Neural Mechanisms and Information Processing in Recognition Systems
Abstract
:1. Introduction
2. A Synopsis of Nestmate Recognition in Ants
2.1. The Signal
2.2. The Template
3. The Neuroanatomy of the Signal Perception and Deciphering Systems
4. The Neural Template Hypothesis: Putative Neural Mechanisms Underlying Nestmate Recognition
5. The Pre-Filter Hypothesis for Explaining Nestmate Recognition
6. Behavior-Switching Threshold Hypothesis as Complementing the Sensory Prefilter Hypothesis
7. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blum, M.S. Semiochemical parsimony in the Arthropoda. Annu. Rev. Entomol. 1996, 41, 353–374. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, J.; Howse, P. Sociochemicals of ants. In Chemical Ecology of Insects; Bell, W., Carde, R., Eds.; Chapman and Hall: London, UK, 1984; pp. 429–473. [Google Scholar]
- Morgan, E.D. Chemical words and phrases in the language of pheromone for foraging and recruitmen. In Insect Communication; Lewis, T., Ed.; Academic Press: New York, NY, USA, 1984; pp. 169–194. [Google Scholar]
- Hölldobler, B.; Wilson, E. The Ants; Harvard University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Karlson, P.; Luscher, M. “Pheromones”: A new term for a class of biologically active substances. Nature 1959, 183, 55–56. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, T.D. Pheromones and signature mixtures: Defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2010, 196, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, J.W.; Baker, R.; Howse, P.E. Multicomponent alarm pheromone in the mandibular gland of major workers of the African weaver ant Oecophyla longinoda. Physiol. Entomol. 1979, 4, 15–25. [Google Scholar] [CrossRef]
- Hefetz, A.; Graur, D. The significance of multicomponent pheromones in denoting specific compositions. Biochem. Syst. Ecol. 1988, 16, 557–566. [Google Scholar] [CrossRef]
- Lenoir, A.; Fresneau, D.; Errard, C.; Hefetz, A. Individuality and colonial identity in ants: The emergence of the social representation concept. In Information Processing in Social Insects; Detrain, C., Deneubourg, J.L., Pasteels, J.M., Eds.; Birkhauser Verlag: Basel, Switzerland, 1999; pp. 219–237. [Google Scholar]
- Hefetz, A. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae)—Interplay of colony odor uniformity and odor idiosyncrasy. A review. Myrmecol. News 2007, 10, 59–68. [Google Scholar]
- Van Zweden, J.S.; d’Ettorre, P. Nestmate recognition in social insects and the role of hydrocarbons. In Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology; Blomquist, G.J., Bagnères, A.-G., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 222–243. [Google Scholar]
- Vander Meer, R.K.; Morel, L. Nestmate recognition in ants. In Pheromone Communication in Social Insects: Ants, Wasps, Bees and Termites; Vander Meer, R.K., Breed, M., Winston, M., Espelie, K.E., Eds.; Westview Press: Boulder, CO, USA, 1998; pp. 79–103. [Google Scholar]
- Brandstaetter, A.S.; Endler, A.; Kleineidam, C.J. Nestmate recognition in ants is possible without tactile interaction. Naturwissenschaften 2008, 95, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Hadley, N.F. Water Relations of Terrestrial Arthropods; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Rourke, B.C.; Gibbs, A.G. Effects of lipid phase transitions on cuticular permeability: Model membrane and in situ studies. J. Exp. Biol. 1999, 202, 3255–3262. [Google Scholar]
- Gibbs, A.G.; Markow, T.A. Effects of age on water balance in Drosophila species. Physiol. Biochem. Zool. 2001, 74, 520–530. [Google Scholar] [CrossRef]
