Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,829)

Search Parameters:
Keywords = histone modifications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 17502 KB  
Article
Metabolomics Reveals Abnormal Citrate Cycle and Phenylalanine Metabolism in Testes from Infertile Hybrid Dzo
by Jiaojiao Ding, Yan Dao, Lingqian Liang, Rui Hong, Huiyou Chen, Yi Yan, Ling Wang, Fuyuan Zuo and Gongwei Zhang
Animals 2025, 15(20), 3023; https://doi.org/10.3390/ani15203023 - 17 Oct 2025
Abstract
This study investigated the metabolomic profiles and molecular basis of hybrid male sterility (HMS) in dzo (the male F1 hybrid offspring of taurine cattle (Bos taurus, ♂) × domestic yak (Bos grunniens, ♀)). In total, 147 co-different metabolites were [...] Read more.
This study investigated the metabolomic profiles and molecular basis of hybrid male sterility (HMS) in dzo (the male F1 hybrid offspring of taurine cattle (Bos taurus, ♂) × domestic yak (Bos grunniens, ♀)). In total, 147 co-different metabolites were identified between liver and testis tissues. Metabolomics analysis linked testis-specific abnormal citrate cycle and phenylalanine metabolism to dzo male infertility. Specifically, α-ketoglutaric acid, L-malic acid, and succinic acid were specific elevated in dzo testes, but not significantly different in liver. The testis-specific metabolite phenyllactate was reduced in dzo. Moreover, genes encoding α-ketoglutarate-dependent oxygenases were dysregulated only in dzo testes, including histone demethylations and RNA m6A modifications. Reactive oxygen species and m6A content were significantly decreased in dzo testes. Multiomics data showed that testis-specific metabolic abnormalities in dzo were linked to upregulated IDH3A and IDH3G, and downregulated testis-specific OGDHL and PDHA2. MiRNA-15b targeting to IDH3A was downregulated in dzo testes. The promoter of PDHA2 was hypermethylated and showed lower chromatin accessibility in dzo testes. Notably, testis-specific LDHC downregulation was also associated with lower phenyllactate in dzo testes, which could be an outcome of male infertility. Overall, this study provides comprehensive insights into the citrate cycle as a key pathway associated with dzo sterility, shedding light on the potential mitochondrial–nuclear incompatibility pertinent to addressing this HMS challenge. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2057 KB  
Article
Exploration into the MLL4/WRAD Enzyme-Substrate Network: Systematic In Vitro Identification of CFP1 as a Potential Non-Histone Substrate of the MLL4 Lysine Methyltransferase
by Mullen Boulter, Ryan Collins and Kyle K. Biggar
Epigenomes 2025, 9(4), 41; https://doi.org/10.3390/epigenomes9040041 - 15 Oct 2025
Viewed by 30
Abstract
Lysine methylation is a critical post-translational modification catalyzed by lysine methyltransferases (KMTs), originally characterized in the regulation of histones. However, the breadth of non-histone targets remains largely unexplored. Here, we used a systematic peptide array-based approach to define a substrate preference motif for [...] Read more.
Lysine methylation is a critical post-translational modification catalyzed by lysine methyltransferases (KMTs), originally characterized in the regulation of histones. However, the breadth of non-histone targets remains largely unexplored. Here, we used a systematic peptide array-based approach to define a substrate preference motif for the SET-domain-containing KMT MLL4 (KMT2D), a member of the COMPASS complex and a known H3K4 methyltransferase. Using this motif, we identified CXXC finger protein 1 (CFP1), a core component of Setd1A/B complexes, as a putative MLL4 substrate. In vitro methyltransferase assays confirmed robust methylation of CFP1 by an MLL4-WRAD complex. Surprisingly, while initial predictions implicated K328, array-based methylation profiling revealed multiple lysine residues within CFP1’s lysine-rich basic domain as methylation targets, including K331, K335, K339, and K340. We further demonstrated that CFP1 methylation likely modulates its interaction with MLL4’s PHD cassettes and facilitates binding to Setd1A. Binding preferences of MLL4’s PHD1–3 and PHD4–6 domains varied with methylation state and site, suggesting non-histone methyl mark recognition by these cassettes. Pulldown assays confirmed that methylated, but not unmethylated, CFP1 binds Setd1A, supporting a potential methyl-switch mechanism. Together, our findings propose CFP1 as a potential non-histone substrate of MLL4 and suggest that MLL4 may regulate Setd1A/B function indirectly via CFP1 methylation. This study expands the substrate landscape of MLL4 and lays the groundwork for future investigations into non-histone methylation signaling in chromatin regulation. Full article
Show Figures

