Epigenetic Insights into Tuberous Sclerosis Complex, Von Hippel–Lindau Syndrome, and Ataxia–Telangiectasia
Abstract
:1. Introduction
2. Mapping the Epigenetic Architecture of TSC
2.1. Overview of TSC
2.2. The Contribution of Epigenetic Dysregulation to TSC Pathogenesis
2.2.1. DNA Methylation
2.2.2. Histone Modifications
2.2.3. Non-Coding RNAs
2.3. Epigenetic Alterations and Their Role in TSC Therapy
3. Epigenetic Mechanisms Underlying VHL
3.1. Overview of VHL
3.2. Epigenetic Determinants of VHL Pathogenesis
4. Mechanisms of Epigenetic Dysregulation in A-T
4.1. Overview of A-T
4.2. Epigenetic Alterations in A-T: A Pathogenic Link
4.2.1. DNA Methylation
4.2.2. Histone Modifications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3 UTR | 3′ untranslated region |
5hmC | 5′-hydroxymethylcytosine |
A-T | ataxia–telangiectasia |
AML | angiomyolipoma |
AMT PET | a-methyltryptophan positron emission tomography |
ATM | ataxia telangiectasia mutated |
BCL2L11 | BCL-2-interacting mediator of cell death |
CD44v6 | variant isoform of the CD44 cell surface glycoprotein |
CNS | central nervous system |
COX-2 | cyclooxygenase-2 |
CpG | cytosine-phosphate-guanine |
cRCCs | clear renal cell carcinomas |
CREB | cAMP response element-binding protein |
DNA | deoxyribonucleic acid |
EGFR | Epidermal Growth Factor Receptor |
EZH2 | enhancer of zest homolog 2 |
GRIN2A | glutamate ionotropic receptor NMDA type subunit 2A |
GRIN2B | glutamate ionotropic receptor NMDA type subunit 2B |
GSK3β | glycogen synthase kinase 3 beta |
HDAC | histone deacetylase |
HM450 | HumanMethylation450 |
HMB45 | human melanoma black 45 |
IL-1β | interleukin-1b |
IL-6 | interleukin-6 |
KCNB1 | potassium voltage-gated channel subfamily B member 1 |
LAM | lymphangioleiomyomatosis |
LNA | locked nucleic acid |
Lys | lysine |
MAPK | mitogen-activated protein kinase |
MEFs | mouse embryonic fibroblasts |
MEF2A | myocyte enhancer factor 2A |
MEF2C | myocyte enhancer factor 2C |
miRNA | microRNA |
MMP | Matrix Metalloproteinase |
mTOR | mechanistic target of rapamycin |
mTORC1 | mechanistic target of rapamycin complex 1. |
NC—Non-onset/AMT-cold | brain regions that are not seizure onset zones and show reduced AMT uptake on PET imaging |
ncRNA | non-coding RNA |
NF1 | Neurofibromatosis type 1 |
NF2 | Neurofibromatosis type 2 |
non-CpG | non-cytosine-phosphate-Guanine |
NOTCH1 | notch homolog 1 |
OC—Onset/AMT-cold | seizure onset zones that also show reduced AMT uptake on AMT PET scans |
OH—Onset/AMT-hot | seizure onset zones that show increased AMT uptake on PET scans |
PCR | Polymerase Chain Reaction |
PRC2 | Polycomb Repressive Complex 2 |
PRAS40 | proline-rich AKT substrate of 40 kDa |
pRCCs | papillary renal cell carcinomas |
pre-miR-21 | precursor microRNA-21 |
pri-miR-21 | primary microRNA-21 |
qPCR | quantitative Polymerase Chain Reaction |
RAS | ras proto-oncogene |
RCC | renal cell carcinoma |
RhoA | ras homolog family member A. |
RNA | ribonucleic acid |
RNAseq | RNA sequencing |
RT-PCR | Reverse Transcription Polymerase Chain Reaction |
SCN2A | Sodium Channel Subunit Alpha 2 |
SEGAs | subependymal giant cell astrocytomas |
SENs | subependymal nodules |
SLC12A5 | solute carrier family 12 member 5 |
smRNA-seq | small RNA sequencing |
SNP | single nucleotide polymorphism arrays |
SYT1 | Synaptotagmin 1 |
TIMPs | tissue inhibitors of metalloproteinases |
TLE-HS | temporal lobe epilepsy with hippocampal sclerosis |
TREM1 | triggering receptor expressed on myeloid cells 1 |
TSC | tuberous sclerosis complex |
TSC2-/meth | TSC2 gene that is silenced by promoter methylation |
TSC2+/− | heterozygous mutations in the TSC2 gene |
TSC2+/+ | tuberous sclerosis complex 2 wild-type homozygous genotype |
VEGF-D | vascular endothelial growth factor-D. |
VHL | von Hippel–Lindau |
WES | whole-exome sequencing |
ZIP-21 | Zinc-finger Interfering Plasmid targeting miR-21 |
References
