The Contribution of Molecular Biology to Forensic Entomology
Simple Summary
Abstract
1. Forensic Entomology
2. Modern Molecular Biology Supporting Forensic Entomology Investigations
2.1. DNA Analysis for the Forensic Identification of Different Dipteran Species
2.1.1. Random Amplified Polymorphic DNA (RAPD)
Identity of the Larvae Found Outside and Inside a Body Bag
2.1.2. Restriction Fragment Length Polymorphism (RFLP) and Amplified Fragment Length Polymorphism (AFLP)
Application of PCR-RFLP Targeting ITS2 for the Forensic Identification of Chrysomya Species
2.1.3. Analysis of Mitochondrial DNA
Differentiation of Hemilucilia segmentaria and Hemilucilia semidiaphana
A Real Case: Molecular Identification of Scuttle Flies (Diptera: Phoridae)
2.1.4. Inter Simple Sequence Repeat (ISSR) and the Sequence-Characterized Amplified Region (SCAR)
2.2. The Case of Phormia regina
2.3. Gene Expression in Forensic Entomology
Enhancing PMI Estimation in Forensic Investigations
2.4. Detection of Human DNA in Insects of Forensic Interest
2.4.1. Identification of the Aggressor
2.4.2. Identification of the Victim
2.5. The Use of Allozymes to Identify Insect Species
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bansode, S.; Morajkar, A.; Ragade, V.; More, V.; Kharat, K. Challenges and considerations in forensic entomology: A comprehensive review. J. Forensic Leg. Med. 2025, 110, 102831. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.D.; Huntington, T.E. Introduction: Perceptions and status of forensic entomology. In Forensic Entomology: The Utility of Arthropods in Legal Investigations; CRC Press: New York, NY, USA, 2009. [Google Scholar]
- Hall, M.; Whitaker, A.; Richards, C. Forensic entomology. In Forensic Ecology Handbook: From Crime Scene to Court; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 111–140. [Google Scholar] [CrossRef]
- Hu, G.; Wang, M.; Wang, Y.; Liao, M.; Hu, J.; Zhang, Y.; Yu, Y.; Wang, J. Estimation of post-mortem interval based on insect species present on a corpse found in a suitcase. Forensic Sci. Int. 2020, 306, 110046. [Google Scholar] [CrossRef] [PubMed]
- Mohr, R.M.; Tomberlin, J.K. Environmental factors affecting early carcass attendance by four species of blow flies (Diptera: Calliphoridae) in Texas. J. Med. Entomol. 2014, 51, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.; Sutton, L. Forensic entomology for the investigator. Wiley Interdiscip. Rev. Forensic Sci. 2020, 2, e1370. [Google Scholar] [CrossRef]
- Benecke, M. A brief history of forensic entomology. Forensic Sci. Int. 2001, 120, 2–14. [Google Scholar] [CrossRef]
- Amendt, J.; Campobasso, C.P.; Gaudry, E.; Reiter, C.; LeBlanc, H.N.; Hall, M. Best practice in forensic entomology—Standards and guidelines. Int. J. Legal Med. 2007, 121, 90–104. [Google Scholar] [CrossRef]
- Goff, M.L.; Lord, W.D. Entomotoxicology: Insects as toxicological indicators and the impact of drugs and toxins on insect development. In Forensic Entomology: The Utility of Arthropods in Legal Investigations; Byrd, J.H., Castner, J.L., Eds.; CRC Press: New York, NY, USA, 2001. [Google Scholar]
- Bushby, S.K.; Thomas, N.; Priemel, P.A.; Coulter, C.V.; Rades, T.; Kieser, J.A. Determination of methylphenidate in Calliphorid larvae by liquid–liquid extraction and LC-MS forensic entomotoxicology using an in vivo rat brain model. J. Pharm. Biomed. Anal. 2012, 70, 456–461. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Di Vella, G.; Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 2001, 120, 18–27. [Google Scholar] [CrossRef]
- LeBlanc, H.N.; Logan, J.G. Exploiting insect olfaction in forensic entomology. In Current Concepts in Forensic Entomology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 205–221. [Google Scholar] [CrossRef]
- Cruise, A.; Watson, D.W.; Schal, C. Ecological succession of adult necrophilous insects on neonate Sus scrofa domesticus in central North Carolina. PLoS ONE 2018, 13, e0195785. [Google Scholar] [CrossRef]
