Resistance Management for Asian Citrus Psyllid, Diaphorina citri Kuwayama, in Florida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Rearing and Chemicals
2.2. Insecticide Application
2.3. Leaf Dip Bioassay to Determine Insecticide Susceptibility
2.4. Statistical Analysis
3. Results
3.1. Monitoring of Egg, Nymph, and Adult Psyllids to Determine Thresholds for Application
3.2. Monitoring of D. citri Eggs, Nymphs, and Adults after Application
3.3. Insecticide Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Halbert, S.E. Pest Alert: Citrus Greening/Huanglongbing; Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Government of Florida: Tallahassee, FL, USA, 2005.
- Vashisth, T. An update on UF/IFAS-grower citrus nutrition trials. Citrus Ind. 2017, 98, 20–27. [Google Scholar]
- Qureshi, J.A.; Kostyk, B.C.; Stansly, P.A. Insecticidal suppression of Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) vector of Huanglongbing pathogens. PLoS ONE 2014. [Google Scholar] [CrossRef]
- Kanga, L.H.; Eason, J.; Haseeb, M.; Qureshi, J.; Stansly, P.A. Monitoring for insecticide resistance in Asian citrus psyllid (Hemiptera: Psyllidae) populations in Florida. J. Econ. Entomol. 2016, 109, 832–836. [Google Scholar] [CrossRef]
- Naeem, A.; Freed, S.; Jin, F.L.; Akmal, M. Monitoring of insecticide resistance in Diaphorina citri Kuwayama (Hemiptera: Psyllidae) from citrus groves of Punjab Pakistan. Crop Prot. 2016, 86, 62–68. [Google Scholar] [CrossRef]
- Chen, X.D.; Stelinski, L.L. Rapid detection of insecticide resistance in Diaphorina citri (Hemiptera: Liviidae) populations using a bottle bioassay. Fla. Entomol. 2017, 100, 124–133. [Google Scholar] [CrossRef]
- Brattsten, L.B.; Holyoke, C.W.; Leeper, J.R.; Raffa, K.F. Insecticide resistance: Challenge to pest management and basic research. Science 1986, 231, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.D.; Sanada-Morimura, S.; Yanagi, S.I.; Nakasuji, F. Rapid recovery of susceptibility under harsh environmental conditions in fenvalerate-resistant strains of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Appl. Entomol. Zool. 2006, 41, 641–650. [Google Scholar] [CrossRef]
- Georghiou, G.P. Principles of insecticide resistance management. Phytoprotection 1994, 75, 51–59. [Google Scholar]
- Georghiou, G.P. Management of Resistance in Arthropods, in Pest Resistance to Pesticides; Georghiou, G.P., Saito, T., Eds.; Plenum Press: New York, NY, USA, 1983; pp. 769–792. [Google Scholar]
- Mani, G.S. Evolution of resistance in the presence of two insecticides. Genetics 1985, 109, 761–783. [Google Scholar]
- Tabashnik, B.E. Managing pesticide with multiple pesticide tactics: Theory, evidence and recommendations. J. Econ. Entomol. 1989, 82, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Immaraju, J.A.; Morse, J.G.; Hobza, R.F. Field evaluation of insecticide rotation and mixtures as strategies for citrus thrips (Thysanoptera: Thripidae) resistance management in California. J. Econ. Entomol. 1990, 83, 306–314. [Google Scholar] [CrossRef]
- Zhao, J.Z.; Collins, H.L.; Shelton, A.M. Testing insecticide resistance management strategies: Mosaic versus rotations. Pest. Manag. Sci. 2010, 66, 1101–1105. [Google Scholar] [CrossRef] [PubMed]
