Can Sunspot Activity Affect the Population Dynamics of Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)?
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Weather and Cotton Bollworm Moth Survey Data and Sunspot Data
2.3. Statistical Methods
3. Results
3.1. Relationship Between Annual Tmean and Cotton Bollworm Moths
3.2. Relationship Between Sunspot and Annual Tmean
3.3. The Relationship Between the Periodic Variations in Sunspot Numbers and Moth Numbers
3.4. The Asynchrony Between Sunspot and Changes in Annual Tmean and Moth Numbers
3.5. Impact of Sunspots on Moths Captured
3.6. MK Test of the Asynchrony
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kerr, R.A. Sunspot-Weather Link Is Down but Not Out. Science 1990, 243, 684–685. [Google Scholar] [CrossRef]
- Aslam, O.P.M.; Badruddin. Study of the Influence of Solar Variability on a Regional (Indian) Climate: 1901–2007. Adv. Space Res. 2014. [Google Scholar] [CrossRef]
- Hassan, D.; Akhter, M.F.; Abbas, S. The Solar-Terrestrial Relationship Using Fractal Dimension. Int. J. Big Data Min. Glob. Warm. 2020, 2, 2050002. [Google Scholar] [CrossRef]
- Nasution, B.; Sinaga, G.H.D.; Siagian, N.R.C. Investigating the Relationship between Climate Variables and Solar Activity: A Regression Analysis Approach. JRST 2023, 7, 211–218. [Google Scholar] [CrossRef]
- Pittock, A.B. A Critical Look at Long-Term Sun-Weather Relationships. Rev. Geophys. Space Phys. 1978, 16, 400–420. [Google Scholar] [CrossRef]
- Foukal, P.; Fröhlich, C.; Spruit, H.; Wigley, T.M.L. Variations in Solar Luminosity and Their Effect on the Earth’s Climate. Nature 2006, 443, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Khezri, M. Impact of Various Land Cover Transformations on Climate Change: Insights from a Spatial Panel Analysis. Sustainability 2025, 10, 19. [Google Scholar] [CrossRef]
- Blunck, H.; Wilbert, H. Der Baumweisling Aporia crataegi L. (Lep., Pieridae) und Sein Massenwechsel. J. Appl. Entomol. 1962, 50, 166–221. [Google Scholar]
- Myers, J.H. Synchrony in Outbreaks of Forest Lepidoptera: A Possible Example of the Moran Effect. Ecology 1998, 79, 1111–1117. [Google Scholar] [CrossRef]
- Ruohomäki, K.; Tanhuanpää, M.; Ayres, M.P.; Kaitaniemi, P.; Tammaru, T.; Haukioja, E. Causes of Cyclicity of Epirrita autumnata (Lepidoptera, Geometridae): Grandiose Theory and Tedious Practice. Popul. Ecol. 2000, 42, 211–223. [Google Scholar] [CrossRef]
- Selås, V.; Hogstad, O.; Kobro, S.; Rafoss, T. Can Sunspot Activity and Ultraviolet-B Radiation Explain Cyclic Outbreaks of Forest Moth Pest Species? Proc. R. Soc. Lond. B. Biol. Sci. 2004, 271, 1897–1901. [Google Scholar] [CrossRef]
- Huang, S.Z.; Jiang, X.F.; Lei, C.L.; Luo, L.Z. Correlation Analysis between the Periodic Outbreaks of Loxostege sticticalis (Lepidoptera: Pyralidae) and Solar Activity. Acta Ecol. Sin. 2008, 28, 4823–4829. [Google Scholar]
- Battisti, A.; Marini, L.; Pitacco, A.; Larsson, S. Solar Radiation Directly Affects Larval Performance of a Forest Insect. Ecol. Entomol. 2013, 38, 553–559. [Google Scholar] [CrossRef]
- Nowinszky, L.; Puskás, J.; Kiss, M.; Keszthelyi, S. Light-Trap Catch of Scarce Bordered Straw (Helicoverpa armigera Hübner) Depending on the Sunspot Numbers between Years 1993 and 2011. WSN 2018, 109, 263–266. [Google Scholar]
- Zverozomb-Zubovsky, E.V. On the Periodic Appearance and Some Other Peculiarities of the Beet Webworm. In The Beet Webworm in 1929–1930; Zverozomb-Zubovsky, E.V., Ed.; Naukova Dumka: Kiev, Ukraine, 1931; pp. 3–8. (In Russian) [Google Scholar]
- Nilssen, C.; Tenow, O.; Bylund, H. Waves and Synchrony in Epirrita autumnata/Operophtera brumata Outbreaks. II. Sunspot Activity Cannot Explain Cyclic Outbreaks. J. Anim. Ecol. 2007, 76, 269–275. [Google Scholar] [PubMed]