- Tariq, M.F.; Sterrett, S.C.; Moore, S.; Lane Perkel, D.J.; Gire, D.H. Dynamics of odor-source localization: Insights from real-time odor plume recordings and head-motion tracking in freely moving mice. PLoS ONE 2024, 19, e0310254. [Google Scholar] [CrossRef]
- Castner, J.L. General entomology and arthropod biology. In Forensic Entomology: The Utility of Arthropods in Legal Investigations; CRC Press: New York, NY, USA, 2001. [Google Scholar]
- Nardiello, M.; Scieuzo, C.; Salvia, R.; Farina, D.; Franco, A.; Cammack, J.A.; Tomberlin, J.K.; Falabella, P.; Persaud, K.C. Odorant binding proteins from Hermetia illucens: Potential sensing elements for detecting volatile aldehydes involved in early stages of organic decomposition. Nanotechnology 2022, 33, 205501. [Google Scholar] [CrossRef] [PubMed]
- Scieuzo, C.; Nardiello, M.; Farina, D.; Scala, A.; Cammack, J.A.; Tomberlin, J.K.; Vogel, H.; Salvia, R.; Persaud, K.; Falabella, P. Hermetia illucens (L.) odorant binding proteins and their interactions with selected volatile organic compounds: An in silico approach. Insects 2021, 12, 814. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Bugelli, V.; Carfora, A.; Borriello, R.; Villet, M.H. Advances in entomotoxicology: Weaknesses and strengths. In Forensic Entomology: The Utility of Arthropods in Legal Investigations; Byrd, J., Tomberlin, J., Eds.; CRC Press: New York, NY, USA, 2019. [Google Scholar]
- Sari, S.A.; Muda, N.W.; Mohamed Huri, M.A.; Abdul Keyon, A.S.; Azman, A.R.; Mahat, N.A. Analysis of poisons and drugs in entomological specimens for forensic applications: A review. Arab J. Basic Appl. Sci. 2023, 30, 401–428. [Google Scholar] [CrossRef]
- Introna, F.; Campobasso, C.P.; Goff, M.L. Entomotoxicology. Forensic Sci. Int. 2001, 120, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Peruch, M.; Buffon, M.; Jakovski, Z.; Spiliopoulou, C.; Addobbati, R.; Franzin, M.; Magni, P.A.; D’Errico, S. Comparative toxicological analyses of traditional matrices and blow fly larvae in four cases of highly decomposed human cadavers. Insects 2024, 15, 500. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J.; Vieira, D.N.; Magalhães, T. Guidelines for collection of biological samples for clinical and forensic toxicological analysis. Forensic Sci. Res. 2017, 1, 42–51. [Google Scholar] [CrossRef]
- Hodeček, J. Revisiting the concept of entomotoxicology. Forensic Sci. Int. 2020, 2, 282–286. [Google Scholar] [CrossRef]
- Groth, O.C.; Pi, A.; Jensen, A.E.; Reckel, F.; Hodecek, J.; Kori Yahia, A.; Graw, M. Evaluating the value of entomotoxicology in forensic toxicology casework using the first minipig model. Forensic Toxicol. 2025. [Google Scholar] [CrossRef]
- Jain, S.; Parrott, J.J.; Javan, G.T. Exploring the impact of xenobiotic drugs on forensic entomology for accurate post-mortem interval estimation. Front. Insect Sci. 2025, 28, 1411342. [Google Scholar] [CrossRef]
- Groth, O.; Franz, S.; Fels, H.; Krueger, J.; Roider, G.; Dame, T.; Musshoff, F.; Graw, M. Unexpected results found in larvae samples from two postmortem forensic cases. Forensic Toxicol. 2022, 40, 144–155. [Google Scholar] [CrossRef]
- Li, S.; Hu, Z.; Shao, Y.; Zhang, G.; Wang, Z.; Guo, Y.; Wang, Y.; Cui, W.; Wang, Y.; Ren, L. Influence of drugs and toxins on decomposition dynamics: Forensic implications. Molecules 2024, 29, 5221. [Google Scholar] [CrossRef]
- Jales, J.T.; Barbosa, T.M.; Moreira, V.R.F.; Vasconcelos, S.D.; de Paula Soares Rachetti, V.; Gama, R.A. Effects of Terbufos (Organophosphate) on larval behaviour of two forensically important Diptera species: Contributions for entomotoxicology. Neotrop. Entomol. 2023, 52, 1155–1164. [Google Scholar] [CrossRef]
- Stillion, K. Forensic Entomotoxicology: The Effects of Drugs on the Life Cycle and Succession of Forensically Important Insects. Bachelor’s Thesis, Liberty University, Lynchburg, VA, USA, 2023. Available online: https://digitalcommons.liberty.edu/honors/1325 (accessed on 5 May 2023).
