Which of the Physiological vs. Critical Speed Is a Determinant of Modern Pentathlon 200 m Front Crawl Swimming Performance: The Influence of Protocol and Ergometer vs. Swimming Pool Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures
2.1.1. Tests in the 50 m Pool with a Stopwatch Only
The 100, 200, 300 m and Critical Velocity (CV)
2.1.2. Tests in the 50 m Pool with a Stopwatch and Blood Lactate Measurements
Maximal and 90% 200 m and Velocities Corresponding to the 2 and 4 mM·L−1 of Lactate Accumulation (v2 and v4)
2.1.3. Tests in the Flume with Blood Lactate and VO2 Measurements
Energy Cost at Submaximal Velocity (EC)
Peak Oxygen Uptake (VO2peak)
2.2. Statistical Analysis
3. Results
3.1. Normality and Effect Size
3.2. Best Time of the Competition’s Swimming Phase
3.2.1. Tests in the 50 m Pool with a Stopwatch Only
The 100, 200, 300 m and Critical Velocity (CV)
3.2.2. Tests in the 50 m Pool with a Stopwatch and Blood Lactate Measurements
Maximal and 90% 200 m and Velocities Corresponding to the 2 and 4 mM·L−1 of Lactate Accumulation (v2 and v4)
3.2.3. Tests in the Flume with Blood Lactate and VO2 Measurements
Energy Cost at Submaximal Velocity (EC)
Peak Oxygen Uptake (VO2peak)
3.3. Differences among the Swimming Velocities
3.4. Correlation of Measured Variables with Performance
4. Discussion
4.1. Tests in the 50 m Pool with a Stopwatch Only
Critical Velocity (CV)
4.2. Tests in the 50 m Pool with a Stopwatch and Blood Lactate Measurements
Maximal and 90% 200 m and Velocities Corresponding to the 2 and 4 mM·L−1 of Lactate Accumulation (v2 and v4)
4.3. Tests in the Flume with Blood Lactate and VO2 Measurements
4.3.1. Energy Cost at Submaximal Velocity (EC)
4.3.2. Peak Oxygen Uptake (VO2peak)
5. Conclusions
6. Practical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parisi, A.; Tranchita, E.; Magini, V.; Fabrizi, E.; Cerulli, C.; Cardelli, G. L’evoluzione del pentathlon moderno con l’introduzione delle ultime modifiche regolamentari. Med. Sport 2015, 68, 121–127. [Google Scholar]
- Singh Kushwah, G.; Singh Saini, A. Heart Rate and Blood Lactate Analysis among Pentathletes after Each Event of Modern Pentathlon. Int. J. Physiol. 2019, 4, 41–44. [Google Scholar]
- Anderson, M.E.; Hopkins, W.G.; Roberts, A.D.; Pyne, D.B. Monitoring Seasonal and Long-Term Changes in Test Performance in Elite Swimmers. Eur. J. Sport Sci. 2006, 6, 145–154. [Google Scholar] [CrossRef]
- Galán-Rioja, M.; González-Mohíno, F.; Sanders, D.; Spragg, J.; González-Ravé, J.M. Tracking Critical Power Using Maximal Mean Power Outputs during Short, Medium, and Long Intervals in Well-Trained Cyclists. Med. Sport 2022, 75, 5–15. [Google Scholar] [CrossRef]
- Kishali, N.F.; Ulupinar, S.; Özbay, S. Energy System Contributions and Physiological Responses during Single and Repeated Wingate Exercise Forms in Kickboxers. Med. Sport 2021, 74, 223–234. [Google Scholar] [CrossRef]
- Demarie, S.; Chirico, E.; Galvani, C. Prediction and Analysis of Tokyo Olympic Games Swimming Results: Impact of the COVID-19 Pandemic on Swimmers’ Performance. IJERPH 2022, 19, 2110. [Google Scholar] [CrossRef]