- Láska, P.; Rogl, J. Periodicity of the Outbreaks of the Carrot Psyllid (Trioza apicalis) Cannot Be Explained by Sunspot Activity. Biologia 2008, 63, 1181–1183. [Google Scholar] [CrossRef]
- Wu, K.M.; Guo, Y.Y. The Evolution of Cotton Pest Management Practices in China. Annu. Rev. Entomol. 2005, 50, 31–52. [Google Scholar] [CrossRef]
- Fitt, G.P. The Ecology of Heliothis Species in Relation to Agroecosystems. Annu. Rev. Entomol. 1989, 34, 17–52. [Google Scholar] [CrossRef]
- Huang, J. Different Sowing Dates Affected Cotton Yield and Yield Components. Int. J. Plant Prod. 2016, 10, 63–84. [Google Scholar]
- Solheim, J.E.; Stordahl, K.; Humlum, O. The Long Sunspot Cycle 23 Predicts a Significant Temperature Decrease in Cycle 24. J. Atmos. Sol.-Terr. Phys. 2012, 80, 267–284. [Google Scholar]
- Zhang, X.W.; Zhang, J.B. Xinjiang Meteorology Manual; China Meteorological Press: Beijing, China, 2006. [Google Scholar]
- Lu, Z.Z.; Baker, G. Spatial and Temporal Dynamics of Helicoverpa armigera (Lepidoptera, Noctuidae) in Contrasting Agricultural Landscapes in Northwestern China. Int. J. Pest Manag. 2013, 59, 25–34. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, J.H.; Xu, Y.C.; Wang, X.; Wang, P.L.; Wumaier, G.; Lu, Z.Z. Migration Behavior of Cotton Bollworm in Xinjiang of Northwest China Based on the Ovarian Development Characteristics of Adult Females. Chin. J. Ecol. 2013, 32, 1428–1432. [Google Scholar]
- Mann, H.B. Non-Parametric Test against Trend. Econometrika 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Hafner Publishing: New York, NY, USA, 1948. [Google Scholar]
- Gerstengarbe, F.W.; Werner, P.C. Estimation of the Beginning and End of Recurrent Events within a Climate Regime. Clim. Res. 1999, 11, 97–107. [Google Scholar] [CrossRef]
- Wei, F.Y. Modern Technology of Statistics, Diagnosis and Forecast for Climate; China Meteorological Press: Beijing, China, 1999; pp. 62–76. [Google Scholar]
- Odor, P.; Iglói, L. An Introduction to the Sport’s Biometry; ÁISH Tudományos Tanácsának Kiadása: Budapest, Hungary, 1987; 267p. (In Hungarian) [Google Scholar]
- Nowinszky, L. The Handbook of Light Trapping; Savaria University Press: Szombathely, Hungary, 2003; 276p. [Google Scholar]
- Richmond, H.A. Some Notes on the Periodicities of Certain Insects in Relation to the Sun Spot Cycle. Proc. Entomol. Soc. B. C. 1938, 34, 49–54. [Google Scholar]
- Chakrabarty, D.K.; Peshin, S.K. Global Warming and Solar Anomaly. Indian J. Radio Space Phys. 2013, 42, 391–396. [Google Scholar]
- Liu, Y.G.; Xu, S.P.; Du, J.W. Effects of Light Factors on Sex Pheromone Production and Females’ Calling Behavior of Helicoverpa armigera. Acta Ecol. Sin. 2001, 21, 112–116. [Google Scholar]
- Mursula, K.; Usoskin, I.G.; Kovaltsov, G.A. Persistent 22-Year Cycle in Sunspot Activity: Evidence for a Relic Solar Magnetic Field. Sol. Phys. 2001, 198, 51–56. [Google Scholar] [CrossRef]
- Alothman, W.E.A.J. Studies of the Correlation between the Global Radiation, Ultraviolet Radiation, Cosmic Radiation, Sunspot Number and Meteorological Parameters. Astrophys. Space Sci. 1991, 186, 191–203. [Google Scholar] [CrossRef]
- Dikpati, M.; De Toma, G.; Gilman, P.A. Predicting the Strength of Solar Cycle 24 Using a Flux-Transport Dynamo-Based Tool. Geophys. Res. Lett. 2006, 33, 343–357. [Google Scholar] [CrossRef]
- Wang, J.S.; Zhao, L. Statistical Tests for a Correlation between Decadal Variation in June Precipitation in China and Sunspot Number. J. Geophys. Res. Atmos. 2012, 117, D23117. [Google Scholar] [CrossRef]
Maigaiti | Bachu | Shawan | ||||
---|---|---|---|---|---|---|
Lag, Years | Correlation Coefficient (R) | p | Correlation Coefficient (R) | p | Correlation Coefficient (R) | p |
