirean, D.S.; Mărghitaş, L.A.; Schlüns, H.; Moritz, R.F.A.; Erler, S. Pathogen-Associated Self-Medication Behavior in the Honeybee Apis Mellifera. Behav. Ecol. Sociobiol. 2014, 68, 1777–1784. [Google Scholar]
- Williams, N.M.; Ward, K.L.; Pope, N.; Isaacs, R.; Wilson, J.; May, E.A.; Ellis, J.; Daniels, J.; Pence, A.; Ullmann, K.; et al. Native Wildflower Plantings Support Wild Bee Abundance and Diversity in Agricultural Landscapes across the United States. Ecol. Appl. 2015, 25, 2119–2131. [Google Scholar] [CrossRef]
- Horn, J.; Becher, M.A.; Johst, K.; Kennedy, P.J.; Osborne, J.L.; Radchuk, V.; Grimm, V. Honey Bee Colony Performance Affected by Crop Diversity and Farmland Structure: A Modeling Framework. Ecol. Appl. 2021, 31, e02216. [Google Scholar] [CrossRef]
- Knight, M.E.; Osborne, J.L.; Sanderson, R.A.; Hale, R.J.; Martin, A.P.; Goulson, D. Bumblebee Nest Density and the Scale of Available Forage in Arable Landscapes. Insect Conserv. Divers. 2009, 2, 116–124. [Google Scholar] [CrossRef]
- Hammer, T.J.; Le, E.; Martin, A.N.; Moran, N.A. The Gut Microbiota of Bumblebees. Insectes Soc. 2021, 68, 287–301. [Google Scholar] [CrossRef]
- Palmer-Young, E.C.; Sadd, B.M.; Adler, L.S. Evolution of Resistance to Single and Combined Floral Phytochemicals by a Bumble Bee Parasite. J. Evol. Biol. 2017, 30, 300–312. [Google Scholar] [CrossRef]
- Williams, P.H.; Osborne, J.L. Bumblebee Vulnerability and Conservation World-Wide. Apidologie 2009, 40, 367–387. [Google Scholar] [CrossRef]
Disease Agent | Compound | Effect Type † | Representative Species |
---|---|---|---|
Viruses | Anabasine | Therapeutic | Nicotiana spp. |
Caffeine | Therapeutic | Coffea spp. Citrus spp. Onobrychis vicifolia | |
Catalpol | Therapeutic | Chelone glabra | |
Hesperidin | Therapeutic | Prunus cerasus | |
Nicotine | Prophylactic | Nicotiana spp. | |
Bacteria | Carvacrol | Culture | Origanum vulgare |
Eicosenoic acid | Culture | Brassica napus | |
Hexenal | Culture | Citrus maxima | |
Hyperforin | Culture | Hypericum spp. | |
Lauric acid | Culture | Brassica napus | |
Linoelaidic acid | Culture | Zea mays | |
Linoleic acid | Culture | Widespread | |
Linolenic acid | Culture | Widespread | |
Myristic acid | Culture | Helianthus annuus | |
Palmitoleic acid | Culture | Brassica napus | |
Pinobanksin | Culture | Populus nigra | |
Pinocembrin | Culture | Fagopyrum esculentum | |
Rhamnetin | Culture | Quercus acutissima | |
Sabinene | Culture | Thymus vulgaris | |
Terpeniol | Culture | Thymus vulgaris | |
Thymol | Culture | Thymus vulgaris | |
Tridecanoic acid | Culture | Zea mays | |
Undecanoic acid | Culture | Zea mays | |
Ascosphaera apis | Cinnamic acid | Culture | Prunus cerasus, Taraxacum spp. |
Pinobanksin | Culture | Populus nigra | |
Pinocembrin | Culture | Fagopyrum esculentum | |
Microsporidians (Vairimorpha and Nosema) | Abscisic acid | Therapeutic | Arbutus unedo |
Acetic acid | Therapeutic | Acer saccharum | |
Caffeine | Prophylactic, Therapeutic | Coffea spp. Citrus spp. Onobrychis vicifolia | |
Gallic acid | Therapeutic | Phoenix dactylifera, Fagopyrum esculentum | |
Kaempferol | Therapeutic | Widespread | |
Naringenin | Therapeutic | Brassica napus, Prunus avium | |
p-Coumaric acid | Therapeutic | Widespread | |
Trypanosomatids (Crithidia and Lotmaria) | Anabasine | Therapeutic | Nicotiana spp. |
Aucubin | Culture | Chelone glabra | |
Caffeoylquinic acid | Therapeutic | Carthamus tinctorius, Fagopyrum esculentum | |
Callunene | Prophylactic | Calluna vulgaris | |
Carvacrol | Therapeutic | Origanum vulgare | |
Catalpol | Therapeutic | Chelone glabra | |
Cinnamaldehyde | Therapeutic | Schisandra chinensis | |
Eugenol | Therapeutic | Ocimum basilicum, Laurus nobilis | |
Gelsemine | Therapeutic | Gelsemium sempervirens | |
Nicotine | Therapeutic | Nicotiana spp. | |
Thymol | Therapeutic | Thymus vulgaris | |
Varroa | Abscisic acid | Therapeutic | Arbutus unedo |
Carvone | Therapeutic | Artemesia fragrans | |
Eugenol | Therapeutic | Ocimum basilicum, Laurus nobilis | |
Small hive beetle (Aethina tumida) | Acetic acid | Therapeutic | Acer saccharum |
Compound | Pesticide | Representative Species |
---|---|---|
Abscisic acid | Imidacloprid | Solanum lycopersicum |
Caffeine | Thiamethoxam | Coffea spp. |
Gallic acid | Thiamethoxam | Corymbia citriodora |
Indole-3-acetic acid | Tau-fluvalinate | Olea europea |
Kaempferol | Thiamethoxam, imidacloprid | Widespread |
Luteolin | Tau-fluvalinate | Allium cepa |
Myristic acid | Tebuconazole | Linum usitassimum |
p-Coumaric acid | Chlorantraniliprole, cyfluthrin, imidacloprid, propiconazole, tau-fluvalinate, thiamethoxam | Widespread |
Quercetin | Bifenthrin, boscalid, chlorantraniliprole, imidacloprid, propiconazole, tau-fluvalinate, tebuconazole | Anethum graveolens |
Rutin | Fipronil, imidacloprid | Tilia spp. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morrison, B.; Newburn, L.R.; Fitch, G. Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees. Insects 2025, 16, 414. https://doi.org/10.3390/insects16040414
Morrison B, Newburn LR, Fitch G. Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees. Insects. 2025; 16(4):414. https://doi.org/10.3390/insects16040414
Chicago/Turabian StyleMorrison, Bandele, Laura R. Newburn, and Gordon Fitch. 2025. "Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees" Insects 16, no. 4: 414. https://doi.org/10.3390/insects16040414
APA StyleMorrison, B., Newburn, L. R., & Fitch, G. (2025). Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees. Insects, 16(4), 414. https://doi.org/10.3390/insects16040414