Usefulness of Kinetics and Biomechanical Parameters as Predictors of Athlete’s Performance in 800 m Running Race
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Instruments and Material
2.3.1. Session 1—Familiarization
2.3.2. Session 2—800 m Running Race on Field Test
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Kinetics
3.2. Evolution of Biomechanical Parameters during the Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Billat, V.L. Interval training for performance: A scientific and empirical practice. Special recommendations for middle and long distance running. Part I: Aerobic interval training. Sports Med. 2001, 31, 13–31. [Google Scholar] [CrossRef]
- Jones, A.M.; Kirby, B.S.; Clark, I.E.; Rice, H.M.; Fulkerson, E.; Wylie, L.J.; Wilkerson, D.P.; Vanhatalo, A.; Wilkins, B.W. Physiological demands of running at 2-hour marathon race pace. J. Appl. Physiol. 2021, 130, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Jones, A.M. Oxygen Uptake Kinetics. Compr. Physiol. 2012, 2, 933–996. [Google Scholar] [PubMed]
- Noakes, T.D. Testing for maximum oxygen consumption has produced a brainless model of human exercise performance. J. Sports Med. 2008, 42, 551–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billat, V.; Hamard, L.; Koralsztein, J.P.; Morton, R.H. Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1500-m run. J. Appl. Physiol. 2009, 107, 478–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, R.; Noakes, T.D. The physiological regulation of pacing strategy during exercise: A critical review. Br. J. Sports Med. 2009, 43, e1. [Google Scholar] [CrossRef] [PubMed]
- Bidder, O.R.; Goulding, C.; Toledo, A.; van Walsum, T.A.; Siebert, U.; Halsey, L.G. Does the treadmill support valid energetics estimates of field locomotion? Integr. Comp. Biol. 2017, 57, 301–319. [Google Scholar] [CrossRef] [Green Version]
- Girard, O.; Millet, G.P.; Slawinski, J.; Racinais, S.; Micallef, J.P. Changes in running mechanics and spring-mass behaviour during a 5-km time trial. Int. J. Sports. Med. 2013, 34, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Hanon, C.; Gajer, B. Velocity and stride parameters of world-class 400-meter athletes compared with less experienced runners. J. Strength Cond. Res. 2009, 23, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.F.; Alves, F.B.; Bruno, P.M.; Vleck, V.; Millet, G.P. Oxygen uptake kinetics and middle distance swimming performance. J. Sci. Med. Sport. 2012, 15, 58–63. [Google Scholar] [CrossRef]
- Zacca, R.; Azevedo, R.; Figueiredo, P.; Vilas-Boas, J.P.; Castro, F.A.S.; Pyne, D.B.; Fernandes, R.J. VO2 FITTING: A free and open-source software for modelling oxygen uptake kinetics in swimming and other exercise modalities. Sports 2019, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Whipp, B.J.; Ward, S.A. Physiological determinants of pulmonary gas exchange kinetics during exercise. Med. Sci. Sports Exerc. 1990, 22, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Burnley, M.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
- Ribeiro, J.; Figueiredo, P.; Sousa, A.; Monteiro, J.; Pelarigo, J.; Vilas-Boas, J.P.; Toussaint, H.M.; Fernandes, R.F. VO2 kinetics and metabolic contributions during full and upper body extreme swimming intensity. Eur. J. Appl. Physiol. 2015, 115, 1117–1124. [Google Scholar] [CrossRef]
- Sousa, A.C.; Figueiredo, P.; Oliveira, N.L.; Oliveira, J.; Silva, A.J.; Keskinen, K.L.; Rodriguez, F.A.; Machado, L.J.; Vilas-Boas, J.P.; Fernandes, R.J. VO2 kinetics in 200-m race-pace front crawl swimming. Int. J. Sports Med. 2011, 32, 765–770. [Google Scholar] [CrossRef]