- Gürsoy, S.; Erçal, D. Genetic Evaluation of Common Neurocutaneous Syndromes. Pediatr. Neurol. 2018, 89, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Klar, N.; Cohen, B.; Lin, D.D.M. Neurocutaneous Syndromes. Handb. Clin. Neurol. 2016, 135, 565–589. [Google Scholar] [CrossRef] [PubMed]
- Barros, F.S.; Marussi, V.H.R.; Amaral, L.L.F.; da Rocha, A.J.; Campos, C.M.S.; Freitas, L.F.; Huisman, T.A.G.M.; Soares, B.P. The Rare Neurocutaneous Disorders: Update on Clinical, Molecular, and Neuroimaging Features. Top. Magn. Reson. Imaging TMRI 2018, 27, 433–462. [Google Scholar] [CrossRef]
- Ullrich, N.J. Neurocutaneous Syndromes and Brain Tumors. J. Child Neurol. 2016, 31, 1399–1411. [Google Scholar] [CrossRef]
- Farrell, C.J.; Plotkin, S.R. Genetic Causes of Brain Tumors: Neurofibromatosis, Tuberous Sclerosis, von Hippel-Lindau, and Other Syndromes. Neurol. Clin. 2007, 25, 925–946. [Google Scholar] [CrossRef]
- Kioutchoukova, I.; Foster, D.; Thakkar, R.; Ciesla, C.; Cabassa, J.S.; Strouse, J.; Kurz, H.; Lucke-Wold, B. Neurocutaneous Diseases: Diagnosis, Management, and Treatment. J. Clin. Med. 2024, 13, 1648. [Google Scholar] [CrossRef]
- Rosser, T. Neurocutaneous Disorders. Contin. Minneap. Minn. 2018, 24, 96–129. [Google Scholar] [CrossRef]
- Ruggieri, M.; Polizzi, A.; Marceca, G.P.; Catanzaro, S.; Praticò, A.D.; Di Rocco, C. Introduction to Phacomatoses (Neurocutaneous Disorders) in Childhood. Childs Nerv. Syst. ChNS Off. J. Int. Soc. Pediatr. Neurosurg. 2020, 36, 2229–2268. [Google Scholar] [CrossRef]
- Wang, W.; Wei, C.-J.; Cui, X.-W.; Li, Y.-H.; Gu, Y.-H.; Gu, B.; Li, Q.-F.; Wang, Z.-C. Impacts of NF1 Gene Mutations and Genetic Modifiers in Neurofibromatosis Type 1. Front. Neurol. 2021, 12, 704639. [Google Scholar] [CrossRef]
- Herron, J.; Darrah, R.; Quaghebeur, G. Intra-Cranial Manifestations of the Neurocutaneous Syndromes. Clin. Radiol. 2000, 55, 82–98. [Google Scholar] [CrossRef]
- Chevalier, B.; Dupuis, H.; Jannin, A.; Lemaitre, M.; Do Cao, C.; Cardot-Bauters, C.; Espiard, S.; Vantyghem, M.C. Phakomatoses and Endocrine Gland Tumors: Noteworthy and (Not so) Rare Associations. Front. Endocrinol. 2021, 12, 678869. [Google Scholar] [CrossRef] [PubMed]
- Dermitzakis, I.; Theotokis, P.; Evangelidis, P.; Delilampou, E.; Evangelidis, N.; Chatzisavvidou, A.; Avramidou, E.; Manthou, M.E. CNS Border-Associated Macrophages: Ontogeny and Potential Implication in Disease. Curr. Issues Mol. Biol. 2023, 45, 4285–4300. [Google Scholar] [CrossRef] [PubMed]
- Dermitzakis, I.; Manthou, M.E.; Meditskou, S.; Miliaras, D.; Kesidou, E.; Boziki, M.; Petratos, S.; Grigoriadis, N.; Theotokis, P. Developmental Cues and Molecular Drivers in Myelinogenesis: Revisiting Early Life to Re-Evaluate the Integrity of CNS Myelin. Curr. Issues Mol. Biol. 2022, 44, 3208–3237. [Google Scholar] [CrossRef] [PubMed]
- Dermitzakis, I.; Manthou, M.E.; Meditskou, S.; Tremblay, M.-È.; Petratos, S.; Zoupi, L.; Boziki, M.; Kesidou, E.; Simeonidou, C.; Theotokis, P. Origin and Emergence of Microglia in the CNS-An Interesting (Hi)Story of an Eccentric Cell. Curr. Issues Mol. Biol. 2023, 45, 2609–2628. [Google Scholar] [CrossRef]
- Dermitzakis, I.; Chatzi, D.; Kyriakoudi, S.A.; Evangelidis, N.; Vakirlis, E.; Meditskou, S.; Theotokis, P.; Manthou, M.E. Skin Development and Disease: A Molecular Perspective. Curr. Issues Mol. Biol. 2024, 46, 8239–8267. [Google Scholar] [CrossRef]
- Dermitzakis, I.; Kampitsi, D.D.; Manthou, M.E.; Evangelidis, P.; Vakirlis, E.; Meditskou, S.; Theotokis, P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr. Issues Mol. Biol. 2024, 46, 8118–8147. [Google Scholar] [CrossRef]
- Chatzi, D.; Kyriakoudi, S.A.; Dermitzakis, I.; Manthou, M.E.; Meditskou, S.; Theotokis, P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J. Clin. Med. 2024, 13, 2223. [Google Scholar] [CrossRef]
- Dermitzakis, I.; Kyriakoudi, S.A.; Chatzianagnosti, S.; Chatzi, D.; Vakirlis, E.; Meditskou, S.; Manthou, M.E.; Theotokis, P. Epigenetics in Skin Homeostasis and Ageing. Epigenomes 2025, 9, 3. [Google Scholar] [CrossRef]