- Hoy, M.A. Myths, Models and mitigation of resistance to pesticide. Philos. Trans. R. Soc. Ser. B 1998, 353, 1787–1795. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.D.; Nakasuji, F. Diminished egg size in fenvalerate resistant strains of the diamondback moth Plutella xylostella (Lepidoptera: Yponomeutidae). Appl. Entomol. Zool. 2004, 39, 335–341. [Google Scholar] [CrossRef]
- Yu, S. The Toxicology and Biochemistry of Insecticides, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 276. [Google Scholar]
- McGaughey, W.H.; Whalon, M.E. Managing insect resistance to Bacillus thuringiensis. Science 1992, 258, 1451–1455. [Google Scholar] [CrossRef]
- Georghiou, G.P.; Taylor, C.E. Factors influencing the evolution of resistance. In Pesticide Resistance: Strategies and Tactics for Management; National Research Council—National Academy Press: Washington, DC, USA, 1986; pp. 157–169. [Google Scholar]
- Ahmad, M.; Arif, M.I.; Denholm, I. Cotton whitefly (Bemisia tabaci) resistance to organophosphate and pyrethroid insecticides in Pakistan. Pest. Manag. Sci. 2001, 58, 203–208. [Google Scholar] [CrossRef]
- Georghiou, G.P.; Taylor, C.E. Pesticide resistance as an evolutionary phenomenon. In Proceedings of the XV International Congress of Entomology, Washington, DC, USA, 19–27 August 1976; pp. 759–785. [Google Scholar]
- Denholm, I.; Rowland, M.W. Tactics for managing pesticide resistance in arthropods: Theory and practice. Annu. Rev. Entomol. 1992, 37, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Kobori, Y.; Nakata, T.; Ohto, Y.; Takasu, F. Dispersal of adult Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae), the vector of citrus greening disease, in artificial release experiments. Appl. Entomol. Zool. 2011, 46, 27–30. [Google Scholar] [CrossRef]
- Hall, D.G.; Hentz, M.G. Sticky trap and stem-tap sampling protocols for the Asian citrus psyllid (Hemiptera: Psyllidae). J. Econ. Entomol. 2010, 103, 541–549. [Google Scholar] [CrossRef]
- Brar, G.S.; Martini, X.; Stelinski, L.L. Lethal and sub-lethal effects of a novel sulfoximine insecticide, sulfoxaflor, against Asian citrus psyllid and its primary parasitoid under laboratory and field conditions. Int. J. Pest. Manag. 2017, in press. [Google Scholar] [CrossRef]
- Prabhaker, N.; Castle, J.C.; Byrne, F.J.; Henneberry, T.J.; Toscano, N.C. Establishment of baseline susceptibility data to various insecticides for glassy-winged sharpshooter, Homalodisca coagulata Say (Homoptera: Cicadellidae) by comparative bioassay techniques. J. Econ. Entomol. 2006, 99, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Boina, D.R.; Onagbola, E.O.; Salyani, M.; Stelinski, L.L. Antifeedant and sublethal effects of imidacloprid on Asian citrus psyllid, Diaphorina citri. Pest. Manag. Sci. 2009, 65, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Sokal, R.R.; Rohlf, F.J. Biometry, 3rd ed.; W.H. Freeman and Company: New York, NY, USA, 1995; p. 887. [Google Scholar]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, MA, USA; Wiley: New York, NY, USA, 1971. [Google Scholar]
- SAS Institute. Version 9.4; SAS Institute: Cary, NC, USA, 2002–2012. [Google Scholar]