- Hanon, C.; Thomas, C. Effects of optimal pacing strategies for 400-, 800-, and 1500-m races on the VO2 response. J. Sports Sci. 2011, 29, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.; Zamparo, P.; Sousa, A.; Vilas Boas, J.P.; Fernandes, R. An energy balance of the 200 m front crawl race. Eur. J. Appl. Physiol. 2011, 111, 767–777. [Google Scholar] [CrossRef]
- DiMenna, F.J.; Jones, A. Linear versus Nonlinear VO2 responses to exercise: Reshaping traditional beliefs. J. Exerc. Sci. Fit. 2009, 7, 67–84. [Google Scholar] [CrossRef] [Green Version]
- Zacca, R.; Azevedo, R.; Chainok, P.; Vilas-Boas, J.P.; Castro, F.A.S.; Pyne, D.B.; Fernandes, R.J. Monitoring age-group swimmers over a training macrocycle: Energetics, technique, and anthropometrics. J. Strength Cond. Res. 2020, 34, 818–827. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Hanon, C.; Perrey, S.; Le Chevalier, J.M.; Couturier, A.; Vandewalle, H. Oxygen uptake response to an 800-m running race. Int. J. Sports Med. 2005, 26, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Sandals, L.E.; Wood, D.M.; Draper, S.B.; James, D.V. Influence of pacing strategy on oxygen uptake during treadmill middle-distance running. Int. J. Sport Med. 2006, 27, 37–42. [Google Scholar] [CrossRef] [PubMed]
- González-Mohíno, F.; Martín, R.; Santos-García, D.J.; Fidel, P.A.; de Asis Fernandez, F.; Yustres, I.; González-Ravé, J.M. Effects of high-intensity warm-ups on running performance. Int. J. Sports Med. 2018, 39, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Blasco-Lafarga, C.; Montoya-Vieco, A.; Martínez-Navarro, I.; Mateo-March, M.; Gallach, J.E. Six hundred meter-run and broken 800’s contribution to pacing improvement in eight hundred meter-athletics: Role of expertise and training implications. J. Strength Cond. Res. 2013, 27, 2405–2413. [Google Scholar] [CrossRef] [PubMed]
- Hanon, C.; Leveque, J.M.; Thomas, C.; Vivier, L. Pacing strategy and VO2 kinetics during a 1500-m race. Int. J. Sports Med. 2007, 29, 206–211. [Google Scholar] [CrossRef]
- Balilionis, G.; Nepocatych, S.; Ellis, C.M.; Richardson, M.T.; Neggers, Y.H.; Bishop, P.A. Effects of different types of warm-up on swimming performance, reaction time, and dive distance. J. Strength Cond. Res. 2012, 12, 3297–3303. [Google Scholar] [CrossRef]
- Murias, J.M.; Spencer, M.D.; Kowalchuk, J.M.; Paterson, D.H. Influence of phase I duration on phase II VO2 kinetics parameter estimates in older and young adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Whipp, B.J.; Rossiter, H.B. The kinetics of oxygen uptake. Physiological inferences from parameters. In Oxygen Uptake Kinetics in Sport, Exercise and Medicine; Jones, A., Poole, D., Eds.; Routledge: London, UK, 2005; pp. 62–94. [Google Scholar]
- Whipp, B.J.; Ward, S.A.; Lamarra, N.; Davis, J.A.; Wasserman, K. Parameters of ventilatory and gas exchange dynamics during exercise. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982, 52, 1506–1513. [Google Scholar] [CrossRef]
- Sousa, A.C.; Vilas-Boas, J.P.; Fernandes, R.J. VO2 kinetics and metabolic contributions whilst swimming at 95, 100, and 105% of the velocity at VO2max. Biomed. Res. Int. 2014, 2014, 675363. [Google Scholar] [CrossRef] [Green Version]
- Billat, V.L.; Morton, R.H.; Blondel, N.; Berthoin, S.; Bocquet, V.; Koralsztein, J.P.; Barstow, T.J. Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake. Eur. J. Appl. Physiol. 2000, 82, 178–187. [Google Scholar] [CrossRef]