- Rothblum-Oviatt, C.; Wright, J.; Lefton-Greif, M.A.; McGrath-Morrow, S.A.; Crawford, T.O.; Lederman, H.M. Ataxia Telangiectasia: A Review. Orphanet J. Rare Dis. 2016, 11, 159. [Google Scholar] [CrossRef]
- Maher, E.R.; Neumann, H.P.; Richard, S. Von Hippel-Lindau Disease: A Clinical and Scientific Review. Eur. J. Hum. Genet. EJHG 2011, 19, 617–623. [Google Scholar] [CrossRef]
- Salussolia, C.L.; Klonowska, K.; Kwiatkowski, D.J.; Sahin, M. Genetic Etiologies, Diagnosis, and Treatment of Tuberous Sclerosis Complex. Annu. Rev. Genom. Hum. Genet. 2019, 20, 217–240. [Google Scholar] [CrossRef] [PubMed]
- Arredondo, K.H.; Jülich, K.; Roach, E.S. Tuberous Sclerosis Complex: Diagnostic Features, Surveillance, and Therapeutic Strategies. Semin. Pediatr. Neurol. 2024, 51, 101155. [Google Scholar] [CrossRef] [PubMed]
- Uysal, S.P.; Şahin, M. Tuberous Sclerosis: A Review of the Past, Present, and Future. Turk. J. Med. Sci. 2020, 50, 1665–1676. [Google Scholar] [CrossRef] [PubMed]
- Hartung, J.; Müller, C.; Calkhoven, C.F. The Dual Role of the TSC Complex in Cancer. Trends Mol. Med. 2024, 31, 452–465. [Google Scholar] [CrossRef]
- Randle, S.C. Tuberous Sclerosis Complex: A Review. Pediatr. Ann. 2017, 46, e166–e171. [Google Scholar] [CrossRef]
- Mowrey, K.; Koenig, M.K.; Szabo, C.A.; Samuels, J.; Mulligan, S.; Pearson, D.A.; Northrup, H. Two Different Genetic Etiologies for Tuberous Sclerosis Complex (TSC) in a Single Family. Mol. Genet. Genom. Med. 2020, 8, e1296. [Google Scholar] [CrossRef]
- Kapoor, A.; Girard, L.; Lattouf, J.-B.; Pei, Y.; Rendon, R.; Card, P.; So, A. Evolving Strategies in the Treatment of Tuberous Sclerosis Complex-Associated Angiomyolipomas (TSC-AML). Urology 2016, 89, 19–26. [Google Scholar] [CrossRef]
- Nguyen, Q.-B.D.; DarConte, M.D.; Hebert, A.A. The Cutaneous Manifestations of Tuberous Sclerosis Complex. Am. J. Med. Genet. C Semin. Med. Genet. 2018, 178, 321–325. [Google Scholar] [CrossRef]
- Specchio, N.; Nabbout, R.; Aronica, E.; Auvin, S.; Benvenuto, A.; de Palma, L.; Feucht, M.; Jansen, F.; Kotulska, K.; Sarnat, H.; et al. Updated Clinical Recommendations for the Management of Tuberous Sclerosis Complex Associated Epilepsy. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 2023, 47, 25–34. [Google Scholar] [CrossRef]
- Rout, P.; Zamora, E.A.; Aeddula, N.R. Tuberous Sclerosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Curatolo, P.; Moavero, R.; Roberto, D.; Graziola, F. Genotype/Phenotype Correlations in Tuberous Sclerosis Complex. Semin. Pediatr. Neurol. 2015, 22, 259–273. [Google Scholar] [CrossRef]
- Boronat, S.; Barber, I. Less Common Manifestations in TSC. Am. J. Med. Genet. C Semin. Med. Genet. 2018, 178, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Fakhari, D.; Meyer, S.; Vogt, T.; Pföhler, C.; Müller, C.S.L. Dermatological Manifestations of Tuberous Sclerosis Complex (TSC). J. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. JDDG 2017, 15, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Lesma, E.; Ancona, S.; Orpianesi, E.; Grande, V.; Di Giulio, A.M.; Gorio, A. Chromatin Remodeling by Rosuvastatin Normalizes TSC2-/Meth Cell Phenotype through the Expression of Tuberin. J. Pharmacol. Exp. Ther. 2013, 345, 180–188. [Google Scholar] [CrossRef]
- Samueli, S.; Abraham, K.; Dressler, A.; Groeppel, G.; Jonak, C.; Muehlebner, A.; Prayer, D.; Reitner, A.; Feucht, M.; Wien, P.T.S.-Z. Tuberous Sclerosis Complex: New Criteria for Diagnostic Work-up and Management. Wien. Klin. Wochenschr. 2015, 127, 619–630. [Google Scholar] [CrossRef]
- Lesma, E.; Sirchia, S.M.; Ancona, S.; Carelli, S.; Bosari, S.; Ghelma, F.; Montanari, E.; Di Giulio, A.M.; Gorio, A. The Methylation of the TSC2 Promoter Underlies the Abnormal Growth of TSC2 Angiomyolipoma-Derived Smooth Muscle Cells. Am. J. Pathol. 2009, 174, 2150–2159. [Google Scholar] [CrossRef]