- Costa, R.A.; Dos Santos, N.A.; Corrêa, T.S.M.; Wyatt, N.L.P.; Chamoun, C.A.; Carneiro, M.T.W.D.; Romão, W. Detection of Pb, Ba, and Sb in Cadaveric Maggots and Pupae by ICP-MS. J. Forensic Sci. 2020, 65, 2188–2193. [Google Scholar] [CrossRef]
- Cavalcante, K.; Peniche, T.; Façanha, B.L.B.; Araújo, C.M.; Lobato, T.A.S.; Souto, R.N.P. Effect of diazinon (organophosphate) on the composition and succession of Calliphoridae assemblages in rabbit carcasses in the Eastern Amazon. Int. J. Legal Med. 2023, 137, 1253–1261. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.J.; Liu, M.F.; Li, N.; Dang, L.H.; An, G.S.; Lu, X.J.; Wang, L.L.; Du, Q.X.; Cao, J.; et al. Multi-omics integration strategy in the post-mortem interval of forensic science. Talanta 2024, 268, 125249. [Google Scholar] [CrossRef]
- Açıkgöz, A.; Açıkgöz, H.N. Perspective chapter: Crime scene investigation in criminal behavior cases—Forensic biology, forensic entomology and forensic entomotoxicology. In Criminal Behavior—The Underlyings, and Contemporary Applications; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Kotzé, Z.; Aimar, S.; Amendt, J.; Anderson, G.S.; Bourguignon, L.; Hall, M.J.R.; Tomberlin, J.K. The forensic entomology case report—A global perspective. Insects 2021, 12, 283. [Google Scholar] [CrossRef]
- Behura, S.K. Molecular marker systems in insects: Current trends and future avenues. Mol. Ecol. 2006, 15, 3087–3113. [Google Scholar] [CrossRef]
- Matuszewski, S.; Mądra-Bielewicz, A. Field validation of post-mortem interval estimation based on insect development. Part 1: Accuracy gains from the laboratory rearing of insect evidence. Forensic Sci Int. 2024, 354, 111902. [Google Scholar] [CrossRef]
- Kamal, A.S. Comparative study of thirteen species of sarcosaprophagous Calliphoridae and Sarcophagidae (Diptera) I. Bionomics. Ann. Entomol. Soc. Am. 1958, 51, 261–271. [Google Scholar] [CrossRef]
- Franceschetti, L.; Pradelli, J.; Tuccia, F.; Giordani, G.; Cattaneo, C.; Vanin, S. Comparison of Accumulated Degree-Days and Entomological Approaches in Post Mortem Interval Estimation. Insects 2021, 12, 264. [Google Scholar] [CrossRef]
- Lutz, L.; Zehner, R.; Verhoff, M.A.; Bratzke, H.; Amendt, J. It is all about the insects: A retrospective on 20 years of forensic entomology highlights the importance of insects in legal investigations. Int. J. Legal Med. 2021, 135, 2637–2651. [Google Scholar] [CrossRef]
- Obafunwa, J.O.; Roe, A.; Higley, L. A review of the estimation of postmortem interval using forensic entomology. Med. Sci. Law 2025, 65, 52–64. [Google Scholar] [CrossRef]
- Pechal, J.L.; Benbow, M.E. Microbial ecology of the salmon necrobiome: Evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes. Environ. Microbiol. 2016, 18, 1511–1522. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Mohr, R.; Benbow, M.E.; Tarone, A.M.; Vanlaerhoven, S. A roadmap for bridging basic and applied research in forensic entomology. Annu. Rev. Entomol. 2011, 56, 401–421. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Byrd, J.H.; Wallace, J.R.; Benbow, M.E. Assessment of decomposition studies indicates need for standardized and repeatable research methods in forensic entomology. J. Forensic Res. 2012, 3, 147. [Google Scholar] [CrossRef]
- Johnson, H.R.; Trinidad, D.D.; Guzman, S.; Khan, Z.; Parziale, J.V.; DeBruyn, J.M.; Lents, N.H.; Schuch, R. A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PLoS ONE 2016, 11, e0167370. [Google Scholar] [CrossRef]
- Joseph, I.; Mathew, D.G.; Sathyan, P.; Vargheese, G. The use of insects in forensic investigations: An overview on the scope of forensic entomology. J. Forensic Dent. Sci. 2011, 3, 89–91. [Google Scholar] [CrossRef]
- Matuszewski, S. Post-mortem interval estimation based on insect evidence: Current challenges. Insects 2021, 12, 314. [Google Scholar] [CrossRef]
- Das, R.; Singhal, M.; Singh, P.; Verma, R.; Sankhla, M.S.; Saxena, M.; Yadav, C.S. Forensic entomology: Progress and implications. In Insect Diversity and Ecosystem Services; Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 237–263. [Google Scholar]
- Chimeno, C.; Morinière, J.; Podhorna, J.; Hardulak, L.; Hausmann, A.; Reckel, F.; Grunwald, J.E.; Penning, R.; Haszprunar, G. DNA barcoding in forensic entomology—Establishing a DNA reference library of potentially forensic relevant arthropod species. J. Forensic Sci. 2018, 64, 593–601. [Google Scholar] [CrossRef]