Figure 1

30 pages, 2137 KB  
Review
Role of Histone H3 Lysine 4 Methylation in Chromatin Biology
by Bernhard Lüscher, Philip Bussmann and Janina Müller
Molecules 2025, 30(20), 4075; https://doi.org/10.3390/molecules30204075 - 14 Oct 2025
Viewed by 333
Abstract
Specific expression of genes is fundamental for defining the identity and the functional state of cells. Sequence-specific transcription factors interpret the information contained in DNA sequence motifs and recruit cofactors to modify chromatin and control RNA polymerases. This multi-step process typically involves several [...] Read more.
Specific expression of genes is fundamental for defining the identity and the functional state of cells. Sequence-specific transcription factors interpret the information contained in DNA sequence motifs and recruit cofactors to modify chromatin and control RNA polymerases. This multi-step process typically involves several transcription factors and cofactors with different enzymatic activities. Post-translational modifications (PTMs) of histones are one key mechanism to control chromatin structure and polymerase activity and thus gene transcription. The methylation of histone H3 at lysine 4 (H3K4) is a modification of accessible chromatin, including enhancers and promoters, and also sites of recombination and some forms of DNA damage. H3K4 methylation is catalyzed by six lysine methyltransferase complexes, referred to as KMT2 or COMPASS-like complexes. These are important in processes related to transcription and contribute to recombination in T and B cells. PRDM9 and ASH1L are H3K4 methyltransferases involved in meiotic recombination and DNA repair, respectively. In transcription, H3K4 mono- and tri-methylation are located at enhancers and promoters, respectively. These modifications, either alone or in combination with other histone PTMs, provide binding sites for transcriptional cofactors. Through these sites, H3K4 methylation affects chromatin accessibility and histone PTMs, typically resulting in a favorable environment for transcription. H3K4 tri-methylation also recruits and regulates RNA polymerase II (RNAPII) complexes, which interact with KMT2 complexes, generating positive feedforward loops to promote transcription. Thus, H3K4 methylation has broad activities that are key to different chromatin-associated processes. Full article
(This article belongs to the Special Issue Chemistry of Nucleic Acids: From Structure to Biological Interactions)
Show Figures

Figure 1

17 pages, 800 KB  
Review
Sirtuin Family in Acute Kidney Injury: Insights into Cellular Mechanisms and Potential Targets for Treatment
by Songyuan Yang, Wu Chen, Siqi Li, Sheng Zhao and Fan Cheng
Biomolecules 2025, 15(10), 1445; https://doi.org/10.3390/biom15101445 - 13 Oct 2025
Viewed by 301
Abstract
Acute kidney injury (AKI) is a frequent clinical and pathological condition, often resulting from factors like ischemia, toxins, or infections, which cause a sudden and severe decline in renal function. This, in turn, significantly affects patients’ overall health and quality of life. The [...] Read more.
Acute kidney injury (AKI) is a frequent clinical and pathological condition, often resulting from factors like ischemia, toxins, or infections, which cause a sudden and severe decline in renal function. This, in turn, significantly affects patients’ overall health and quality of life. The Sirtuin family (SIRTs), a group of Nicotinamide Adenine Dinucleotide (NAD+)-dependent deacetylases, is critically involved in key biological processes such as cellular metabolism, stress responses, aging, and DNA repair. Recent research has highlighted the vital role of SIRTs, such as SIRT1, SIRT3, and SIRT6, in the development and progression of AKI. These proteins help mitigate renal injury and facilitate kidney repair through mechanisms like antioxidant activity, anti-inflammatory responses, cellular repair, and energy metabolism. Additionally, the deacetylase activity of the SIRTs confers protection against AKI by modulating mitochondrial function, decreasing oxidative stress, and regulating autophagy. Although the precise mechanisms underlying the role of Sirtuins in AKI are still being explored, their potential as therapeutic targets is increasingly being recognized. This paper will discuss the mechanisms by which the SIRTs influence AKI and examine their potential in a future therapeutic strategy. Full article
Show Figures