- Bongaarts, A.; Mijnsbergen, C.; Anink, J.J.; Jansen, F.E.; Spliet, W.G.M.; den Dunnen, W.F.A.; Coras, R.; Blümcke, I.; Paulus, W.; Gruber, V.E.; et al. Distinct DNA Methylation Patterns of Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex. Cell. Mol. Neurobiol. 2022, 42, 2863–2892. [Google Scholar] [CrossRef]
- Fuso, A.; Iyer, A.M.; van Scheppingen, J.; Maccarrone, M.; Scholl, T.; Hainfellner, J.A.; Feucht, M.; Jansen, F.E.; Spliet, W.G.; Krsek, P.; et al. Promoter-Specific Hypomethylation Correlates with IL-1β Overexpression in Tuberous Sclerosis Complex (TSC). J. Mol. Neurosci. 2016, 59, 464–470. [Google Scholar] [CrossRef]
- Martin, K.R.; Zhou, W.; Bowman, M.J.; Shih, J.; Au, K.S.; Dittenhafer-Reed, K.E.; Sisson, K.A.; Koeman, J.; Weisenberger, D.J.; Cottingham, S.L.; et al. The Genomic Landscape of Tuberous Sclerosis Complex. Nat. Commun. 2017, 8, 15816. [Google Scholar] [CrossRef]
- Basu, T.; O’Riordan, K.J.; Schoenike, B.A.; Khan, N.N.; Wallace, E.P.; Rodriguez, G.; Maganti, R.K.; Roopra, A. Histone Deacetylase Inhibitors Restore Normal Hippocampal Synaptic Plasticity and Seizure Threshold in a Mouse Model of Tuberous Sclerosis Complex. Sci. Rep. 2019, 9, 5266. [Google Scholar] [CrossRef]
- Dombkowski, A.A.; Batista, C.E.; Cukovic, D.; Carruthers, N.J.; Ranganathan, R.; Shukla, U.; Stemmer, P.M.; Chugani, H.T.; Chugani, D.C. Cortical Tubers: Windows into Dysregulation of Epilepsy Risk and Synaptic Signaling Genes by MicroRNAs. Cereb. Cortex 2016, 26, 1059–1071. [Google Scholar] [CrossRef]
- Bagla, S.; Cukovic, D.; Asano, E.; Sood, S.; Luat, A.; Chugani, H.T.; Chugani, D.C.; Dombkowski, A.A. A Distinct microRNA Expression Profile Is Associated with α[11C]-Methyl-L-Tryptophan (AMT) PET Uptake in Epileptogenic Cortical Tubers Resected from Patients with Tuberous Sclerosis Complex. Neurobiol. Dis. 2018, 109, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Bongaarts, A.; de Jong, J.M.; Broekaart, D.W.M.; van Scheppingen, J.; Anink, J.J.; Mijnsbergen, C.; Jansen, F.E.; Spliet, W.G.M.; den Dunnen, W.F.A.; Gruber, V.E.; et al. Dysregulation of the MMP/TIMP Proteolytic System in Subependymal Giant Cell Astrocytomas in Patients With Tuberous Sclerosis Complex: Modulation of MMP by MicroRNA-320d In Vitro. J. Neuropathol. Exp. Neurol. 2020, 79, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Broekaart, D.W.M.; van Scheppingen, J.; Anink, J.J.; Wierts, L.; van Het Hof, B.; Jansen, F.E.; Spliet, W.G.; van Rijen, P.C.; Kamphuis, W.W.; de Vries, H.E.; et al. Increased Matrix Metalloproteinases Expression in Tuberous Sclerosis Complex: Modulation by microRNA 146a and 147b in Vitro. Neuropathol. Appl. Neurobiol. 2020, 46, 142–159. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, W.; Guo, H.; Li, H.; Xiao, Y.; Zhang, Y. miR-9-5p, miR-124-3p, and miR-132-3p Regulate BCL2L11 in Tuberous Sclerosis Complex Angiomyolipoma. Lab. Investig. J. Tech. Methods Pathol. 2018, 98, 856–870. [Google Scholar] [CrossRef]
- van Scheppingen, J.; Mills, J.D.; Zimmer, T.S.; Broekaart, D.W.M.; Iori, V.; Bongaarts, A.; Anink, J.J.; Iyer, A.M.; Korotkov, A.; Jansen, F.E.; et al. miR147b: A Novel Key Regulator of Interleukin 1 Beta-Mediated Inflammation in Human Astrocytes. Glia 2018, 66, 1082–1097. [Google Scholar] [CrossRef]
- van Scheppingen, J.; Iyer, A.M.; Prabowo, A.S.; Mühlebner, A.; Anink, J.J.; Scholl, T.; Feucht, M.; Jansen, F.E.; Spliet, W.G.; Krsek, P.; et al. Expression of microRNAs miR21, miR146a, and miR155 in Tuberous Sclerosis Complex Cortical Tubers and Their Regulation in Human Astrocytes and SEGA-Derived Cell Cultures. Glia 2016, 64, 1066–1082. [Google Scholar] [CrossRef]
- Mills, J.D.; Iyer, A.M.; van Scheppingen, J.; Bongaarts, A.; Anink, J.J.; Janssen, B.; Zimmer, T.S.; Spliet, W.G.; van Rijen, P.C.; Jansen, F.E.; et al. Coding and Small Non-Coding Transcriptional Landscape of Tuberous Sclerosis Complex Cortical Tubers: Implications for Pathophysiology and Treatment. Sci. Rep. 2017, 7, 8089. [Google Scholar] [CrossRef]