- Snodgrass, R.E. Principles of Insect Morphology; Cornell University Press: Ithaca, NY, USA, 2018. [Google Scholar]
- Zhang, G.; Wang, H.; Shi, J.; Wang, X.; Zheng, H.; Wong, G.K.-S.; Clark, T.; Wang, W.; Wang, J.; Kang, L. Identification and characterization of insect-specific proteins by genome data analysis. BMC Genomics 2007, 8, 93. [Google Scholar] [CrossRef]
- Wilson, J.J. DNA barcodes for insects. In DNA Barcodes: Methods and Protocols; Kress, W.J., Erickson, D.L., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 17–46. [Google Scholar]
- Mona, S.; Khalid, M.; Jawad, M.; Noreen, S.; Rakha, A. Forensic entomology: A comprehensive review. Adv. Life Sci. 2019, 6, 48–59. [Google Scholar]
- Sperling, F.A.; Harrison, R.G. Mitochondrial DNA variation within and between species of the Papilio machaon group of swallowtail butterflies. Evolution 1994, 48, 408–422. [Google Scholar] [CrossRef]
- Travers, A.; Muskhelishvili, G. DNA structure and function. FEBS J. 2015, 282, 2279–2295. [Google Scholar] [CrossRef]
- Rahman, M.T.; Uddin, M.S.; Sultana, R.; Moue, A.; Setu, M. Polymerase chain reaction (PCR): A short review. Anwer Khan Mod. Med. Coll. J. 2013, 4, 30–36. [Google Scholar] [CrossRef]
- Babu, K.N.; Sheeja, T.E.; Minoo, D.; Rajesh, M.K.; Samsudeen, K.; Suraby, E.J.; Kumar, I.P.V. Random amplified polymorphic DNA (RAPD) and derived techniques. In Molecular Plant Taxonomy; Springer: Berlin/Heidelberg, Germany, 2021; pp. 219–247. [Google Scholar] [CrossRef]
- Talebzadeh, F.; Oshaghi, M.A.; Akbarzadeh, K.; Panahi-Moghadam, S. Molecular Species Identification of Six Forensically Important Iranian Flesh Flies (Diptera). J. Arthropod Borne Dis. 2020, 14, 416–424. [Google Scholar] [CrossRef]
- Chua, T.H.; Chong, Y.V. Role of polymerase chain reaction in forensic entomology. In Polymerase Chain Reaction; Hernandez-Rodriguez, P., Ed.; InTech: Rijeka, Croatia, 2012; pp. 51–64. [Google Scholar]
- Amendt, J.; Anderson, G.; Campobasso, C.P.; Dadour, I.; Gaudry, E.; Hall, M.J.R.; Moretti, T.C.; Sukontason, K.L.; Villet, M.H. Standard practices. In Forensic Entomology: International Dimensions and Frontiers; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 381–398. [Google Scholar]
- Watanabe, S.; Masamura, N.; Satoh, S.Y.; Hirao, T. Investigating the efficiency of DNA barcoding in insect classification: A review study. Entomol. Appl. Sci. Lett. 2024, 11, 15–23. [Google Scholar] [CrossRef]
- Hebert, P.D.; Ratnasingham, S.; Zakharov, E.V.; Telfer, A.C.; Levesque-Beaudin, V.; Milton, M.A.; Pedersen, S.; Jannetta, P.; deWaard, J.R. Counting animal species with DNA barcodes: Canadian insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150333. [Google Scholar] [CrossRef]
- Coissac, E.; Hollingsworth, P.M.; Lavergne, S.; Taberlet, P. From barcodes to genomes: Extending the concept of DNA barcoding. Mol. Ecol. 2016, 25, 1423–1428. [Google Scholar] [CrossRef]
- Malviya, S.; Agrawal, S. RAPD-PCR-based genetic relationships among three forensically important calliphorid species (Diptera: Calliphoridae). In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), Prayagrai, India, 10–12 March 2022; Atlantis Press: Paris, France, 2022; pp. 247–254. [Google Scholar] [CrossRef]
- Benecke, M. Arthropods and corpses. Forensic Pathol. Rev. 2005, 1, 207–240. [Google Scholar] [CrossRef]
- Cui, W.; Jin, X.; Guo, Y.; Chen, C.; Zhang, W.; Wang, Y.; Lan, J.; Zhu, B. Development and validation of a novel five-dye short tandem repeat panel for forensic identification of 11 species. Front. Genet. 2020, 11, 1005. [Google Scholar] [CrossRef]
- Benecke, M. Random amplified polymorphic DNA (RAPD) typing of necrophageous insects (Diptera, Coleoptera) in criminal forensic studies: Validation and use in practice. Forensic Sci. Int. 1998, 98, 157–168. [Google Scholar] [CrossRef]
- Bajpai, N. Random amplified polymorphic DNA based characterization of flesh flies. J. Entomol. Zool. Stud. 2016, 4, 857–859. [Google Scholar]
- Bajpai, N. RAPD-PCR based characterization of sarcophagid flies. J. Zool. Stud. 2016, 3, 20–23. [Google Scholar]
- Mazzanti, M.; Alessandrini, F.; Tagliabracci, A.; Wells, J.D.; Campobasso, C.P. DNA degradation and genetic analysis of empty puparia: Genetic identification limits in forensic entomology. Forensic Sci. Int. 2010, 195, 99–102. [Google Scholar] [CrossRef]