- Jones, C.M.; Griffiths, P.C.; Mellalieu, S.D. Training Load and Fatigue Marker Associations with Injury and Illness: A Systematic Review of Longitudinal Studies. Sport. Med. 2017, 47, 943–974. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Vargas, J.T.; Stokes, T.; Steele, R.; Shrier, I. Analyzing Activity and Injury: Lessons Learned from the Acute:Chronic Workload Ratio. Sport. Med. 2020, 50, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Lolli, L.; Batterham, A.M.; Hawkins, R.; Kelly, D.M.; Strudwick, A.J.; Thorpe, R.T.; Gregson, W.; Atkinson, G. The Acute-to-Chronic Workload Ratio: An Inaccurate Scaling Index for an Unnecessary Normalisation Process? Br. J. Sport. Med. 2019, 53, 1510–1512. [Google Scholar] [CrossRef]
- Gregory Haff, G.; Coyne, J.O.C.; Newton, R.U.; Coutts, A.J.; Nimphius, S. The Current State of Subjective Training Load Monitoring—A Practical Perspective and Call to Action. Sport. Med. Open 2018, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Coutts, A.; Wallace, L.; Slattery, K. Monitoring Changes in Performance, Physiology, Biochemistry, and Psychology during Overreaching and Recovery in Triathletes. Int. J. Sport. Med. 2007, 28, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sport. Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Le Meur, Y.; Dorel, S.; Baup, Y.; Guyomarch, J.P.; Roudaut, C.; Hausswirth, C. Physiological Demand and Pacing Strategy during the New Combined Event in Elite Pentathletes. Eur. J. Appl. Physiol. 2012, 112, 2583–2593. [Google Scholar] [CrossRef]
- Dadswell, C.E.; Payton, C.; Holmes, P.; Burden, A. Biomechanical Analysis of the Change in Pistol Shooting Format in Modern Pentathlon. J. Sport. Sci. 2013, 31, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Dadswell, C.; Payton, C.; Holmes, P.; Burden, A. The Effect of Time Constraints and Running Phases on Combined Event Pistol Shooting Performance. J. Sport. Sci. 2016, 34, 1044–1050. [Google Scholar] [CrossRef]
- Lim, C.-H.; Yoon, J.-R.; Jeong, C.-S.; Kim, Y.-S. An Analysis of the Performance Determinants of Modern Pentathlon Athletes in Laser-Run, A Newly-Combined Event in Modern Pentathlon. Exerc. Sci. 2018, 27, 62–70. [Google Scholar] [CrossRef]
- Ko, B.-G.; Cho, E.-H.; Chae, J.-S.; Lee, J.-H. Relative Contribution among Physical Fitness Factors Contributing to the Performance of Modern Pentathlon. IJERPH 2021, 18, 4880. [Google Scholar] [CrossRef]
- Peeling, P.D. Effect of Swimming Intensity on Subsequent Cycling and Overall Triathlon Performance * Commentary. Br. J. Sport. Med. 2005, 39, 960–964. [Google Scholar] [CrossRef] [Green Version]
- Le Meur, Y.; Hausswirth, C.; Abbiss, C.; Baup, Y.; Dorel, S. Performance Factors in the New Combined Event of Modern Pentathlon. J. Sport. Sci. 2010, 28, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Demarie, S.; Magini, V.; Galvani, C.; Bianco, M. Effect of Fatigue on the Swimming Event in High Level Pentathlets. Med. Sport 2011, 64, 379–391. [Google Scholar]
- Hoffmann, B.; Flatt, A.A.; Silva, L.E.V.; Młyńczak, M.; Baranowski, R.; Dziedzic, E.; Werner, B.; Gąsior, J.S. A Pilot Study of the Reliability and Agreement of Heart Rate, Respiratory Rate and Short-Term Heart Rate Variability in Elite Modern Pentathlon Athletes. Diagnostics 2020, 10, 833. [Google Scholar] [CrossRef] [PubMed]