Figure 1

21 pages, 1800 KB  
Review
Genomic, Epigenomic, and Immuno-Genomic Regulations of Vitamin D Supplementation in Multiple Sclerosis: A Literature Review and In Silico Meta-Analysis
by Preetam Modak, Pritha Bhattacharjee and Krishnendu Ghosh
DNA 2025, 5(4), 48; https://doi.org/10.3390/dna5040048 - 10 Oct 2025
Viewed by 153
Abstract
Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disorder characterized by progressive demyelination and axonal degeneration within the central nervous system, driven by complex genomic and epigenomic dysregulation. Its pathogenesis involves aberrant DNA methylation patterns at CpG islands of numbers of genes like [...] Read more.
Multiple sclerosis (MS) is a chronic autoimmune neurodegenerative disorder characterized by progressive demyelination and axonal degeneration within the central nervous system, driven by complex genomic and epigenomic dysregulation. Its pathogenesis involves aberrant DNA methylation patterns at CpG islands of numbers of genes like OLIG1 and OLIG2 disrupting protein expression at myelin with compromised oligodendrocyte differentiation. Furthermore, histone modifications, particularly H3K4me3 and H3K27ac, alter the promoter regions of genes responsible for myelination, affecting myelin synthesis. MS exhibits chromosomal instability and copy number variations in immune-regulatory gene loci, contributing to the elevated expression of genes for pro-inflammatory cytokines (TNF-α, IL-6) and reductions in anti-inflammatory molecules (IL-10, TGF-β1). Vitamin D deficiency correlates with compromised immune regulation through hypermethylation and reduced chromatin accessibility of vitamin D receptor (VDR) dysfunction and is reported to be associated with dopaminergic neuronal loss. Vitamin D supplementation demonstrates therapeutic potential through binding with VDR, which facilitates nuclear translocation and subsequent transcriptional activation of target genes via vitamin D response elements (VDREs), resulting in suppression of NF-κB signalling, enhancement of regulatory T-cell (Treg) responses due to upregulation of specific genes like FOXP3, downregulation of pro-inflammatory pathways, and potential restoration of the chromatin accessibility of oligodendrocyte-specific gene promoters, which normalizes oligodendrocyte activity. Identification of differentially methylated regions (DMRs) and differentially expressed genes (DEGs) that are in proximity to VDR-mediated gene regulation supports vitamin D supplementation as a promising, economically viable, and sustainable therapeutic strategy for MS. This systematic review integrates clinical evidence and eventual bioinformatical meta-analyses that reference transcriptome and methylome profiling and identify prospective molecular targets that represent potential genetic and epigenetic biomarkers for personalized therapeutic intervention. Full article
Show Figures