- Wagner, D.; Tissot, M.; Gordon, D. Task-Related environment alters the cuticular hydrocarbon composition of harvester ants. J. Chem. Ecol. 2001, 27, 1805–1819. [Google Scholar] [CrossRef]
- Le Conte, Y.; Hefetz, A. Primer pheromones in social hymenoptera. Annu. Rev. Entomol. 2008, 53, 523–542. [Google Scholar] [CrossRef] [PubMed]
- Peeters, C.; Liebig, J. Fertility signaling as a general mechanism of regulating reproductive division of labor in ants. In Organization of Insect Societies: From Genome to Sociocomplexity; Gadau, J., Fewell, J., Eds.; Harvard University Press: Cambridge, MA, USA, 2009; pp. 220–243. [Google Scholar]
- Greene, M.J.; Gordon, D.M. Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli. J. Exp. Biol. 2007, 210, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Greene, M.J.; Gordon, D.M. Cuticular hydrocarbons inform task decisions. Nature 2003, 423, 32. [Google Scholar] [CrossRef] [PubMed]
- Peeters, C.; Monnin, T.; Malosse, C. Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc. R. Soc. B Biol. Sci. 1999, 266, 1323–1327. [Google Scholar] [CrossRef]
- Van Oystaeyen, A.; Oliveira, R.C.; Holman, L.; van Zweden, J.S.; Romero, C.; Oi, C.A.; d’Ettorre, P.; Khalesi, M.; Billen, J.; Wäckers, F.; et al. Conserved class of queen pheromones stops social insect workers from reproducing. Science 2014, 343, 287–290. [Google Scholar] [CrossRef]
- Lahav, S.; Soroker, V.; Hefetz, A.; Vander Meer, R.K. Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften 1999, 86, 246–249. [Google Scholar] [CrossRef]
- Wagner, D.; Tissot, M.; Cuevas, W.; Gordon, D.M. Harvester ants utilize cuticular hydrocarbons in nestmate recognition. J. Chem. Ecol. 2000, 26, 2245–2257. [Google Scholar] [CrossRef]
- Kidokoro-Kobayashi, M.; Iwakura, M.; Fujiwara-Tsujii, N.; Fujiwara, S.; Sakura, M.; Sakamoto, H.; Higashi, S.; Hefetz, A.; Ozaki, M. Chemical discrimination and aggressiveness via cuticular Hydrocarbons in a supercolony-forming ant, Formica yessensis. PLoS One 2012, 7, e46840. [Google Scholar] [CrossRef]
- Ozaki, M.; Wada-Katsumata, A.; Fujikawa, K.; Iwasaki, M.; Yokohari, F.; Satoji, Y.; Nisimura, T.; Yamaoka, R. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 2005, 309, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Akino, T.; Yamamura, K.; Wakamura, S.; Yamaoka, R. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera:Formicidae). Appl. Entomol. Zool. 2004, 39, 381–387. [Google Scholar] [CrossRef]
- Brandt, M.; van Wilgenburg, E.; Sulc, R.; Shea, K.J.; Tsutsui, N.D. The scent of supercolonies: The discovery, synthesis and behavioural verification of ant colony recognition cues. BMC Biol. 2009, 7, e71. [Google Scholar] [CrossRef]
- Crozier, R.H.; Pamilo, P. Evolution of Social Insect Colonies: Sex allocation and kin selection; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Sherman, P.W. Alarm calls of Belding’s ground squirrels to aerial predators: Nepotism or self-preservation? Behav. Ecol. Sociobiol. 1985, 17, 313–323. [Google Scholar] [CrossRef]
- Smith, S.M. Innate recognition of coral snake pattern by a possible avian predator. Science 1975, 187, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Rich, T.J.; Hurst, J.L. The competing countermarks hypothesis: Reliable assessment of competitive ability by potential mates. Anim. Behav. 1999, 58, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Rich, T.J.; Hurst, J.L. Scent marks as reliable signals of the competitive ability of mates. Anim. Behav. 1998, 56, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Zala, S.M.; Potts, W.K.; Penn, D.J. Scent-Marking displays provide honest signals of health and infection. Behav. Ecol. 2004, 15, 338–344. [Google Scholar] [CrossRef]