- Brown, R.J. Genetic differentiation between and within strains of the saw-toothed beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae) at RAPD loci. Insect Mol. Biol. 1997, 6, 285–289. [Google Scholar] [CrossRef]
- Arenas, M.; Pereira, F.; Oliveira, M.; Pinto, N.; Lopes, A.M.; Gomes, V.; Carracedo, A.; Amorim, A. Forensic genetics and genomics: Much more than just a human affair. PLoS Genet. 2017, 13, e1006960. [Google Scholar] [CrossRef]
- Vasconcelos, S.D.; Araujo, M.C.S. Necrophagous species of Diptera and Coleoptera in northeastern Brazil: State of the art and challenges for the forensic entomologist. Rev. Bras. Entomol. 2012, 56, 7–14. [Google Scholar] [CrossRef]
- Ratcliffe, S.T.; Webb, D.W.; Weinzievr, R.A.; Robertson, H.M. PCR-RFLP identification of Diptera (Calliphoridae, Muscidae and Sarcophagidae)—A generally applicable method. J. Forensic Sci. 2003, 48, 783–785. [Google Scholar] [CrossRef]
- Wells, J.D.; Stevens, J.R. Application of DNA-based methods in forensic entomology. Annu. Rev. Entomol. 2008, 53, 103–120. [Google Scholar] [CrossRef]
- Schroeder, H.; Klotzbach, H.; Elias, S.; Augustin, C.; Pueschel, K. Use of PCR–RFLP for differentiation of calliphorid larvae (Diptera, Calliphoridae) on human corpses. Forensic Sci. Int. 2003, 132, 76–81. [Google Scholar] [CrossRef]
- Benkenana, N. Insects involved in decomposing corpses in the Constantine region-Algeria. Open J. Trauma 2020, 4, 22–24. [Google Scholar] [CrossRef]
- Shi, J.R.; Heckel, D.G.; Goldsmith, M.R. A genetic linkage map for the domesticated silkworm, Bombyx mori, based on restriction fragment length polymorphisms. Genet. Res. 1995, 66, 109–126. [Google Scholar] [CrossRef]
- Tan, Y.D.; Wan, C.; Zhu, Y.; Lu, C.; Xiang, Z. An amplified fragment length polymorphism map of the silkworm. Genet 2001, 157, 1277–1284. [Google Scholar] [CrossRef]
- Hawthorne, D.J. AFLP-based genetic linkage map of the Colorado potato beetle Leptinotarsa decemlineata: Sex chromosomes and a pyrethroid-resistance candidate gene. Genetics 2001, 158, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Porter, A.H. An AFLP-based interspecific linkage map of sympatric, hybridizing Colias butterflies. Genet 2004, 168, 215–225. [Google Scholar] [CrossRef]
- Cruickshank, R.H. Molecular markers for the phylogenetics of mites and ticks. Syst. Appl. Acarol. 2002, 7, 3–14. [Google Scholar] [CrossRef]
- Black, W.C.; Baer, C.F.; Antolin, M.F.; DuTeau, N.M. Population genomics: Genome-wide sampling of insect populations. Annu. Rev. Entomol. 2001, 46, 441–469. [Google Scholar] [CrossRef]
- Bashasab, F.; Kambalpally, K.; Patil, B.; Kuruvinashetti, M. DNA-based marker systems and their utility in entomology. Entomol. Fenn. 2006, 17, 21–33. [Google Scholar] [CrossRef]
- Picard, C.J.; Villet, M.H.; Wells, J.D. Amplified fragment length polymorphism confirms reciprocal monophyly in Chrysomya putoria and Chrysomya chloropyga: A correction of reported shared mtDNA haplotypes. Med. Vet. Entomol. 2012, 26, 116–119. [Google Scholar] [CrossRef]
- Li, K.; Yè, G.; Zhu, J.; Hu, C. Detection of food source by PCR analysis of the gut contents of Aldrichina grahami (Aldrich) (Diptera: Calliphoridae) during post-feeding period. Insect Sci. 2007, 14, 47–52. [Google Scholar] [CrossRef]
- Miller, C.H.; Shutter, G.; Abrams, S.; Hanuman, J.; Nylon, S.; Ladd, C.; Palmbach, T.; Lee, H.C. A simple DNA extraction method for marijuana samples using amplified fragment length polymorphism (AFLP) analysis. J. Forensic Sci. 2003, 48, 343–347. [Google Scholar]
- Sardar, M.A.; Sachdev, S.S.; Kadam, S.; Chettiankandy, T.J.; Sonawane, S.G.; Tupkari, J.V. A comprehensive overview of forensic entomology. Int. J. Ethics Trauma Victimol. 2021, 7, 19–28. [Google Scholar] [CrossRef]
- Nelson, L.A.; Wallman, J.F.; Dowton, M. Identification of forensically important Chrysomya (Diptera: Calliphoridae) species using the second ribosomal internal transcribed spacer (ITS2). Forensic Sci. Int. 2008, 177, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Zhang, Y.; Piao, H.; Yu, D.H.; Jeong, H.J.; Yoo, G.; Hwang, J. Use of cytochrome c oxidase subunit I (COI) nucleotide sequences for identification of the Korean Luciliinae fly species (Diptera: Calliphoridae) in forensic investigations. J. Korean Med. Sci. 2009, 24, 1058. [Google Scholar] [CrossRef]