- Abbott, W.S. A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Robertson, J.L.; Russell, R.M.; Priesler, H.K.; Savin, N.E. Bioassays with Arthropods, 2nd ed.; CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Ahmad, M.; Arif, M.I. Resistance of Pakistani field populations of spotted bollworm Earias vittella (Lepidoptera: Noctuidae) to pyrethroid, organophosphorus and new chemical insecticides. Pest. Manag. Sci. 2009, 65, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.H.; Shad, S.A.; Akram, W. Resistance to new chemical insecticides in the house fly, Musca domestica L., from dairies in Punjab Pakistan. Parasitol. Res. 2013, 112, 2049–2054. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, P.E.; Nunez, S.C.; Mann, R.S.; Christopher, G.J.; Scharfa, E. Nicotinoid and pyrethroid insecticide resistance in houseflies (Diptera: Muscidae) collected from Florida dairies. Pest. Manag. Sci. 2010, 66, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Arif, M.I.; Ahmad, M. Occurrence of insecticide resistance in field strains of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Prot. 2007, 26, 809–817. [Google Scholar] [CrossRef]
- Cloyd, R.A. Getting mixed-up: Are greenhouse producers adopting appropriate pesticide mixtures to manage arthropod pests? HortTechnology 2009, 19, 638–646. [Google Scholar]
- Zahiri, N.; Su, T.; Mulla, M.S. Strategies for the management of resistance in mosquitoes to the microbial control agent Bacillus sphaericus. J. Med. Entomol. 2002, 39, 513–520. [Google Scholar] [CrossRef]
- Jonsson, N.N.; Millerd, R.J.; Kemp, D.H.; Knowlesd, A.; Ardila, A.E.; Verrall, R.G.; Rothwell, T. Rotation of treatments between spinosad and amitraz for the control of Rhipicephalus (Boophilus) microplus populations with amitraz resistance. Vet. Parasitol. 2010, 169, 157–164. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, C.L.; Kumar, V.; Palmer, C.L.; Oetting, R.D.; Osborne, L.S. Chemical class rotations for control of Bemisia tabaci (Hemiptera: Aleyrodidae) on poinsettia and their effect on cryptic species population composition. Pest. Manag. Sci. 2014, 70, 1573–1587. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Mann, R.S.; Rogers, M.E.; Stelinski, L.L. Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest. Manag. Sci. 2011, 67, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.D.; Seo, M.; Stelinski, L.L. Behavioral and hermetic effects of the butenolide insecticide, flupyradifurone, on Asian citrus psyllid, Diaphorina citri. Crop Prot. 2017, 98, 102–109. [Google Scholar] [CrossRef]
- Vasquez-Garcia, M.; Velasquez-Monreal, J.; Manuel Medina-Urrutia, V.; de Jesus Cruz-Vargas, C.; Sandoval-Salaza, M.; Virgin-Calleros, G.; Pablo Torres-Moran, J. Insecticide resistance in adult Diaphorina citri Kuwayama from lime orchards in central west Mexico. Southwest. Entomol. 2013, 38, 579–596. [Google Scholar] [CrossRef]
TRADE NAME | Active Ingredients | IRAC a | Rate/Acre (lb) | Chemical Class | MOA b | Manufacturer |
---|---|---|---|---|---|---|
Dimethoate 4E | Dimethoate (43.5%) | 1B | 1.0 | Organophosphate | AChE inhibitor | Cheminova |
Admire Pro 4.6F | Imidacloprid (42.8%) | 4A | 0.5 | Neonicotinoid | nAChR competitive modulator | Bayer Crop Science |