- Sherman, P.W.; Reeve, H.K.; Pfennig, D. Recognition systems. In Behavioral Ecology, 4th ed.; Krebs, J.R., Davies, N.B., Eds.; Blackwell Science: Oxford, UK, 1999; pp. 69–96. [Google Scholar]
- Breed, M.D.; Bennett, B. Kin recognition in highly eusocial insects. In Kin Recognition in Animals; Fletcher, D.J.C., Michener, C.D., Eds.; John Wiley and Sons: New York, NY, USA, 1987; pp. 243–285. [Google Scholar]
- Bos, N.; d’Ettorre, P. Recognition of social identity in ants. Front. Psychol. 2012, 3, e83. [Google Scholar]
- Crozier, R.H. Genetic aspects of kin recognition: models for innate components of colony odor. In Social Hymenoptera; Fletcher, D.J.C., Michener, C.D., Eds.; John Wiley & Son: New York, NY, USA, 1987; pp. 55–73. [Google Scholar]
- Crozier, R.H.; Dix, M.W. Analysis of two genetic models for the innate components of colony odour in social Hymenoptera. Behav. Ecol. Sociobiol. 1979, 4, 217–224. [Google Scholar] [CrossRef]
- Hamilton, W.D. The genetical evolution of social behaviour. I, II. J. Theor. Biol. 1964, 7, 1–52. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, W.D. Altruism and related phenomena mainly in the social insects. Annu. Rev. Ecol. Syst. 1972, 2, 193–232. [Google Scholar] [CrossRef]
- Fletcher, D.J.C.; Michener, C.D.E. Kin Recognition in Animals; John Wiley and Sons: New York, NY, USA, 1987; p. 465. [Google Scholar]
- Hughes, W.O.H.; Oldroyd, B.P.; Beekman, M.; Ratnieks, F.L.W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 2008, 320, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Soroker, V.; Vienne, C.; Hefetz, A.; Nowbahari, E. The postpharyngeal gland as a “gestalt” organ for nestmate recognition in the ant Cataglyphis niger. Naturwissenschaften 1994, 81, 510–513. [Google Scholar]
- Le Moli, F.; Mori, A. The influence of the early experience of worker ants on enslavement. Anim. Behav. 1985, 337, 1384–1387. [Google Scholar] [CrossRef]
- Errard, C. Development of interspecific recognition behavior in the ants Manica rubida and Formica selysi (Hymenoptera: Formicidae) reared in mixed-species groups. J. Insect Behav. 1994, 7, 83–99. [Google Scholar] [CrossRef]
- Errard, C.; Hefetz, A. Label familiarity and discriminatory ability of ants reared in mixed groups. Insectes Soc. 1997, 44, 189–198. [Google Scholar] [CrossRef]
- Errard, C. Role of early experience in mixed-colony odor recognition in the ants Manica rubida and Formica selysi. Ethology 1986, 72, 243–249. [Google Scholar] [CrossRef]
- Hefetz, A.; Errard, C.; Cojocaru, M. Heterospecific substances in the postpharyngeal gland of ants reared in mixed groups. Naturwissenschaften 1992, 79, 417–420. [Google Scholar] [CrossRef]
- Errard, C.; Hefetz, A.; Jaisson, P. Social discrimination tuning in ants: Template formation and chemical similarity. Behav. Ecol. Sociobiol. 2006, 59, 353–363. [Google Scholar] [CrossRef]
- Vander Meer, R.; Saliwanchik, D.; Lavine, B. Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta. Implications for nestmate recognition. J. Chem. Ecol. 1989, 15, 2115–2125. [Google Scholar] [CrossRef] [PubMed]
- Lahav, S.; Soroker, V.; Vander Meer, R.K.; Hefetz, A. Segregation of colony odor in the desert ant Cataglyphis niger. J. Chem. Ecol. 2001, 27, 927–943. [Google Scholar] [CrossRef] [PubMed]
- Errard, C. Long-Term memory involved in nestmate recognition in ants. Anim. Behav. 1994, 48, 263–271. [Google Scholar] [CrossRef]