- Lessinger, A.C.; Martins Junqueira, A.C.M.; Lemos, T.A.; Kemper, E.L.; Da Silva, F.R.; Vettore, A.L.; Arruda, P.; Azeredo-Espin, A.M. The mitochondrial genome of the primary screwworm fly Cochliomyia hominivorax (Diptera: Calliphoridae). Insect Mol. Biol. 2000, 9, 521–529. [Google Scholar] [CrossRef]
- Gemmellaro, M.D.; Hamilton, G.C.; Ware, J.L. Review of molecular identification techniques for forensically important Diptera. J. Med. Entomol. 2019, 56, 887–902. [Google Scholar] [CrossRef]
- Clary, D.O.; Wolstenholme, D.R. The mitochondrial DNA molecule of Drosophila yakuba: Nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. 1985, 22, 252–271. [Google Scholar] [CrossRef]
- Morlais, I.; Severson, D.W. Complete mitochondrial DNA sequence and amino acid analysis of the cytochrome c oxidase subunit I (COI) from Aedes aegypti. DNA Seq. 2002, 13, 123–127. [Google Scholar] [CrossRef]
- Boehme, P.; Amendt, J.; Zehner, R. The use of COI barcodes for molecular identification of forensically important fly species in Germany. Parasitol. Res. 2011, 110, 2325–2332. [Google Scholar] [CrossRef]
- Avise, J.C.; Arnold, J.; Ball, R.M.; Bermingham, E.; Lamb, T.; Neigel, J.E.; Saunders, C.A.R. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 1987, 18, 489–522. [Google Scholar] [CrossRef]
- Preativatanyou, K.; Sirisup, N.; Payungporn, S.; Poovorawan, Y.; Thavara, U.; Tawatsin, A.; Sungpradit, S.; Siriyasatien, P. Mitochondrial DNA-based identification of some forensically important blowflies in Thailand. Forensic Sci. Int. 2010, 202, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Wallman, J.F.; Donnellan, S.C. The utility of mitochondrial DNA sequences for the identification of forensically important blowflies (Diptera: Calliphoridae) in southeastern Australia. Forensic Sci. Int. 2001, 120, 60–67. [Google Scholar] [CrossRef]
- Wells, J.D.; Sperling, F.A. DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic Sci. Int. 2001, 120, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, P.J.; Lessinger, A.C.; Azeredo-Espin, A.M.; Linhares, A.X. The value of PCR-RFLP molecular markers for the differentiation of immature stages of two necrophagous flies (Diptera: Calliphoridae) of potential forensic importance. Neotrop. Entomol. 2005, 34, 777–783. [Google Scholar] [CrossRef]
- Boehme, P.; Amendt, J.; Disney, R.H.L.; Zehner, R. Molecular identification of carrion-breeding scuttle flies (Diptera: Phoridae) using COI barcodes. Int. J. Legal Med. 2010, 124, 577–581. [Google Scholar] [CrossRef]
- Moustafa, H.Z.; Kandil, M.A.; El-Bassouiny, H.M. Genetic profile characterization of Earias insulana (Lepidoptera: Noctuidae) in Egypt. Egypt. J. Plant Prot. Res. Inst. 2021, 4, 341–351. [Google Scholar]
- Toriello, C.; Duarte-Escalante, E.; Frías-De-León, M.G.; Brunner-Mendoza, C.; Navarro-Barranco, H.; Reyes-Montes, M.D.R. Development of SCAR markers for genetic authentication of Metarhizium acridum. J. Fungi 2024, 10, 269. [Google Scholar] [CrossRef]
- Grasela, J.J.; McIntosh, A.H. Application of inter-simple sequence repeats to insect cell lines: Identification at the clonal and tissue-specific level. In Vitro Cell. Dev. Biol. Anim. 2003, 39, 353–363. [Google Scholar] [CrossRef]
- Aly, S.M.; Aldeyarbi, H. Applications of forensic entomology: Overview and update. Arch. Med. Sadowej Kryminol. 2020, 70, 44–77. [Google Scholar] [CrossRef]
- Pillay, V.V.; Menezes, R.G.; Krishnaprasad, R.; Pillay, M.; Lobo, S.W.; Adhikari, D.; Vishwanath, B.N.; Bhat, T.K.D.M. Vasudevan, Biotechnology in forensic science: The revolution continues. Nepal. Med. Coll. J 2007, 9, 57–62. [Google Scholar]
- He, L.; Wang, S.; Miao, X.; Wu, H.; Huang, Y. Identification of necrophagous fly species using ISSR and SCAR markers. Forensic Sci. Int. 2007, 168, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Farncombe, K.M.; Beresford, D.; Kyle, C.J. Characterization of microsatellite loci in Phormia regina towards expanding molecular applications in forensic entomology. Forensic Sci. Int. 2014, 240, 122–125. [Google Scholar] [CrossRef]
- Tarone, A.M.; Jennings, K.C.; Foran, D.R. Aging blow fly eggs using gene expression: A feasibility study. J. Forensic Sci. 2007, 52, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Zehner, R.; Amendt, J.; Boehme, P. Gene expression analysis as a tool for age estimation of blowfly pupae. Forensic Sci. Int. Genet. Suppl. Ser. 2009, 2, 292–293. [Google Scholar] [CrossRef]