Micromite 80WGS c | Diflubenzuron (80%) | 15 | 0.39 | Insect growth regulator | Inhibitor of chitin biosynthesis | Chemtura |
Agri-Flex c | Abamectin 3% + Thiamethoxam 13.9% | 6 + 4A | 0.53 | Microbial + Neonicotinoid | GluCl allosteric + nAChR competitive modulator | Syngenta Crop Protection |
Danitol 2.4EC | Fenpropathrin (30.9%) | 3A | 0.40 | Pyrethroid | Sodium channel modulator | Valent Inc. |
Treatment | Date of Application | ||||
---|---|---|---|---|---|
24 May 2016 | 23 June 2016 | 27 July 2016 | 7 September 2016 | 5 October 2016 | |
Rotation A | dimethoate | abamectin + thiamethoxam | fenpropathrin | diflubenzuron | imidacloprid |
Rotation B | imidacloprid | fenpropathrin | abamectin + thiamethoxam | dimethoate | diflubenzuron |
Rotation C | abamectin + thiamethoxam | diflubenzuron | dimethoate | imidacloprid | fenpropathrin |
Sequential dimethoate | dimethoate | dimethoate | dimethoate | dimethoate | dimethoate |
Untreated control | - | - | - | - | - |
Rotation Program | 17 March 2016 a | 19 May 2016 b | ||||
---|---|---|---|---|---|---|
Egg | Nymph | Adult | Egg | Nymph | Adult | |
Rotation A | 0.05 ± 0.05 | 0.03 ± 0.02 | 0.00 ± 0.00 | 1.10 ± 0.21 | 1.81 ± 0.20 | 1.50 ± 0.27 |
Rotation B | 0.08 ± 0.04 | 0.27 ± 0.07 | 0.05 ± 0.04 | 1.43 ± 0.16 | 2.43 ± 0.17 | 1.18 ± 0.28 |
Rotation C | 0.10 ± 0.05 | 0.33 ± 0.11 | 0.08 ± 0.04 | 1.24 ± 0.18 | 2.15 ± 0.19 | 1.03 ± 0.20 |
Sequential dimethoate | 0.03 ± 0.03 | 0.11 ± 0.07 | 0.05 ± 0.05 | 1.69 ± 0.18 | 2.51 ± 0.13 | 1.25 ± 0.28 |
Untreated control | 0.28 ± 0.16 | 0.67 ± 0.13 | 0.00 ± 0.00 | 1.06 ± 0.20 | 1.61 ± 0.23 | 1.64 ± 0.30 |
Rotation Program | Egg (Mean ± SE) | Nymph (Mean ± SE) | Adult (Mean ± SE) |
---|---|---|---|
Rotation A | 0.69 ± 0.03a | 0.89 ± 0.04a | 0.19 ± 0.03a |
Rotation B | 0.73 ± 0.03a | 1.02 ± 0.04a | 0.31 ± 0.03a |
Rotation C | 0.73 ± 0.03a | 1.05 ± 0.04a | 0.13 ± 0.03a |
Sequential dimethoate | 0.62 ± 0.03a | 1.23 ± 0.04b | 0.23 ± 0.03a |
Untreated control | 0.97 ± 0.03b | 1.67 ± 0.04c | 0.83 ± 0.03b |
Population | N | χ2 | Slope ± SE | LC50 (ng/µL) a 95% FL | LC95(ng/µL) (95% FL) b | L-RR50 | F-RR50 | L-RR95 | F-RR95 |
---|---|---|---|---|---|---|---|---|---|
Lab strain | 350 | 4.55 | 1.20 ± 0.13 | 0.15 (0.09–0.23) | 3.42 (1.70–9.3) | 1 | 1 | ||
Field strain before application | 300 | 6.01 | 0.87 ± 0.10 | 0.16 (0.09–0.27) | 12.14 (5.13–43.03) | 1.07 | 1 | 3.55 | 1 |
Rotation A | 288 | 96 | 1.00 ± 0.16 | 0.31 (0.09–1.15) | 13.44 (2.8–584.2) | 2.07 | 1.93 | 3.93 | 1.11 |
Rotation B | 292 | 8.06 | 0.93 ± 0.14 | 0.23 (0.07–0.78) | 13.28 (2.8–363.6) | 1.53 | 1.43 | 3.88 | 1.09 |
Rotation C | 289 | 3.84 | 1.14 ± 0.13 | 0.22 (0.13–0.36) | 6.09 (2.86–18.52) | 1.47 | 1.38 | 1.78 | 0.50 |
Sequential dimethoate | 292 | 9.09 | 0.93 ± 0.14 | 0.24 (0.07–0.80) | 13.59 (2.9–360.4) | 1.60 | 1.50 | 4.00 | 1.12 |
Untreated control | 293 | 6.42 | 1.06 ± 0.12 | 0.23 (0.14–0.38) | 8.08 (3.67–25.39) | 1.53 | 1.44 | 2.36 | 0.67 |
Population | N | χ2 | Slope ± SE | LC50 (ng/µL) a 95% FL | LC95(ng/µL) (95% FL) b | L-RR50 | F-RR50 | L-RR95 | F-RR95 |
---|---|---|---|---|---|---|---|---|---|
Lab strain | 300 | 1.11 | 0.76 ± 0.09 | 0.09 (0.05–0.17) | 13.64 (2.28–56.84) | 1 | 1 | ||
Field strain before application | 350 | 1.77 | 0.74 ± 0.13 | 0.12 (0.06–0.22) | 19.41 (7.62–75.97) | 1.33 | 1 | 1.42 | 1 |