- Hojo, M.K.; Yamamoto, A.; Akino, T.; Tsuji, K.; Yamaoka, R. Ants use partner specific odors to learn to recognize a mutualistic partner. PLoS One 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Bos, N.; Guerrieri, F.J.; d’Ettorre, P. Significance of chemical recognition cues is context dependent in ants. Anim. Behav. 2010, 80, 839–844. [Google Scholar] [CrossRef]
- Soroker, V.; Hefetz, A.; Cojocaru, M.; Billen, J.; Franke, S.; Francke, W. Structural and chemical ontogeny of the postpharyngeal gland in the desert ant Cataglyphis niger. Physiol. Entomol. 1995, 20, 323–329. [Google Scholar] [CrossRef]
- Steinbrecht, R.A. Olfactory Receptors, Atlas of Arthropod Sensory Receptors, Dynamic Morphology in Relation to Function; Springer-Verlag: Tokyo, Japan, 1999; pp. 155–176. [Google Scholar]
- Nakanishi, A.; Nishino, H.; Watanabe, H.; Yokohari, F.; Nishikawa, M. Sex-Specific antennal sensory system in the ant Camponotus japonicus: Structure and distribution of sensilla on the flagellum. Cell Tissue Res. 2009, 338, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Zhou, J.J.; Ban, L.P.; Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 2006, 63, 1658–1676. [Google Scholar] [CrossRef] [PubMed]
- Gotzek, D.; Robertson, H.M.; Wurm, Y.; Shoemaker, D. Odorant binding proteins of the red imported fire ant, Solenopsis invicta: An example of the problems facing the analysis of widely divergent proteins. PLoS One 2011, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulmuni, J.; Havukainen, H. Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling. PLoS One 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Kulmuni, J.; Wurm, Y.; Pamilo, P. Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates. Heredity 2013, 110, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Tsuchiya, W.; Fujii, T.; Fujimoto, Z.; Miyazawa, M.; Ishibashi, J.; Matsuyama, S.; Ishikawa, Y.; Yamazaki, T. Niemann-Pick type C2 protein mediating chemical communication in the worker ant. Proc. Natl. Acad. Sci. USA 2014, 111, 3847–3852. [Google Scholar] [CrossRef] [PubMed]
- Chapman, R.F. The Insects: Structure and Function, 4th ed.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Schönitzer, K.; Lawitzky, G. A phylogenetic study of the antenna cleaner in Formicidae, Mutillidae, and Tiphiidae (Insecta, Hymenoptera). Zoomorphology 1987, 107, 273–285. [Google Scholar] [CrossRef]
- Zube, C.; Kleineidam, C.J.; Kirschner, S.; Neef, J.; Rossler, W. Organization of the olfactory pathway and odor processing in the antennal lobe of the ant Camponotus floridanus. J. Comp. Neurol. 2008, 506, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Zube, C.; Rössler, W. Caste- and sex-specific adaptations within the olfactory pathway in the brain of the ant Camponotus floridanus. Arthropod Struct. Dev. 2008, 37, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, M.; Watanabe, H.; Yokohari, F. Higher brain centers for social tasks in worker ants, Camponotus japonicus. J. Comp. Neurol. 2012, 520, 1584–1598. [Google Scholar] [CrossRef] [PubMed]
- Laissue, P.P.; Reiter, C.; Hiesinger, P.R.; Halter, S.; Fischbach, K.F.; Stocker, R.F. Three-Dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J. Comp. Neurol. 1999, 405, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Galizia, C.G.; Menzel, R. The role of glomeruli in the neural representation of odours: Results from optical recording studies. J. Insect Physiol. 2001, 47, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Stroeymeyt, N.; Guerrieri, F.J.; van Zweden, J.S.; d’Ettorre, P. Rapid decision-making with side-specific perceptual discrimination in ants. PLoS One 2010, 5. [Google Scholar] [CrossRef] [PubMed]