- Roels, B.; Schmitt, L.; Libicz, S.; Bentley, D.; Richalet, J.P.; Millet, G. Specificity of V˙O2MAX and the Ventilatory Threshold in Free Swimming and Cycle Ergometry: Comparison between Triathletes and Swimmers. Br. J. Sport. Med. 2005, 39, 965–968. [Google Scholar] [CrossRef]
- Costa, M.J.; Santos, C.C.; Marinho, D.A.; Silva, A.J.; Barbosa, T.M. Modelling the 200 m Front-Crawl Performance Predictors at the Winter Season Peak. IJERPH 2020, 17, 2126. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.P.; Cadavid, E.; Baena, J.; Monsalvete, E.; Barna, A.; De Rose, E.H. Metabolic Predictors of Middle-Distance Swimming Performance. Br. J. Sport. Med. 1990, 24, 196–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, D.D.; Soares, S.; Zacca, R.; Sousa, J.; Marinho, D.A.; Silva, A.J.; Vilas-Boas, J.P.; Fernandes, R.J. Anaerobic Threshold Biophysical Characterisation of the Four Swimming Techniques. Int. J. Sport. Med. 2020, 41, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.C.; Figueiredo, P.; Oliveira, N.L.; Oliveira, J.; Silva, A.J.; Keskinen, K.L.; Rodríguez, F.A.; MacHado, L.J.; Vilas-Boas, J.P.; Fernandes, R.J. V˙O2 Kinetics in 200-m Race-Pace Front Crawl Swimming. Int. J. Sport. Med. 2011, 32, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Figueiredo, P.; Pendergast, D.; Kjendlie, P.-L.; Vilas-Boas, J.P.; Fernandes, R.J. Critical Evaluation of Oxygen-Uptake Assessment in Swimming. Int. J. Sport. Physiol. Perform. 2014, 9, 190–202. [Google Scholar] [CrossRef] [Green Version]
- Caputo, F. Intrinsic Factors of the Locomotion Energy Cost during Swimming. Rev. Bras. Med. Esporte 2006, 12, 5. [Google Scholar]
- Zamparo, P.; Cortesi, M.; Gatta, G. The Energy Cost of Swimming and Its Determinants. Eur. J. Appl. Physiol. 2020, 120, 41–66. [Google Scholar] [CrossRef] [PubMed]
- Zamparo, P.; Capelli, C.; Pendergast, D. Energetics of Swimming: A Historical Perspective. Eur. J. Appl. Physiol. 2011, 111, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.; Fernandes, R.; Keskinen, K.; Colaço, P.; Cardoso, C.; Silva, J.; Vilas-Boas, J. Evaluation of the Energy Expenditure in Competitive Swimming Strokes. Int. J. Sport. Med. 2006, 27, 894–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyne, D.B.; Sharp, R.L. Physical and Energy Requirements of Competitive Swimming Events. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Chaverri, D.; Schuller, T.; Iglesias, X.; Hoffmann, U.; Rodríguez, F.A. A New Model for Estimating Peak Oxygen Uptake Based on Postexercise Measurements in Swimming. Int. J. Sport. Physiol. Perform. 2016, 11, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Demarie, S.; Chirico, E.; Bratta, C.; Cortis, C. Energy Consumption of Water Running and Cycling at Four Exercise Intensities. Sports 2022, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Dekerle, J.; Sidney, M.; Hespel, J.M.; Pelayo, P. Validity and Reliability of Critical Speed, Critical Stroke Rate, and Anaerobic Capacity in Relation to Front Crawl Swimming Performances. Int. J. Sport. Med. 2002, 23, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Dekerle, J.; Pelayo, P.; Clipet, B.; Depretz, S.; Lefevre, T.; Sidney, M. Critical Swimming Speed Does Not Represent the Speed at Maximal Lactate Steady State. Int. J. Sport. Med. 2005, 26, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Ginn, E.M. Australian Sports Commission Critical Speed and Training Intensities for Swimming; National Sports Research Centre: Canberra, Australia, 1993. [Google Scholar]