Figure 1

10 pages, 937 KB  
Article
Investigation of Ethanol and Isopropanol as Greener Alternatives to Acetonitrile in the RP-HPLC Purification of Histone Tail Peptides Bearing Acylation-Type Post-Translational Modifications
by Yordan Hayat and Zeynep Kanlidere
Separations 2025, 12(10), 275; https://doi.org/10.3390/separations12100275 - 9 Oct 2025
Viewed by 256
Abstract
Background: Histone post-translational modifications (PTMs) play a pivotal role in the regulation of chromatin structure and gene expression, making them key targets in structural and epigenetic research. Synthetic histone peptides bearing specific PTMs are essential tools for elucidating the molecular mechanisms of histone [...] Read more.
Background: Histone post-translational modifications (PTMs) play a pivotal role in the regulation of chromatin structure and gene expression, making them key targets in structural and epigenetic research. Synthetic histone peptides bearing specific PTMs are essential tools for elucidating the molecular mechanisms of histone function and protein–histone interactions. Methods: We synthesized histone H4 tail peptides containing site-specific lysine modifications using solid-phase peptide synthesis (SPPS). The correct synthesis of the peptides was confirmed by their molecular weights using a mass spectrometer. Results: An improved high-performance liquid chromatography (HPLC) method was developed to efficiently separate peptides with one modification difference. In alignment with green chemistry principles, we evaluated ethanol and isopropanol as an alternative organic solvent to acetonitrile in the mobile phase. The optimized HPLC method using acetonitrile enabled effective resolution of closely related peptide species, providing peptides suitable for downstream applications requiring high purities such as structural biology. Conclusions: This study presents a strategy for the purification of histone PTM peptides, emphasizing both analytical performance and sustainability. Further investigation must be undergone to develop high-precision purification using green chemicals. Full article
Show Figures

Graphical abstract

21 pages, 15960 KB  
Article
Multimodal Exploration Offers Novel Insights into the Transcriptomic and Epigenomic Landscape of the Human Submandibular Glands
by Erich Horeth, Theresa Wrynn, Jason M. Osinski, Alexandra Glathar, Jonathan Bard, Mark S. Burke, Saurin Popat, Thom Loree, Michael Nagai, Robert Phillips, Jose Luis Tapia, Jennifer Frustino, Jill M. Kramer, Satrajit Sinha and Rose-Anne Romano
Cells 2025, 14(19), 1561; https://doi.org/10.3390/cells14191561 - 8 Oct 2025
Viewed by 276
Abstract
The submandibular glands (SMGs), along with the parotid and sublingual glands, generate the majority of saliva and play critical roles in maintaining oral and systemic health. Despite their physiological importance, long-term therapeutic options for salivary gland dysfunction remain limited, highlighting the need for [...] Read more.
The submandibular glands (SMGs), along with the parotid and sublingual glands, generate the majority of saliva and play critical roles in maintaining oral and systemic health. Despite their physiological importance, long-term therapeutic options for salivary gland dysfunction remain limited, highlighting the need for a deeper molecular understanding of SMG biology, particularly in humans. To address this knowledge gap, we have performed transcriptomic- and epigenomic-based analyses and molecular characterization of the human SMG. Our integrated analysis of multiorgan RNA-sequencing datasets has identified an SMG-enriched gene expression signature comprising 289 protein-coding and 75 long non-coding RNA (lncRNA) genes that include both known regulators of salivary gland function and several novel candidates ripe for future exploration. To complement these transcriptomic studies, we have generated chromatin immunoprecipitation sequencing (ChIP-seq) datasets of key histone modifications on human SMGs. Our epigenomic analyses have allowed us to identify genome-wide enhancers and super-enhancers that are likely to drive genes and regulatory pathways that are important in human SMG biology. Finally, comparative analysis with mouse and human SMG and other tissue datasets reveals evolutionary conserved gene and regulatory networks, underscoring fundamental mechanisms of salivary gland biology. Collectively, this study offers a valuable knowledge-based resource that can facilitate targeted research on salivary gland dysfunction in human patients. Full article
Show Figures