- Kaba, H.; Rosser, A.; Keverne, B. Neural basis of olfactory memory in the context of pregnancy block. Neuroscience 1989, 32, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Signorotti, L.; Jaisson, P.; d’Ettorre, P. Larval memory affects adult nest-mate recognition in the ant Aphaenogaster senilis. Proc. R. Soc. B Biol. Sci. 2014, 281, e1774. [Google Scholar]
- Isingrini, M.; Jaisson, P.; Lenoir, A. Influence of preimaginal experience on the social sdult ants and the importance fellow in nestmate recognition. In The Individual and Society; Passera, L., Lachaud, J.-P., Eds.; Privat I.E.C: Toulous, France, 1986; pp. 49–53. [Google Scholar]
- Bos, N. Asymmetry in olfactory generalization and the inclusion criterion in ants. Commun. Integr. Biol. 2014, 7, 1–4. [Google Scholar] [CrossRef]
- Bos, N.; D’Ettorre, P.; Guerrieri, F.J. Chemical structure of odorants and perceptual similarity in ants. J. Exp. Biol. 2013, 216, 3314–3320. [Google Scholar] [PubMed]
- Brandstaetter, A.S.; Kleineidam, C.J. Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. J. Neurophysiol. 2011, 106, 2437–2449. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.L.; Parry, L.J.; Allan, R.A.; Elgar, M.A. Geographic affinity, cuticular hydrocarbons and colony recognition in the Australian meat ant Iridomyrmex purpureus. Naturwissenschaften 1999, 86, 87–92. [Google Scholar] [CrossRef]
- Hodgson, E.S.; Lettvin, J.Y.; Roeder, K.D. Physiology of a primary chemoreceptor unit. Science 1955, 122, 417–418. [Google Scholar] [CrossRef] [PubMed]
- SpikeTaro, Chinou Jouhou Shisutemu Inc.: Kyoto, Japan, 2011.
- Breer, H. Olfactory receptors: Molecular basis for recognition and discrimination of odors. Anal. Bioanal. Chem. 2003, 377, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Krieger, J.; Breer, H. Olfactory reception in invertebrates. Science 1999, 286, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Buck, L.B. Unraveling chemosensory diversity. Cell 1995, 83, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Sachse, S.; Rappert, A.; Galizia, C.G. The spatial representation of chemical structures in the antennal lobe of honeybees: Steps towards the olfactory code. Eur. J. Neurosci. 1999, 11, 3970–3982. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Wong, A.M.; Flores, J.; Vosshall, L.B.; Axel, R. Two-Photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 2003, 112, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Soroker, V.; Lucas, C.; Simon, T.; Fresneau, D.; Durand, J.L.; Hefetz, A. Hydrocarbon distribution and colony odour homogenisation in Pachycondyla Apicalis. Insectes Soc. 2003, 50, 212–217. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Brandstaetter, A.S.; Kleineidam, C.J. Reformation process of the neuronal template for nestmate-recognition cues in the carpenter ant Camponotus floridanus. J. Comp. Physiol. A 2007, 193, 993–1000. [Google Scholar] [CrossRef]
- Brandstaetter, A.S.; Rossler, W.; Kleineidam, C.J. Dummies versus air puffs: Efficient stimulus delivery for low-volatile odors. Chem. Senses 2010, 35, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Dawis, S.M.; Purple, R.L. Adaptation in cones: A general model. Biophys. J. 1982, 39, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Beidler, L.M. A theory of taste stimulation. J. Gen. Physiol. 1954, 38, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M.; Kobe University, Kobe, Hyogo, Japan. Unpublished work. 1999.