- Pyne, D.B.; Lee, H.; Swanwick, K.M. Monitoring the Lactate Threshold in World-Ranked Swimmers. Med. Sci. Sport. Exerc. 2001, 33, 291–297. [Google Scholar] [CrossRef]
- Torre, G.; Fossati, C.; Quaranta, F.; Casasco, M.; Papalia, R.; Pigozzi, F. Resumption of Sport and Exercise during Coronavirus Disease 2019 (COVID-19) Pandemic. The Preparticipation Screening and Cardiovascular Fitness Evaluation. Med. Sport 2020, 73, 418–429. [Google Scholar] [CrossRef]
- Loureiro, L.L.; Fonseca, S.; Castro, N.G.C. de O. e; dos Passos, R.B.; Porto, C.P.M.; Pierucci, A.P.T.R. Basal Metabolic Rate of Adolescent Modern Pentathlon Athletes: Agreement between Indirect Calorimetry and Predictive Equations and the Correlation with Body Parameters. PLoS ONE 2015, 10, e0142859. [Google Scholar] [CrossRef] [PubMed]
- Piatrikova, E.; Sousa, A.C.; Gonzalez, J.T.; Williams, S. Validity and Reliability of the 3-Minute All-Out Test in National and International Competitive Swimmers. Int. J. Sport. Physiol. Perform. 2018, 13, 1190–1198. [Google Scholar] [CrossRef] [PubMed]
- Marinho, D.A.; Amorim, R.A.; Costa, A.M.; Marques, M.C.; Pérez-Turpin, J.A.; Neiva, H.P. “Anaerobic” Critical Velocity and Swimming Performance in Young Swimmers. JHSE 2011, 6, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Dekerle, J.; Paterson, J. Muscular Fatigue When Swimming Intermittently above and below Critical Speed. Int. J. Sport. Physiol. Perform 2016, 11, 602–607. [Google Scholar] [CrossRef] [Green Version]
- Minganti, C.; Demarie, S.; Comotto, S.; Meeusen, R.; Piacentini, M.F. Evaluation of Critical Swimming Velocity in Young Amateur Swimmers. Sport Sci. Health 2012, 7, 87–91. [Google Scholar] [CrossRef]
- Toubekis, A.G.; Tokmakidis, S.P. Metabolic Responses at Various Intensities Relative to Critical Swimming Velocity. J. Strength Cond. Res. 2013, 27, 1731–1741. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.J.; Fernandes, R.J. Swimming Critical Velocity Physiological Meaning Is Affected by Testing Distances. IPJ 2018, 2, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Pelayo, P.; Dekerle, J.; Delaporte, B.; Gosse, N.; Sidney, M. Critical Speed and Critical Stroke Rate Could Be Useful Physiological and Technical Criteria for Coaches to Monitor Endurance Performance in Competitive Swimmers. In Proceedings of the 18 International Symposium on Biomechanics in Sports, Hong Kong, China, 25–30 June 2000. [Google Scholar]
- Petrigna, L.; Karsten, B.; Delextrat, A.; Pajaujiene, S.; Mani, D.; Paoli, A.; Palma, A.; Bianco, A. An Updated Methodology to Estimate Critical Velocity in Front Crawl Swimming: A Scoping Review. Sci. Sport. 2022, 37, 373–382. [Google Scholar] [CrossRef]