Figure 1

11 pages, 523 KB  
Review
Physical Activity During Pregnancy and Gestational Weight Gain: Implications for Maternal–Fetal Epigenetic Programming and Long-Term Health
by Nektaria Zagorianakou, Stylianos Makrydimas, Efthalia Moustakli, Ioannis Mitrogiannis, Ermanno Vitale and George Makrydimas
Genes 2025, 16(10), 1173; https://doi.org/10.3390/genes16101173 - 6 Oct 2025
Viewed by 505
Abstract
Background/Objectives: Gestational weight gain (GWG) is a crucial factor influencing mother and fetal health, as high GWG is associated with adverse pregnancy outcomes and an increased long-term risk of obesity and metabolic issues in the children. In addition to controlling weight, maternal [...] Read more.
Background/Objectives: Gestational weight gain (GWG) is a crucial factor influencing mother and fetal health, as high GWG is associated with adverse pregnancy outcomes and an increased long-term risk of obesity and metabolic issues in the children. In addition to controlling weight, maternal physical activity (PA) during pregnancy may influence fetal development through potential epigenetic mechanisms, including histone modifications, DNA methylation, and the production of non-coding RNA. Methods: This narrative review synthesizes evidence from randomized controlled trials (RCTs; n = 11, 3654 participants) investigating the impact of aerobic PA on GWG, while also highlighting emerging, primarily indirect findings on maternal–fetal epigenetic programming. Results: The majority of RCTs found that supervised PA interventions, especially when paired with nutritional counseling, decreased both the incidence of excessive GWG and total GWG. Enhancements in lipid metabolism, adipokine profiles, and maternal insulin sensitivity point to likely biochemical mechanisms that connect PA to epigenetic modification of fetal metabolic genes (e.g., IGF2, PGC-1α, LEP). Animal and observational studies suggest that maternal activity may influence offspring epigenetic pathways related to obesity and cardiometabolic conditions, although direct human evidence is limited. Conclusions: In addition to potentially changing gene–environment interactions throughout generations, prenatal PA is a low-cost, safe method of improving maternal and newborn health. Future RCTs ought to incorporate molecular endpoints to elucidate the epigenetic processes by which maternal exercise may provide long-term health benefits. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Figure 1

20 pages, 1133 KB  
Review
Exercise, Epigenetics, and Body Composition: Molecular Connections
by Ashley Williams, Danielle D. Wadsworth and Thangiah Geetha
Cells 2025, 14(19), 1553; https://doi.org/10.3390/cells14191553 - 6 Oct 2025
Viewed by 602
Abstract
Exercise plays a crucial role in promoting overall health by activating molecular pathways that contribute to the prevention and management of chronic diseases, slowing epigenetic aging, improving body composition, and reducing the risk of obesity. In skeletal muscle, these benefits are largely mediated [...] Read more.
Exercise plays a crucial role in promoting overall health by activating molecular pathways that contribute to the prevention and management of chronic diseases, slowing epigenetic aging, improving body composition, and reducing the risk of obesity. In skeletal muscle, these benefits are largely mediated by exercise-induced transcriptional and epigenetic responses. Recent advances in epigenetics have intensified interest in understanding how physical activity influences long-term health and body composition at the molecular level. Epigenetic modifications, which regulate gene expression without altering the DNA sequence, are key mechanisms in this process. Emerging research has provided deeper insights into the processes such as DNA methylation, histone modification, and non-coding RNAs, and their connection to exercise. While numerous studies have demonstrated the influence of exercise on the epigenome, fewer have directly examined how these molecular changes relate to alterations in fat mass, lean body mass, and other components of body composition. This comprehensive review synthesizes the current evidence on the interplay between exercise, epigenetic regulation, and body composition, with a focus on adolescents and adults. We highlight key genes involved in metabolism, fat storage, muscle development, and epigenetic aging, and explore how their regulation may contribute to individual variability in exercise response. Understanding these molecular pathways may provide valuable insights for optimizing exercise interventions aimed at improving health outcomes across the lifespan. Full article
Show Figures