- Maeda, T.; Imanishi, Y.; Palczewski, K. Rhodopsin phosphorylation: 30 Years later. Prog. Retin. Eye Res. 2003, 22, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Kohout, T.A.; Lefkowitz, R.J. Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol. Pharmacol. 2003, 63, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M.; Amakawa, T. Adaptation-promoting effect of IP3, Ca2+, and phorbol ester on the sugar taste receptor cell of the blowfly, Phormia regina. J. Gen. Physiol. 1992, 100, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, T.; Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 1997, 385, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Matthews, H.R.; Reisert, J. Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr. Opin. Neurobiol. 2003, 13, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Boulay, R.; Katzav-Gozansky, T.; vander Meer, R.K.; Hefetz, A. Colony insularity through queen control on worker social motivation in ants. Proc. R. Soc. B Biol. Sci. 2003, 270, 971–977. [Google Scholar] [CrossRef] [Green Version]
- Roeder, T. Tyramine and octopamine: Ruling behavior and metabolism. Annu. Rev. Entomol. 2005, 50, 447–477. [Google Scholar] [CrossRef] [PubMed]
- Roussel, E.; Carcaud, J.; Combe, M.; Giurfa, M.; Sandoz, J.-C. Olfactory coding in the honeybee lateral horn. Curr. Biol. 2014, 24, 561–567. [Google Scholar] [CrossRef] [PubMed]
- De Belle, J.S.; Heisenberg, M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 1994, 263, 692–695. [Google Scholar] [CrossRef] [PubMed]
- McGuire, S.E.; Le, P.T.; Davis, R.L. The role of Drosophila mushroom body signaling in olfactory memory. Science 2001, 293, 1330–1333. [Google Scholar] [CrossRef] [PubMed]
- Getz, W.M.; Lutz, A. A neural network model of general olfactory coding in the insect antennal lobe. Chem. Senses 1999, 24, 351–372. [Google Scholar] [CrossRef] [PubMed]
- Sanada-Morimura, S.; Minai, M.; Yokoyama, M.; Hirota, T.; Satoh, T.; Obara, Y. Encounter-induced hostility to neighbors in the ant Pristomyrmex Pungens. Behav. Ecol. 2003, 14, 713–718. [Google Scholar] [CrossRef]
- Knaden, M.; Wehner, R. Nest defense and conspecific enemy recognition in the desert ant Cataglyphis Fortis. J. Insect Behav. 2003, 16, 717–730. [Google Scholar] [CrossRef]
- Heinze, J.; Foitzik, S.; Hippert, A.; Hoelldobler, B. Apparent dear-enemy phenomenon and environment-based recognition cues in the ant Leptothorax nylanderi. Ethology 1996, 102, 510–522. [Google Scholar] [CrossRef]
- Dimarco, R.D.; Farji-Brener, A.G.; Premoli, A.C. Dear enemy phenomenon in the leaf-cutting ant Acromyrmex lobicornis: Behavioral and genetic evidence. Behav. Ecol. 2010, 21, 304–310. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozaki, M.; Hefetz, A. Neural Mechanisms and Information Processing in Recognition Systems. Insects 2014, 5, 722-741. https://doi.org/10.3390/insects5040722
Ozaki M, Hefetz A. Neural Mechanisms and Information Processing in Recognition Systems. Insects. 2014; 5(4):722-741. https://doi.org/10.3390/insects5040722
Chicago/Turabian StyleOzaki, Mamiko, and Abraham Hefetz. 2014. "Neural Mechanisms and Information Processing in Recognition Systems" Insects 5, no. 4: 722-741. https://doi.org/10.3390/insects5040722
APA StyleOzaki, M., & Hefetz, A. (2014). Neural Mechanisms and Information Processing in Recognition Systems. Insects, 5(4), 722-741. https://doi.org/10.3390/insects5040722