- Korotkov, A.; Sim, N.S.; Luinenburg, M.J.; Anink, J.J.; van Scheppingen, J.; Zimmer, T.S.; Bongaarts, A.; Broekaart, D.W.M.; Mijnsbergen, C.; Jansen, F.E.; et al. MicroRNA-34a Activation in Tuberous Sclerosis Complex during Early Brain Development May Lead to Impaired Corticogenesis. Neuropathol. Appl. Neurobiol. 2021, 47, 796–811. [Google Scholar] [CrossRef]
- Ogórek, B.; Lam, H.C.; Khabibullin, D.; Liu, H.-J.; Nijmeh, J.; Triboulet, R.; Kwiatkowski, D.J.; Gregory, R.I.; Henske, E.P. TSC2 Regulates microRNA Biogenesis via mTORC1 and GSK3β. Hum. Mol. Genet. 2018, 27, 1654–1663. [Google Scholar] [CrossRef]
- Zhao, N.; Xiong, Q.; Li, P.; Chen, G.; Xiao, H.; Wu, C. TSC Complex Decrease the Expression of mTOR by Regulated miR-199b-3p. Sci. Rep. 2025, 15, 1892. [Google Scholar] [CrossRef]
- Pawlik, B.; Grabia, S.; Smyczyńska, U.; Fendler, W.; Dróżdż, I.; Liszewska, E.; Jaworski, J.; Kotulska, K.; Jóźwiak, S.; Młynarski, W.; et al. MicroRNA Expression Profile in TSC Cell Lines and the Impact of mTOR Inhibitor. Int. J. Mol. Sci. 2022, 23, 14493. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.C.; Liu, H.-J.; Baglini, C.V.; Filippakis, H.; Alesi, N.; Nijmeh, J.; Du, H.; Lope, A.L.; Cottrill, K.A.; Handen, A.; et al. Rapamycin-Induced miR-21 Promotes Mitochondrial Homeostasis and Adaptation in mTORC1 Activated Cells. Oncotarget 2017, 8, 64714–64727. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Hao, S.; Zhou, J.; Chen, X.; Zhang, T.; Qi, Z.; Zhang, T.; Jalal, S.; Zhai, C.; Yin, L.; et al. mTOR/miR-142-3p/PRAS40 Signaling Cascade Is Critical for Tuberous Sclerosis Complex-Associated Renal Cystogenesis. Cell. Mol. Biol. Lett. 2024, 29, 125. [Google Scholar] [CrossRef] [PubMed]
- Trelinska, J.; Fendler, W.; Dachowska, I.; Kotulska, K.; Jozwiak, S.; Antosik, K.; Gnys, P.; Borowiec, M.; Mlynarski, W. Abnormal Serum microRNA Profiles in Tuberous Sclerosis Are Normalized during Treatment with Everolimus: Possible Clinical Implications. Orphanet J. Rare Dis. 2016, 11, 129. [Google Scholar] [CrossRef]
- Trindade, A.J.; Medvetz, D.A.; Neuman, N.A.; Myachina, F.; Yu, J.; Priolo, C.; Henske, E.P. MicroRNA-21 Is Induced by Rapamycin in a Model of Tuberous Sclerosis (TSC) and Lymphangioleiomyomatosis (LAM). PLoS ONE 2013, 8, e60014. [Google Scholar] [CrossRef]
- Pawlik, B.; Smyczyńska, U.; Grabia, S.; Fendler, W.; Dróżdż, I.; Bąbol-Pokora, K.; Kotulska, K.; Jóźwiak, S.; Borkowska, J.; Młynarski, W.; et al. mTOR Inhibitor Treatment in Patients with Tuberous Sclerosis Complex Is Associated with Specific Changes in microRNA Serum Profile. J. Clin. Med. 2022, 11, 3395. [Google Scholar] [CrossRef]
- Chittiboina, P.; Lonser, R.R. Von Hippel-Lindau Disease. Handb. Clin. Neurol. 2015, 132, 139–156. [Google Scholar] [CrossRef]
- Lonser, R.R.; Glenn, G.M.; Walther, M.; Chew, E.Y.; Libutti, S.K.; Linehan, W.M.; Oldfield, E.H. Von Hippel-Lindau Disease. Lancet 2003, 361, 2059–2067. [Google Scholar] [CrossRef]
- Knudson, A.G. GENETICS OF HUMAN CANCER. Annu. Rev. Genet. 1986, 20, 231–251. [Google Scholar] [CrossRef]
- Louise, M.; Binderup, M.; Smerdel, M.; Borgwadt, L.; Beck Nielsen, S.S.; Madsen, M.G.; Møller, H.U.; Kiilgaard, J.F.; Friis-Hansen, L.; Harbud, V.; et al. Von Hippel-Lindau Disease: Updated Guideline for Diagnosis and Surveillance. Eur. J. Med. Genet. 2022, 65, 104538. [Google Scholar] [CrossRef]
- Nielsen, S.M.; Rhodes, L.; Blanco, I.; Chung, W.K.; Eng, C.; Maher, E.R.; Richard, S.; Giles, R.H. Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome. J. Clin. Oncol. 2016, 34, 2172–2181. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Kwon, W.K.; Hong, G.; Jang, J.-H.; Jeong, B.C.; Kim, J.H.; Kim, J.-W. Genetic Counseling and Long-Term Surveillance Using a Multidisciplinary Approach in von Hippel–Lindau Disease. Ann. Lab. Med. 2022, 42, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Prowse, A.H.; Webster, A.R.; Richards, F.M.; Richard, S.; Olschwang, S.; Resche, F.; Affara, N.A.; Maher, E.R. Somatic Inactivation of the VHL Gene in Von Hippel-Lindau Disease Tumors. Am. J. Hum. Genet. 1997, 60, 765–771. [Google Scholar] [PubMed]