Figure 1

25 pages, 1309 KB  
Review
Tripartite Interaction of Epigenetic Regulation, Brain Aging, and Neuroinflammation: Mechanistic Insights and Therapeutic Implications
by Shenghui Mi, Hideyuki Nakashima and Kinichi Nakashima
Epigenomes 2025, 9(4), 38; https://doi.org/10.3390/epigenomes9040038 - 5 Oct 2025
Viewed by 476
Abstract
Aging of the central nervous system (CNS) involves widespread transcriptional and structural remodeling, prominently marked by synaptic loss, impaired neurogenesis, and glial dysfunction. While age-related gene expression changes have been documented for decades, recent genome-wide next-generation sequencing studies emphasize the importance of epigenetic [...] Read more.
Aging of the central nervous system (CNS) involves widespread transcriptional and structural remodeling, prominently marked by synaptic loss, impaired neurogenesis, and glial dysfunction. While age-related gene expression changes have been documented for decades, recent genome-wide next-generation sequencing studies emphasize the importance of epigenetic mechanisms—such as DNA methylation and histone modification—in shaping these profiles. Notably, these modifications are potentially reversible, making them promising targets for therapeutic intervention. However, the mechanisms by which age-associated factors, such as inflammation and oxidative stress, orchestrate these epigenetic alterations across distinct CNS cell types remain poorly understood. In this review, we propose a framework for understanding how aging and neuroinflammation are regulated by epigenetic mechanisms, contributing to brain dysfunction and disease vulnerability. Full article
Show Figures

Figure 1

22 pages, 548 KB  
Review
Significance of Epigenetic Alteration in Cancer-Associated Fibroblasts on the Development of Carcinoma
by Hongdong Gao, Hinano Nishikubo, Dongheng Ma, Juncheng Pan, Tomoya Sano, Daiki Imanishi, Takashi Sakuma, Canfeng Fan and Masakazu Yashiro
Int. J. Mol. Sci. 2025, 26(19), 9695; https://doi.org/10.3390/ijms26199695 - 5 Oct 2025
Viewed by 464
Abstract
Cancer-associated fibroblasts (CAFs) are a key constituent of the tumor microenvironment. CAFs may affect the development of tumor cells. The critical role of CAFs in the tumor microenvironment is linked to their epigenetic modifications, as a stable yet reversible regulation of cellular phenotypes. [...] Read more.
Cancer-associated fibroblasts (CAFs) are a key constituent of the tumor microenvironment. CAFs may affect the development of tumor cells. The critical role of CAFs in the tumor microenvironment is linked to their epigenetic modifications, as a stable yet reversible regulation of cellular phenotypes. Current evidence indicates that their formation and function are closely linked to epigenetic mechanisms. Existing research indicates that the epigenetic alteration abnormalities are triggered by metabolic cues and stabilize the acquired phenotype of CAFs. This process is associated with transcriptional changes and patient outcomes in various tumors, providing a biological rationale and translational potential for reprogramming CAFs. Understanding of epigenetic modifications in CAFs remain insufficient, while DNA methylation in CAFs can alter CAF states through multiple pathways and thereby influence tumor progression. It is necessary to investigate the unique, identifiable epigenetic signatures of CAF. As an epigenetic reader couple histone acetylation to high-output oncogenic transcription; meanwhile, noncoding RNAs modulate CAF formation and therapeutic responses via bidirectional crosstalk between tumor cells and stroma. The interactions between different epigenetic modifications and their underlying regulatory logic may play a crucial role in developing new therapeutic strategies. This review focuses on the roles of DNA methylation, histone acetylation, and enhancer reprogramming in CAFs. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