- Dekerle, J.; Brickley, G.; Alberty, M.; Pelayo, P. Characterising the Slope of the Distance–Time Relationship in Swimming. J. Sci. Med. Sport 2010, 13, 365–370. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sport. Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Dal Monte, A.; Sardella, F.; Alippi, B.; Faina, M.; Manetta, A. A New Respiratory Valve System for Measuring Oxygen Uptake during Swimming. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Keskinen, K.L.; Rodríguez, F.A.; Keskinen, O.P. Respiratory Snorkel and Valve System for Breath-by-Breath Gas Analysis in Swimming: Breath-by-Breath Analysis during Swimming. Scand. J. Med. Sci. Sport. 2003, 13, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Galvani, C.; Bruseghini, P.; Annoni, I.; Demarie, S.; Salvati, A.; Faina, M. Excess Post-Exercise Oxygen Consumption after Different Moderate Physical Activities in a Healthy Female Population. Med. Sport 2013, 66, 163–178. [Google Scholar]
- Glaab, T.; Taube, C. Practical Guide to Cardiopulmonary Exercise Testing in Adults. Respir. Res. 2022, 23, 9. [Google Scholar] [CrossRef]
- Mitchell, L.J.G.; Rattray, B.; Saunders, P.U.; Pyne, D.B. The Relationship between Talent Identification Testing Parameters and Performance in Elite Junior Swimmers. J. Sci. Med. Sport 2018, 21, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Davison, R.C.R.; Van Someren, K.A.; Jones, A.M. Physiological Monitoring of the Olympic Athlete. J. Sport. Sci. 2009, 27, 1433–1442. [Google Scholar] [CrossRef]
- Burnley, M.; Doust, J.H.; Vanhatalo, A. A 3-Min All-Out Test to Determine Peak Oxygen Uptake and the Maximal Steady State. Med. Sci. Sport. Exerc. 2006, 38, 1995–2003. [Google Scholar] [CrossRef] [PubMed]
- Piatrikova, E.; Willsmer, N.J.; Sousa, A.C.; Gonzalez, J.T.; Williams, S. Individualizing Training in Swimming: Evidence for Utilizing the Critical Speed and Critical Stroke Rate Concepts. Int. J. Sport. Physiol. Perform. 2020, 15, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Svedahl, K.; MacIntosh, B.R. Anaerobic Threshold: The Concept and Methods of Measurement. Can. J. Appl. Physiol. 2003, 28, 299–323. [Google Scholar] [CrossRef] [Green Version]
- Lopes, R.F.; Osiecki, R.; Rama, L.M.P.L. Heart Rate and Blood Lactate Concentration Response after Each Segment of the Olympic Triathlon Event. Rev. Bras. De Med. Do Esporte 2012, 18, 158–160. [Google Scholar] [CrossRef]
- Hellard, P.; Scordia, C.; Avalos, M.; Mujika, I.; Pyne, D.B. Modelling of Optimal Training Load Patterns during the 11 Weeks Preceding Major Competition in Elite Swimmers. Appl. Physiol. Nutr. Metab. 2017, 42, 1106–1117. [Google Scholar] [CrossRef]
- Faude, O.; Meyer, T.; Scharhag, J.; Weins, F.; Urhausen, A.; Kindermann, W. Volume vs. Intensity in the Training of Competitive Swimmers. Int. J. Sport. Med. 2008, 29, 906–912. [Google Scholar] [CrossRef] [Green Version]
- Demarie, S.; Galvani, C.; Chirico, E.; Gianfelici, A. Quantification of Technical Drills in Swimming Training. Med. Sport 2020, 73, 578–586. [Google Scholar] [CrossRef]
- Barbosa, T.M.; Keskinen, K.L.; Fernandes, R.; Colaço, P.; Carmo, C.; Vilas-Boas, J.P. Relationships Between Energetic, Stroke Determinants, and Velocity in Butterfly. Int. J. Sport. Med. 2005, 26, 841–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelarigo, J.G.; Greco, C.C.; Denadai, B.S.; Fernandes, R.J.; Vilas-Boas, J.P.; Pendergast, D.R. Do 5% Changes around Maximal Lactate Steady State Lead to Swimming Biophysical Modifications? Hum. Mov. Sci. 2016, 49, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demarie, S.; Minganti, C.; Piacentini, M.; Parisi, A.; Cerulli, C.; Magini, V. Reducing Anxiety in Novel Horse Riders by a Mechanical Horse Simulator. Med. Sport 2013, 66, 179–188. [Google Scholar]