Rotation A | 285 | 5.70 | 0.90 ± 0.10 | 0.04 (0.02–0.07) | 2.83 (1.16–10.47) | 0.44 | 0.33 | 0.21 | 0.15 |
Rotation B | 281 | 7.33 | 0.79 ± 0.09 | 0.05 (0.01–0.16) | 4.65 (1.72–20.06) | 0.56 | 0.42 | 0.34 | 0.24 |
Rotation C | 284 | 2.49 | 0.87 ± 0.10 | 0.04 (0.02–0.07) | 2.78 (1.11–10.65) | 0.44 | 0.33 | 0.20 | 0.14 |
Sequential dimethoate | 283 | 2.91 | 0.95 ± 0.11 | 0.05 (0.03–0.08) | 2.37 (1.01–8.20) | 0.56 | 0.42 | 0.17 | 0.12 |
Untreated control | 283 | 8.85 | 0.96 ± 0.16 | 0.07 (0.02–0.26) | 3.76 (0.78–135.1) | 0.78 | 0.58 | 0.27 | 0.19 |
Population | N | χ2 | Slope ± SE | LC50 (ng/µL) a 95% FL | LC95(ng/µL) (95% FL) b | L-RR50 | F-RR50 | L-RR95 | F-RR95 |
---|---|---|---|---|---|---|---|---|---|
Lab strain | 300 | 5.81 | 1.04 ± 0.11 | 0.32 (0.19–0.51) | 11.80 (5.56–34.94) | 1 | 1 | ||
Field strain before application | 300 | 5.92 | 1.14 ± 0.12 | 0.39 (0.24–0.66) | 10.51 (4.80–34.18) | 1.22 | 1 | 0.89 | 1 |
Rotation A | 277 | 7.49 | 0.81 ± 0.09 | 1.68 (0.91–3.22) | 172.92 (60.9–789.1) | 5.25 | 4.31 | 14.65 | 16.5 |
Rotation B | 283 | 13.81 | 0.93 ± 0.18 | 0.39 (0.07–2.30) | 23.20 (3.48–3877) | 1.22 | 1 | 1.97 | 2.21 |
Rotation C | 277 | 19.47 | 0.90 ± 0.21 | 1.20 (0.14–16.59) | 79.98 (7.97–554,715) | 3.75 | 3.08 | 6.78 | 7.61 |
Sequential dimethoate | 283 | 14.73 | 0.56 ± 0.14 | 13.55 (1.45–3694) | 11,126 - | 42.34 | 34.74 | 952.88 | 1058 |
Untreated control | 290 | 4.30 | 0.75 ± 0.08 | 0.48 (0.10–20.57) | 73.69 (26.1–321.3) | 1.5 | 1.23 | 6.25 | 7.01 |
Population | N | χ2 | Slope ± SE | LC50 (ng/µL) a 95% FL | LC95(ng/µL) (95% FL) b | L-RR50 | F-RR50 | L-RR95 | F-RR95 |
---|---|---|---|---|---|---|---|---|---|
Lab strain | 350 | 9.42 | 0.32 ± 0.14 | 0.33 (0.06–1.30) | 95.01 (13.79–7383) | 1 | 1 | ||
Field strain before application | 350 | 9.04 | 0.10 ± 0.15 | 0.75 (0.09–3.83) | 385.98 - | 2.27 | 1 | 4.06 | 1 |
Rotation A | 280 | 1.31 | 0.44 ± 0.06 | 1.90 (0.75–5.64) | 10,390 - | 5.76 | 2.53 | 109.3 | 26.92 |
Rotation B | 281 | 1.99 | 0.57 ± 0.06 | 0.71 (0.33–6.60) | 576.40 (135–5023) | 2.15 | 0.94 | 6.06 | 1.49 |
Rotation C | 280 | 1.69 | 0.56 ± 0.07 | 1.17 (0.54–2.67) | 1024 - | 3.54 | 1.56 | 10.77 | 2.65 |
Sequential dimethoate | 280 | 1.70 | 0.46 ± 0.06 | 1.63 (0.67–4.54) | 5664 - | 4.94 | 2.17 | 59.61 | 14.67 |
Untreated control | 280 | 3.62 | 0.54 ± 0.06 | 0.81 (0.37–1.87) | 878.77 (187–9159) | 2.46 | 1.08 | 9.24 | 2.28 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.D.; Stelinski, L.L. Resistance Management for Asian Citrus Psyllid, Diaphorina citri Kuwayama, in Florida. Insects 2017, 8, 103. https://doi.org/10.3390/insects8030103
Chen XD, Stelinski LL. Resistance Management for Asian Citrus Psyllid, Diaphorina citri Kuwayama, in Florida. Insects. 2017; 8(3):103. https://doi.org/10.3390/insects8030103
Chicago/Turabian StyleChen, Xue Dong, and Lukasz L. Stelinski. 2017. "Resistance Management for Asian Citrus Psyllid, Diaphorina citri Kuwayama, in Florida" Insects 8, no. 3: 103. https://doi.org/10.3390/insects8030103
APA StyleChen, X. D., & Stelinski, L. L. (2017). Resistance Management for Asian Citrus Psyllid, Diaphorina citri Kuwayama, in Florida. Insects, 8(3), 103. https://doi.org/10.3390/insects8030103