- Durdle, A. Insects as vectors of DNA in a forensic context. WIREs. Forensic Sci. 2020, 2, e1355. [Google Scholar] [CrossRef]
- Guimarães, S.E.F.; Steindorff, G.S.; de Lima Bicho, C.; Farias, R.C.A.P.; Vasconcelos, S.D. Forensic entomology in research and practice: An overview of forensic experts’ perceptions and scientific output in Brazil. Int. J. Leg. Med. 2022, 136, 1149–1161. [Google Scholar] [CrossRef]
- Goray, M.; Van Oorschot, R.A.; Mitchell, J.R. DNA transfer within forensic exhibit packaging: Potential for DNA loss and relocation. Forensic Sci. Int. Genet. 2012, 6, 158–166. [Google Scholar] [CrossRef]
- Vanin, S.; Caenazzo, L.; Arseni, A.; Cecchetto, G.; Cattaneo, C.; Turchetto, M. Records of Chrysomya albiceps in Northern Italy: An ecological and forensic perspective. Mem. Inst. Oswaldo Cruz 2009, 104, 555–557. [Google Scholar] [CrossRef]
- Wells, J.D.; Introna, F., Jr.; Di Vella, G.; Campobasso, C.P.; Hayes, J.; Sperling, F.A. Human and insect mitochondrial DNA analysis from maggots. J. Forensic Sci. 2001, 46, 685–687. [Google Scholar] [CrossRef]
- Matuszewski, S.; Szafałowicz, M.; Jarmusz, M. Insects colonising carcasses in open and forest habitats of Central Europe: Search for indicators of corpse relocation. Forensic Sci. Int. 2013, 231, 234–239. [Google Scholar] [CrossRef]
- Greenberg, B.; Kunich, J.C. Entomology and the Law: Flies as Forensic Indicators; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Bini, C.; Giorgetti, A.; Iuvaro, A.; Giovannini, E.; Gianfreda, D.; Pelletti, G.; Pelotti, S. A DNA-based method for distinction of fly artifacts from human bloodstains. Int. J. Legal Med. 2021, 135, 2155–2161. [Google Scholar] [CrossRef] [PubMed]
- Kester, K.M.; Toothman, M.; Brown, B.L.; Street, W.S.; Cruz, T.D. Recovery of environmental human DNA by insects. J. Forensic Sci. 2010, 55, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Park, C.H.; Zhang, Y.; Piao, H.; Chung, U.; Kim, S.Y.; Ko, K.S.; Yi, C.-H.; Jo, T.-H.; Hwang, J.-J. Using the developmental gene bicoid to identify species of forensically important blowflies (Diptera: Calliphoridae). BioMed Res. Int. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Pizarro, J.; Stevens, L. A new method for forensic DNA analysis of the blood meal in Chagas disease vectors demonstrated using Triatoma infestans from Chuquisaca, Bolivia. PLoS ONE 2008, 3, e3585. [Google Scholar] [CrossRef]
- Keller, J.I.; Ballif, B.A.; Clair, R.M.S.; Vincent, J.J.; Monroy, M.C.; Stevens, L. Chagas disease vector blood meal sources identified by protein mass spectrometry. PLoS ONE 2017, 12, e0189647. [Google Scholar] [CrossRef]
- Vieira, B.R.; Carvalho, E.F.D.; Da, S. Analysis of human DNA present in the digestive tract of Aedes aegypti mosquitoes for possible forensic application. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e324–e326. [Google Scholar] [CrossRef]
- Linville, J.G.; Hayes, J.; Wells, J.D. Mitochondrial DNA and STR analyses of maggot crop contents: Effect of specimen preservation technique. J. Forensic Sci. 2004, 49, 341–344. [Google Scholar] [CrossRef]
- Amendt, J.; Richards, C.S.; Campobasso, C.P.; Zehner, R.; Hall, M.J. Forensic entomology: Applications and limitations. Forensic Sci. Med. Pathol. 2011, 7, 379–392. [Google Scholar] [CrossRef]
- Brundage, A.; Byrd, J.H. Forensic entomology in animal cruelty cases. Vet. Pathol. 2016, 53, 898–909. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Linville, J.G.; Wells, J.D.; Introna, F. Forensic genetic analysis of insect gut contents. Am. J. Forensic Med. Pathol. 2005, 26, 161–165. [Google Scholar] [CrossRef]
- Hobson, R.P. Studies on the nutrition of blow-fly larvae: III. The liquefaction of muscle. J. Exp. Biol. 1932, 9, 359–365. [Google Scholar] [CrossRef]
- Di Maio, V.J.; Molina, D.K. DiMaio’s Forensic Pathology; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Butler, J.M. Forensic DNA Typing: Biology, Technology and Genetics of STR Markers; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; p. 660. [Google Scholar]
- Burnet, B.; Sang, J.H. Dietary utilization of DNA and its derivatives by Drosophila melanogaster (Meig.). J. Insect Physiol. 1963, 9, 553–562. [Google Scholar] [CrossRef]