27 pages, 2674 KB  
Review
Small RNA and Epigenetic Control of Plant Immunity
by Sopan Ganpatrao Wagh, Akshay Milind Patil, Ghanshyam Bhaurao Patil, Sumeet Prabhakar Mankar, Khushboo Rastogi and Masamichi Nishiguchi
DNA 2025, 5(4), 47; https://doi.org/10.3390/dna5040047 - 1 Oct 2025
Viewed by 542
Abstract
Plants have evolved a complex, multilayered immune system that integrates molecular recognition, signaling pathways, epigenetic regulation, and small RNA-mediated control. Recent studies have shown that DNA-level regulatory mechanisms, such as RNA-directed DNA methylation (RdDM), histone modifications, and chromatin remodeling, are critical for modulating [...] Read more.
Plants have evolved a complex, multilayered immune system that integrates molecular recognition, signaling pathways, epigenetic regulation, and small RNA-mediated control. Recent studies have shown that DNA-level regulatory mechanisms, such as RNA-directed DNA methylation (RdDM), histone modifications, and chromatin remodeling, are critical for modulating immune gene expression, allowing for rapid and accurate pathogen-defense responses. The epigenetic landscape not only maintains immunological homeostasis but also promotes stress-responsive transcription via stable chromatin modifications. These changes contribute to immunological priming, a process in which earlier exposure to pathogens or abiotic stress causes a heightened state of preparedness for future encounters. Small RNAs, including siRNAs, miRNAs, and phasiRNAs, are essential for gene silencing before and after transcription, fine-tuning immune responses, and inhibiting negative regulators. These RNA molecules interact closely with chromatin features, influencing histone acetylation/methylation (e.g., H3K4me3, H3K27me3) and guiding DNA methylation patterns. Epigenetically encoded immune memory can be stable across multiple generations, resulting in the transgenerational inheritance of stress resilience. Such memory effects have been observed in rice, tomato, maize, and Arabidopsis. This review summarizes new findings on short RNA biology, chromatin-level immunological control, and epigenetic memory in plant defense. Emerging technologies, such as ATAC-seq (Assay for Transposase-Accessible Chromatin using Sequencing), ChIP-seq (Chromatin Immunoprecipitation followed by Sequencing), bisulfite sequencing, and CRISPR/dCas9-based epigenome editing, are helping researchers comprehend these pathways. These developments hold an opportunity for establishing epigenetic breeding strategies that target the production of non-GMO, stress-resistant crops for sustainable agriculture. Full article
Show Figures

Figure 1

71 pages, 4535 KB  
Review
Integrating Inflammatory and Epigenetic Signatures in IBD-Associated Colorectal Carcinogenesis: Models, Mechanisms, and Clinical Implications
by Kostas A. Triantaphyllopoulos, Nikolia D. Ragia, Maria-Chara E. Panagiotopoulou and Thomae G. Sourlingas
Int. J. Mol. Sci. 2025, 26(19), 9498; https://doi.org/10.3390/ijms26199498 - 28 Sep 2025
Viewed by 473
Abstract
The rising global prevalence of inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, is paralleled by an increased risk of colitis-associated colorectal cancer. Persistent intestinal inflammation promotes genetic instability and epigenetic reprogramming within epithelial and immune cells, driving the multistep transition from [...] Read more.
The rising global prevalence of inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, is paralleled by an increased risk of colitis-associated colorectal cancer. Persistent intestinal inflammation promotes genetic instability and epigenetic reprogramming within epithelial and immune cells, driving the multistep transition from inflammation to neoplasia. This review integrates human and preclinical model evidence with literature mining and bioinformatic analyses of genetic, epigenetic, and ncRNA data to dissect molecular mechanisms driving colitis-associated colorectal cancer from chronic inflammation. We highlight how pro-inflammatory cytokines (e.g., TNF-α, IL-6), oxidative stress, and microbial dysbiosis converge on key transcriptional regulators such as NF-κB and STAT3, inducing DNA methylation and histone modifications (e.g., H3K27me3); altering chromatin dynamics, gene expression, and non-coding RNA networks (e.g., miR-21, MALAT1, CRNDE); ultimately reshaping pathways involved in proliferation, apoptosis, and immune evasion. This review updates new potential associations of entities with these diseases, in their networks of interaction, summarizing major aspects of genetic and chromatin-level regulatory mechanisms in inflammatory bowel disease and colorectal cancer, and emphasizing how these interactions drive the inflammatory-to-neoplastic transition. By underscoring the reversibility of epigenetic changes, we explore their translational potential in early detection, surveillance, and precision epigenetic therapy. Understanding the interplay between genetic mutations and chromatin remodeling provides a roadmap for improving diagnostics and personalized treatments in inflammatory bowel disease-associated colorectal carcinogenesis. Full article
Show Figures