- Margetts, C.D.E.; Astuti, D.; Gentle, D.C.; Cooper, W.N.; Cascon, A.; Catchpoole, D.; Robledo, M.; Neumann, H.P.H.; Latif, F.; Maher, E.R. Epigenetic Analysis of HIC1, CASP8, FLIP, TSP1, DCR1, DCR2, DR4, DR5, KvDMR1, H19 and Preferential 11p15.5 Maternal-Allele Loss in von Hippel-Lindau and Sporadic Phaeochromocytomas. Endocr. Relat. Cancer 2005, 12, 161–172. [Google Scholar] [CrossRef]
- McRonald, F.E.; Morris, M.R.; Gentle, D.; Winchester, L.; Baban, D.; Ragoussis, J.; Clarke, N.W.; Brown, M.D.; Kishida, T.; Yao, M.; et al. CpG Methylation Profiling in VHL Related and VHL Unrelated Renal Cell Carcinoma. Mol. Cancer 2009, 8, 31. [Google Scholar] [CrossRef]
- Tse, J.Y.; Wong, J.H.; Lo, K.W.; Poon, W.S.; Huang, D.P.; Ng, H.K. Molecular Genetic Analysis of the von Hippel-Lindau Disease Tumor Suppressor Gene in Familial and Sporadic Cerebellar Hemangioblastomas. Am. J. Clin. Pathol. 1997, 107, 459–466. [Google Scholar] [CrossRef]
- Schweizer, L.; Thierfelder, F.; Thomas, C.; Soschinski, P.; Kim, H.-Y.; Jödicke, R.; Woltering, N.; Förster, A.; Teichmann, D.; Siewert, C.; et al. Molecular Characterisation of Sporadic Endolymphatic Sac Tumours and Comparison to von Hippel-Lindau Disease-Related Tumours. Neuropathol. Appl. Neurobiol. 2021, 47, 756–767. [Google Scholar] [CrossRef]
- Gläsker, S.; Bender, B.U.; Apel, T.W.; van Velthoven, V.; Mulligan, L.M.; Zentner, J.; Neumann, H.P. Reconsideration of Biallelic Inactivation of the VHL Tumour Suppressor Gene in Hemangioblastomas of the Central Nervous System. J. Neurol. Neurosurg. Psychiatry 2001, 70, 644–648. [Google Scholar] [CrossRef]
- Muscarella, L.A.; la Torre, A.; Faienza, A.; Catapano, D.; Bisceglia, M.; D’Angelo, V.; Parrella, P.; Coco, M.; Fini, G.; Tancredi, A.; et al. Molecular Dissection of the VHL Gene in Solitary Capillary Hemangioblastoma of the Central Nervous System. J. Neuropathol. Exp. Neurol. 2014, 73, 50–58. [Google Scholar] [CrossRef]
- Takayanagi, S.; Mukasa, A.; Tanaka, S.; Nomura, M.; Omata, M.; Yanagisawa, S.; Yamamoto, S.; Ichimura, K.; Nakatomi, H.; Ueki, K.; et al. Differences in Genetic and Epigenetic Alterations between von Hippel-Lindau Disease-Related and Sporadic Hemangioblastomas of the Central Nervous System. Neuro-Oncology 2017, 19, 1228–1236. [Google Scholar] [CrossRef]
- Collyer, J.; Rajan, D.S. Ataxia Telangiectasia. Semin. Pediatr. Neurol. 2024, 52, 101169. [Google Scholar] [CrossRef] [PubMed]
- Shiloh, Y.; Lederman, H.M. Ataxia-Telangiectasia (A-T): An Emerging Dimension of Premature Ageing. Ageing Res. Rev. 2017, 33, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.G.; Bundey, S.E.; Taylor, A.M.R. Unusual Features in the Inheritance of Ataxia Telangiectasia. Hum. Genet. 1990, 84, 555–562. [Google Scholar] [CrossRef]
- Suarez, F.; Mahlaoui, N.; Canioni, D.; Andriamanga, C.; Dubois d’Enghien, C.; Brousse, N.; Jais, J.-P.; Fischer, A.; Hermine, O.; Stoppa-Lyonnet, D. Incidence, Presentation, and Prognosis of Malignancies in Ataxia-Telangiectasia: A Report From the French National Registry of Primary Immune Deficiencies. J. Clin. Oncol. 2015, 33, 202–208. [Google Scholar] [CrossRef]
- Reiman, A.; Srinivasan, V.; Barone, G.; Last, J.I.; Wootton, L.L.; Davies, E.G.; Verhagen, M.M.; Willemsen, M.A.; Weemaes, C.M.; Byrd, P.J.; et al. Lymphoid Tumours and Breast Cancer in Ataxia Telangiectasia; Substantial Protective Effect of Residual ATM Kinase Activity against Childhood Tumours. Br. J. Cancer 2011, 105, 586–591. [Google Scholar] [CrossRef]
- Nissenkorn, A.; Hassin-Baer, S.; Lerman, S.F.; Levi, Y.B.; Tzadok, M.; Ben-Zeev, B. Movement Disorder in Ataxia-Telangiectasia: Treatment With Amantadine Sulfate. J. Child Neurol. 2013, 28, 155–160. [Google Scholar] [CrossRef]