−6 | −0.184 | 0.329 | 0.164 | 0.531 | 0.205 | 0.276 |
−5 | −0.186 | 0.326 | 0.005 | 0.980 | 0.003 | 0.312 |
−4 | −0.204 | 0.281 | 0.065 | 0.753 | −0.039 | 0.840 |
−3 | −0.238 | 0.205 | −0.120 | 0.559 | −0.267 | 0.153 |
−2 | −0.238 | 0.206 | −0.217 | 0.286 | −0.427 * | 0.019 * |
−1 | −0.285 | 0.127 | −0.123 | 0.550 | −0.313 | 0.092 |
0 | −0.257 | 0.178 | 0.027 | 0.896 | 0.119 | 0.538 |
1 | −0.264 | 0.280 | 0.027 | 0.896 | −0.090 | 0.635 |
2 | −0.256 | 0.172 | 0.115 | 0.576 | 0.040 | 0.834 |
3 | −0.276 | 0.146 | 0.108 | 0.600 | 0.054 | 0.776 |
4 | −0.217 | 0.250 | 0.026 | 0.899 | 0.065 | 0.733 |
5 | −0.169 | 0.371 | −0.086 | 0.678 | 0.005 | 0.979 |
6 | −0.138 | 0.467 | −0.163 | 0.426 | −0.703 | 0.702 |
Site | Consistent Trend Years | No. of Consistent Trend Years | Proportion of Consistent Trends |
---|---|---|---|
Maigaiti | 1993–1995,1997–2001,2002–2003, 2004–2005, 2007–2009,2015–2016 | 10 | 10/29 = 34.48% |
Bachu | 1995–1997,1998–2001,2002–2004, 2006–2007,2010–2013,2014–2015 | 12 | 12/25 = 48.00% |
Shawan | 1996–1998,1999–2003,2004–2006, 2011–2012,2013–2014,2015–2018 | 13 | 13/23 = 56.52% |
Maigaiti | Bachu | Shawan | ||||
---|---|---|---|---|---|---|
Lag, Years | Correlation Coefficient (R) | p | Correlation Coefficient (R) | p | Correlation Coefficient (R) | p |
−6 | 0.046 | 0.813 | −0.098 | 0.641 | 0.105 | 0.635 |
−5 | 0.110 | 0.570 | −0.277 | 0.180 | 0.001 | 0.995 |
−4 | 0.105 | 0.587 | −0.339 | 0.097 | −0.147 | 0.502 |
−3 | −0.064 | 0.742 | −0.433 * | 0.031 * | −0.245 | 0.260 |
−2 | −0.214 | 0.266 | −0.323 | 0.115 | −0.343 | 0.109 |
−1 | −0.386 * | 0.039 * | −0.103 | 0.623 | −0.437 * | 0.037 * |
0 | −0.462 * | 0.012 * | 0.075 | 0.721 | −0.458 * | 0.028 * |
1 | −0.393 * | 0.035 * | 0.188 | 0.367 | −0.395 | 0.062 |
2 | −0.290 | 0.127 | 0.251 | 0.226 | −0.274 | 0.205 |
3 | −0.190 | 0.323 | 0.216 | 0.301 | −0.155 | 0.479 |
4 | −0.092 | 0.637 | 0.010 | 0.964 | −0.079 | 0.721 |
5 | 0.019 | 0.920 | −0.123 | 0.559 | −0.027 | 0.903 |
6 | 0.014 | 0.941 | −0.364 | 0.074 | 0.106 | 0.631 |
Sunspot Number | Item | Maigaiti | Bachu | Shawan |
---|---|---|---|---|
0 ≤ S ≤ 30 | PMC | 46.43% (26,462) | 22.62% (1113) | 54.46% (10,795) |
ANC | 24.52 | 2.48 | 12.99 | |
PDC | 34.94% | 29.55% | 39.20% | |
30 < S ≤ 100 | PMC | 28.76% (16,397) | 30.81% (1516) | 32.40% (6423) |
ANC | 15.07 | 2.74 | 8.35 | |
PDC | 35.23% | 36.48% | 36.27% | |
100 < S ≤ 150 | PMC | 11.67% (6649) | 27.45% (1351) | 8.52% (1688) |
ANC | 13.54 | 4.72 | 5.63 | |
PDC | 15.90% | 18.87% | 14.15% | |
150 < S ≤ 200 | PMC | 7.93% (4523) | 6.01% (296) | 3.26% (647) |
ANC | 18.09 | 2.41 | 4.34 | |
PDC | 8.10% | 8.11% | 7.03% | |
200 < S | PMC | 5.21% (2968) | 13.11% (645) | 1.36% (270) |
ANC | 16.49 | 6.08 | 3.80 | |
PDC | 5.83% | 6.99% | 3.35% | |
Total No. of moths | 56,999 | 4921 | 19,823 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Wang, X. Can Sunspot Activity Affect the Population Dynamics of Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)? Insects 2025, 16, 846. https://doi.org/10.3390/insects16080846
Huang J, Wang X. Can Sunspot Activity Affect the Population Dynamics of Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)? Insects. 2025; 16(8):846. https://doi.org/10.3390/insects16080846
Chicago/Turabian StyleHuang, Jian, and Xiaojun Wang. 2025. "Can Sunspot Activity Affect the Population Dynamics of Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)?" Insects 16, no. 8: 846. https://doi.org/10.3390/insects16080846
APA StyleHuang, J., & Wang, X. (2025). Can Sunspot Activity Affect the Population Dynamics of Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)? Insects, 16(8), 846. https://doi.org/10.3390/insects16080846