Graphical abstract

23 pages, 748 KB  
Review
Polyamine Induction of Secondary Metabolite Biosynthetic Genes in Fungi Is Mediated by Global Regulator LaeA and α-NAC Transcriptional Coactivator: Connection to Epigenetic Modification of Histones
by Juan F. Martín
Molecules 2025, 30(19), 3903; https://doi.org/10.3390/molecules30193903 - 27 Sep 2025
Viewed by 400
Abstract
Polyamines are polycationic compounds present in all living cells that exert functions at different levels in the metabolism. They bind to DNA and RNA and modulate DNA replication and gene expression. Some of these regulatory effects are exerted by promoting condensation of nucleosomes, [...] Read more.
Polyamines are polycationic compounds present in all living cells that exert functions at different levels in the metabolism. They bind to DNA and RNA and modulate DNA replication and gene expression. Some of these regulatory effects are exerted by promoting condensation of nucleosomes, a mechanism closely connected with epigenetic modification by histone methylation and acetylation. The polyamines 1,3-diaminopropane and spermidine induce expression of the global regulator LaeA and increase by several folds the formation of the α-NAC transcriptional co-activator, a subunit of the nascent polypeptide-associated complex. The global regulator LaeA controls the switch from primary growth to secondary metabolite production and differentiation when an essential nutrient in the growth medium becomes limiting. α-NAC exerts significant control over the biosynthesis of secondary metabolites and fungal pathogenicity on plants. When purified α-NAC protein is added to a tomato host plant, it induces plant resistance to fungal infections and triggers the development of system-acquired resistance in other plants. Spermidine extends the life of yeast cells and prolongs the half-life of penicillin gene transcripts in Penicillium chrysogenum. This article discusses advances in the basis of understanding the mechanism of plant–fungi interaction and the effect of small fungal metabolites and epigenetic modifiers in this interaction. Full article
(This article belongs to the Special Issue Natural Products Biosynthesis: Present and Perspectives)
Show Figures

Figure 1

19 pages, 2683 KB  
Review
Epigenetic Biomarkers for Cervical Cancer Progression: A Scoping Review
by Efthymios Ladoukakis, Gracia Andriamiadana, Fatema Hajizadah, Lewis G. E. James and Belinda Nedjai
Int. J. Mol. Sci. 2025, 26(19), 9423; https://doi.org/10.3390/ijms26199423 - 26 Sep 2025
Viewed by 390
Abstract
Cervical cancer remains the fourth most common cancer among women globally, disproportionately impacting low- and middle-income countries despite the existence of HPV vaccines. While DNA methylation has been studied extensively as a biomarker, other epigenetic mechanisms remain underexplored. This scoping review aims to [...] Read more.
Cervical cancer remains the fourth most common cancer among women globally, disproportionately impacting low- and middle-income countries despite the existence of HPV vaccines. While DNA methylation has been studied extensively as a biomarker, other epigenetic mechanisms remain underexplored. This scoping review aims to report such underexplored epigenetic biomarkers linked to cervical cancer, shifting the focus beyond global nuclear DNA methylation. Literature searches were performed using Google Scholar via Publish or Perish software including studies published until January 2025. Our review focused on mitochondrial DNA, non-coding RNA, histone modifications, and repetitive elements. Mitochondrial DNA methylation has been proposed as a cervical cancer biomarker, although supporting evidence is limited. Histone modifications are more consistently reported to be involved both in cervical cancer onset and aggressiveness. Similarly, aberrant expression of lncRNAs, circRNAs, miRNAs, and piRNAs has been associated with poor prognosis. Finally, hypomethylation in repetitive elements such as LINE-1 and Alu is often observed in cervical cancer, contributing to genomic instability and tumorigenesis. Highlighting these alternative epigenetic mechanisms, our review emphasizes the importance of expanding biomarker discovery beyond the traditional nuclear DNA methylation. Understanding these mechanisms may improve early detection and personalized disease management strategies for cervical cancer. Full article
(This article belongs to the Special Issue Epigenetic Dysregulation in Cancers: From Mechanism to Therapy)
Show Figures

Figure 1

Back to TopTop