- Van Egmond, M.E.; Elting, J.W.J.; Kuiper, A.; Zutt, R.; Heineman, K.R.; Brouwer, O.F.; Sival, D.A.; Willemsen, M.A.; Tijssen, M.A.J.; De Koning, T.J. Myoclonus in Childhood-Onset Neurogenetic Disorders: The Importance of Early Identification and Treatment. Eur. J. Paediatr. Neurol. 2015, 19, 726–729. [Google Scholar] [CrossRef]
- Lefton-Greif, M.A.; Crawford, T.O.; McGrath-Morrow, S.; Carson, K.A.; Lederman, H.M. Safety and Caregiver Satisfaction with Gastrostomy in Patients with Ataxia Telangiectasia. Orphanet J. Rare Dis. 2011, 6, 23. [Google Scholar] [CrossRef]
- McGrath-Morrow, S.A.; Gower, W.A.; Rothblum-Oviatt, C.; Brody, A.S.; Langston, C.; Fan, L.L.; Lefton-Greif, M.A.; Crawford, T.O.; Troche, M.; Sandlund, J.T.; et al. Evaluation and Management of Pulmonary Disease in Ataxia-telangiectasia. Pediatr. Pulmonol. 2010, 45, 847–859. [Google Scholar] [CrossRef]
- Jiang, D.; Zhang, Y.; Hart, R.P.; Chen, J.; Herrup, K.; Li, J. Alteration in 5-Hydroxymethylcytosine-Mediated Epigenetic Regulation Leads to Purkinje Cell Vulnerability in ATM Deficiency. Brain 2015, 138, 3520–3536. [Google Scholar] [CrossRef]
- McGrath-Morrow, S.A.; Ndeh, R.; Helmin, K.A.; Khuder, B.; Rothblum-Oviatt, C.; Collaco, J.M.; Wright, J.; Reyfman, P.A.; Lederman, H.M.; Singer, B.D. DNA Methylation and Gene Expression Signatures Are Associated with Ataxia-Telangiectasia Phenotype. Sci. Rep. 2020, 10, 7479. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hart, R.P.; Mallimo, E.M.; Swerdel, M.R.; Kusnecov, A.W.; Herrup, K. EZH2-Mediated H3K27 Trimethylation Mediates Neurodegeneration in Ataxia-Telangiectasia. Nat. Neurosci. 2013, 16, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
MicroRNAs | Level | TSC Phenotype | Regulators | Biological Role | Ref. |
---|---|---|---|---|---|
miR-23a; miR-34a | ↑ | Epilepsy | TSC1 | Directly target the 3′ UTR of the TSC1-suppressing hamartin expression that increases seizure susceptibility in cortical tubers | [41] |
miR-142-3p; miR-142-5p; miR-223-3p; miR-200b-3p; miR-32-5p | ↑ | Epileptogenic OH tubers | SLC12A5; SYT1; GRIN2A; GRIN2B; KCNB1; SCN2A; TSC1; MEF2C | Downregulate SLC12A5, SYT1, GRIN2A, GRIN2B, KCNB1, SCN2A, TSC1 and MEF2C that are implicated in epilepsy risk | [42] |
miR-320d | ↓ | SEGAs | MMP2 | Increase MMP2 expression in human fetal astrocytes | [43] |
miR146a; miR147b | ↑ | Epilepsy | TIMP2; TIMP3; TIMP4; MMP3 | Increased mRNA expression of TIMP2, TIMP3, and TIMP4, along with decreased expression of MMP3, contributes to the restoration of blood–brain barrier integrity and extracellular matrix homeostasis | [44] |
miR-9-5p; miR-124-3p; miR-132-3p | ↑ | Renal angiomyolipoma | BCL2L11 | BCL2L11 downregulation leads to AML pathogenesis | [45] |
miR-34a; miR-34b; miR-34c | ↑ | Cortical tubers | Neurogenesis; glutamate receptor signaling | The miR-34 family may regulate neurogenesis and glutamatergic signaling in TSC; their dysregulation may contribute to common TSC comorbidities | [48] |
miR-34a | ↑ | Cortical tubers | RAS; NOTCH1; mTORC1 | mTORC1 suppression along with downregulation of RAS and NOTCH1 signaling pathways disrupts corticogenesis in TSC | [49] |
miR-199b-3p | ↓ | Renal angiomyolipoma; cardiac rhabdomyoma | mTORC1; mTORC2 | Hyperactivation of both mTORC1 and mTORC2 causes excessive proliferation and resistance to apoptosis | [51] |
miR-21 | ↑ | Hamartomas; TSC-related tumors | mTORC1; mitochondria | In vitro inhibition of miR-21 reduced colony formation, increased apoptosis sensitivity, and decreased tumor growth | [53] |
miR-142-3p | ↓ | Renal cystogenesis | PRAS40 | Increased PRAS40 expression and mTOR hyperactivation; cystogenesis promotion | [54] |
miR-146a; miR-147b; miR-155 | ↑ | Astrocyte-mediated inflammatory response | COX-2; IL-6 | miR155 showed pro-inflammatory effects, while miR146a showed anti-inflammatory effects. miR146a and miR-147b lead to a reduction in COX-2 and IL-6 expression and decreased astrocyte proliferation by 30% | [46,47] |
Epigenetic Mechanism | Key Mediator | Impact | Effect of Modification | Ref. |
---|---|---|---|---|