- Wallman, J.F.; Adams, M. The forensic application of allozyme electrophoresis to the identification of blowfly larvae (Diptera: Calliphoridae) in southern Australia. J. Forensic Sci. 2001, 46, 681–684. [Google Scholar] [CrossRef] [PubMed]
Method | Application Scenarios | Advantages | Limitations |
---|---|---|---|
RAPD | Species differentiation in larvae; rapid screening in forensic casework. | Low cost, no sequence data required, fast; low DNA quantity needed. | Low reproducibility; random binding; sensitive to contamination. |
RFLP | Identification of Diptera species using ribosomal regions; phylogenetics; identification in forensic insects. | High specificity; reliable for known species with reference digestion profiles. | Requires high-quality DNA; time-consuming; radioactive/hazardous materials possible use. |
AFLP | Genetic diversity and species identification; used in geographically localized entomological studies. | Can detect many loci genome-wide; no prior sequence data required; reproducible. | Technically demanding; time-consuming; needs extensive optimization. |
mtDNA Analysis (COI/COII) | Distinguishing morphologically similar or immature insects; useful for degraded samples. | Maternal inheritance, conserved markers; effective even in poor DNA samples; high copy number; well-documented loci. | Low interspecies divergence in some groups; requires regional databases. |
ISSR/SCAR | Species identification without prior sequence knowledge; conversion to SCAR enhances reproducibility. | No need for sequence data; SCARs more robust across labs. | Requires reference electrophoretic database; few studies on forensic species. |
Allozymes | Larvae-adult species matching; older technique for species-level separation. | Simple setup; effective and inexpensive if enzymes are polymorphic; direct comparison larvae/adult. | Low resolution; fresh samples required; overlapping band issues. |
Microsatellites | PMI estimation, geographic origin tracing, corpse relocation studies. | Highly polymorphic; informative markers; strong in population studies. | Laborious development; may show null alleles; costly genotyping. |
Gene Expression Profiling | Estimating precise age of eggs or pupae to refine PMI calculations. | High temporal resolution (±2 h); non-invasive; avoids rearing to adulthood. | Sensitive to environment/individual variation; requires standardization. |
Detection of Human DNA in Insects | Victim/suspect identification via DNA from larvae, pupae, or feces. | DNA can be recovered long after ingestion; extends utility in degraded scenes. | Risk of contamination; requires clean separation of human/insect DNA; low yield. |
Necrobiome Metabarcoding | PMI estimation using microbial succession; body relocation inference. | High resolution; complementary to insect data; applicable indoors. | Microbial distribution varies; needs bioinformatics pipelines and large databases. |
Fly Artifact DNA Analysis | Discrimination of human blood vs. fly artifacts; crime scene reconstruction. | Avoids false positive bloodstain analysis; enhances trace evidence validity. | DNA mixing from insect/human; small sample; needs high-fidelity profiling. |
Bicoid Gene Analysis | Species identification when COI insufficient, especially in advanced decomposition. | Nuclear marker complements mtDNA; discriminates similar species. | Less established; requires sequencing; not yet standardized in casework. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scieuzo, C.; Rinaldi, R.; De Stefano, F.; Di Fazio, A.; Falabella, P. The Contribution of Molecular Biology to Forensic Entomology. Insects 2025, 16, 694. https://doi.org/10.3390/insects16070694
Scieuzo C, Rinaldi R, De Stefano F, Di Fazio A, Falabella P. The Contribution of Molecular Biology to Forensic Entomology. Insects. 2025; 16(7):694. https://doi.org/10.3390/insects16070694
Chicago/Turabian StyleScieuzo, Carmen, Roberta Rinaldi, Federica De Stefano, Aldo Di Fazio, and Patrizia Falabella. 2025. "The Contribution of Molecular Biology to Forensic Entomology" Insects 16, no. 7: 694. https://doi.org/10.3390/insects16070694
APA StyleScieuzo, C., Rinaldi, R., De Stefano, F., Di Fazio, A., & Falabella, P. (2025). The Contribution of Molecular Biology to Forensic Entomology. Insects, 16(7), 694. https://doi.org/10.3390/insects16070694