- Ruiz-Navarro, J.J.; Gay, A.; Cuenca-Fernández, F.; López-Belmonte, Ó.; Morales-Ortíz, E.; López-Contreras, G.; Arellano, R. The Relationship between Tethered Swimming, Anaerobic Critical Velocity, Dry-Land Strength, and Swimming Performance. Int. J. Perform. Anal. Sport 2022, 22, 407–421. [Google Scholar] [CrossRef]
- Reis, J.F.; Alves, F.B.; Bruno, P.M.; Vleck, V.; Millet, G.P. Oxygen Uptake Kinetics and Middle Distance Swimming Performance. J. Sci. Med. Sport 2012, 15, 58–63. [Google Scholar] [CrossRef]
Statistical Model | Purpose | Variables | Effect Size |
---|---|---|---|
Linear correlation | Relation among variables | All variables | |
Paired Simple T-test | VO2 differences | VO2 values | 0.636 |
Wilcoxon Signed Ranks Test | Lactate values | Lactate accumulation | 0.881 |
Repeated Measure Anova | VO2 and Energy cost | VO2peak and ECs | 0.522 |
Repeated Measure Anova | Differences between times | Time values | 0.998 |
Repeated Measure Anova | Velocities Differences | Velocity values | 0.970 |
t200m Competition | 100, 200, 300 m and critical velocity (CV) | ||||||
t100m | t200m | t300 m | v100m | v200m | v300m | CV | |
0.449 | 0.438 | 0.596 * | −0.448 | −0.429 | −0.624 * | −0.965 ** | |
Velocity corresponding to the 2 and 4 mM·L−1 of lactate accumulation (v2 and v4) | |||||||
v200m | v200m at 90% | v2 | v4 | ||||
−0.429 | −0.450 | −0.398 | −0.304 | ||||
Peak oxygen uptake (VO2peak) | |||||||
vPeak | Lapeak | VO2peak | |||||
−0.367 | −0.211 | 0.001 | |||||
Energy cost at submaximal velocity (EC) | |||||||
ECrest | ECnet | ∆La | ECLanet | TotECnet | TotECnet% | ||
0.427 | −0.257 | 0.15 | 0.15 | −0.211 | −0.068 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demarie, S.; Chirico, E.; Billat, V. Which of the Physiological vs. Critical Speed Is a Determinant of Modern Pentathlon 200 m Front Crawl Swimming Performance: The Influence of Protocol and Ergometer vs. Swimming Pool Conditions. Sports 2022, 10, 201. https://doi.org/10.3390/sports10120201
Demarie S, Chirico E, Billat V. Which of the Physiological vs. Critical Speed Is a Determinant of Modern Pentathlon 200 m Front Crawl Swimming Performance: The Influence of Protocol and Ergometer vs. Swimming Pool Conditions. Sports. 2022; 10(12):201. https://doi.org/10.3390/sports10120201
Chicago/Turabian StyleDemarie, Sabrina, Emanuele Chirico, and Veronique Billat. 2022. "Which of the Physiological vs. Critical Speed Is a Determinant of Modern Pentathlon 200 m Front Crawl Swimming Performance: The Influence of Protocol and Ergometer vs. Swimming Pool Conditions" Sports 10, no. 12: 201. https://doi.org/10.3390/sports10120201
APA StyleDemarie, S., Chirico, E., & Billat, V. (2022). Which of the Physiological vs. Critical Speed Is a Determinant of Modern Pentathlon 200 m Front Crawl Swimming Performance: The Influence of Protocol and Ergometer vs. Swimming Pool Conditions. Sports, 10(12), 201. https://doi.org/10.3390/sports10120201