DNA methylation | Methylation of the NotI site within exon 1 of the wild-type VHL allele | Yes | Wild-type VHL allele inactivation leads to RCC, hemangioblastoma, pheochromocytoma and pancreatic tumor development | [64] |
DNA methylation | Methylation of FLIP, TSP1, DcR1, DcR2, DR4, DR5, CASP8 and HIC1 promoters | Yes | Methylation of genes’ promoters alters their expression, promoting angiogenesis and causing apoptosis dysregulation, leading to pheochromocytoma development | [65] |
DNA methylation | Promoter CpG islands methylation of multiple tumor suppressor genes | Yes | Unique CpG methylation patterns indicate differences in gene inactivation and tumorigenesis between VHL-related and VHL-unrelated RCCs | [66] |
DNA methylation | Methylation of CpG islands of exon 1 of the VHL wild-type allele | No | Not applicable | [67] |
DNA methylation | Methylation of VHL wild-type allele promoter | No | Not applicable | [69] |
DNA methylation | Methylation of VHL wild-type allele promoter | No | Not applicable | [70] |
DNA methylation | Methylation of VHL wild-type allele promoter | No | Not applicable | [71] |
DNA methylation | Whole genome methylation status and methylation of VHL wild-type allele promoter | No | Not applicable | [68] |
Epigenetic Mechanism | Key Mediator | Impact | Effect of Modification | Ref. |
---|---|---|---|---|
DNA methylation | 5hmC levels and 5hmC-enriched DNA regions | Yes | Reduced levels of 5hmC and alteration of 5hmC patterns in Purkinje cells lead to neurodegenration | [79] |
DNA methylation | Methylation of promoters’ CpG islands of genes involved in immune responses, growth and apoptotic pathways | Yes | Altered methylation of genes involved in immune responses, growth and apoptotic pathways regulates their expression and leads to apoptosis dysregulation, immune system modifications, immunodeficiency, ataxia and malignancy (particularly B-cell lymphomas) | [80] |
Histone modification | EZH2-mediated H3K27 trimethylation at multiple neurotrophic genes’ promoters | Yes | Downregulation of neurotrophic genes leads to neurodegeneration | [81] |
Histone modification | HDAC4-mediated deacetylation of histone 3 and 4 at promoters of genes Mef2A and Creb | Yes | Downregulation of the pro-survival transcription factors CREB and MEF2A contributes to neurodegeneration | [83] |
Histone modification | Overall chromatin conformation of the whole genome | Yes | ATM-deficient cells exhibit increased susceptibility to radiation-induced DNA lesions, which are often sequestered in regions less accessible to DNA repair machinery, thereby contributing to an elevated risk of malignancy | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadjigavriel, G.; Stylianides, C.; Axarloglou, E.; Manthou, M.E.; Vakirlis, E.; Theotokis, P.; Meditskou, S.; Dermitzakis, I. Epigenetic Insights into Tuberous Sclerosis Complex, Von Hippel–Lindau Syndrome, and Ataxia–Telangiectasia. Epigenomes 2025, 9, 20. https://doi.org/10.3390/epigenomes9020020
Hadjigavriel G, Stylianides C, Axarloglou E, Manthou ME, Vakirlis E, Theotokis P, Meditskou S, Dermitzakis I. Epigenetic Insights into Tuberous Sclerosis Complex, Von Hippel–Lindau Syndrome, and Ataxia–Telangiectasia. Epigenomes. 2025; 9(2):20. https://doi.org/10.3390/epigenomes9020020
Chicago/Turabian StyleHadjigavriel, Gavriel, Christina Stylianides, Evangelos Axarloglou, Maria Eleni Manthou, Efstratios Vakirlis, Paschalis Theotokis, Soultana Meditskou, and Iasonas Dermitzakis. 2025. "Epigenetic Insights into Tuberous Sclerosis Complex, Von Hippel–Lindau Syndrome, and Ataxia–Telangiectasia" Epigenomes 9, no. 2: 20. https://doi.org/10.3390/epigenomes9020020
APA StyleHadjigavriel, G., Stylianides, C., Axarloglou, E., Manthou, M. E., Vakirlis, E., Theotokis, P., Meditskou, S., & Dermitzakis, I. (2025). Epigenetic Insights into Tuberous Sclerosis Complex, Von Hippel–Lindau Syndrome, and Ataxia–Telangiectasia. Epigenomes, 9(2), 20. https://doi.org/10.3390/epigenomes9020020