- Murgatroyd, S.R.; Ferguson, C.; Ward, S.A.; Whipp, B.J.; Rossiter, H.B. Pulmonary O2 uptake kinetics as a determinant of high-intensity exercise tolerance in humans. J. Appl. Physiol. 2011, 110, 1598–1606. [Google Scholar] [CrossRef]
- Rossiter, H.B.; Ward, S.A.; Kowalchuk, J.M.; Howe, F.A.; Griffiths, J.R.; Whipp, B.J. Dynamic asymmetry of phosphocreatine concentration and O2 uptake between the on- and off-transients of moderate- and high-intensity exercise in humans. J. Physiol. 2002, 541, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, H.B. Exercise: Kinetic considerations for gas exchange. Compr. Physiol. 2011, 1, 203–244. [Google Scholar] [PubMed]
- Hill, A.V.; Lupton, H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q. J. Med. 1923, 16, 135–171. [Google Scholar] [CrossRef]
- Pelarigo, J.G.; Machado, L.; Fernandes, R.J.; Greco, C.C.; Vilas-Boas, J.P. Oxygen uptake kinetics and energy system’s contribution around maximal lactate steady state swimming intensity. PLoS ONE 2017, 12, e0167263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatzilazaridis, I.; Panoutsakopoulos, V.; Papaiakovou, G.I. Stride characteristics progress in a 40-M sprinting test executed by male preadolescent, adolescent and adult athletes. Biol. Exerc. 2012, 8, 59–77. [Google Scholar] [CrossRef]
- Saraslanidis, P.J.; Panoutsakopoulos, V.; Tsalis, G.A.; Kyprianou, E. The effect of different first 200-m pacing strategies on blood lactate and biomechanical parameters of the 400-m sprint. Eur. J. Appl. Physiol. 2011, 111, 1579–1590. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Duffield, R.; Dawson, B.; Goodman, C. Energy system contribution to 400-metre and 800-metre track running. J. Sports Sci. 2005, 23, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.F.; Millet, G.P.; Bruno, P.M.; Vleck, V.; Alves, F.B. Sex and exercise intensity do not influence oxygen uptake kinetics in submaximal swimming. Front. Physiol. 2017, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R.; Lambert, M.; Noakes, T.D. An analysis of pacing strategies during men’s World-record performances in track athletics. Int. J. Sport Physiol. Perform. 2006, 1, 223–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roelands, B.; de Koning, J.; Foster, C.; Hettinga, F.; Meeusen, R. Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing. Sports Med. 2013, 43, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Vucetic, V.; Mozek, M.; Rakovac, M. Peak blood lactate parameters in athletes of different running events during low-intensity recovery after ramp-type protocol. J. Strength Cond. Res. 2015, 29, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Bret, C.; Messonnier, L.; Nouck Nouck, J.M.; Freund, H.; Dufour, A.B.; Lacour, J.R. Differences in lactate exchange and removal abilities in athletes specialised in different track running events (100 to 1500 m). Int. J. Sports Med. 2003, 24, 108–113. [Google Scholar] [CrossRef]
- Koppo, K.; Bouckaert, J.; Jones, A.M. Effects of training status and exercise intensity on phase II VO2 kinetics. Med. Sci. Sports Exerc. 2004, 36, 225–232. [Google Scholar] [CrossRef]
- Keir, D.A.; Copithorne, D.B.; Hodgson, M.D.; Pogliaghi, S.; Rice, C.L.; Kowalchuk, J.M. The slow component of pulmonary O2 uptake accompanies peripheral muscle fatigue during high intensity exercise. J. Appl. Physiol. 2016, 121, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Grassi, B.; Christensen, P.M.; Krustrup, P.; Bangsbo, J.; Poole, D.C. Slow component of VO2 kinetics: Mechanistic bases and practical applications. Med. Sci. Sports Exerc. 2011, 43, 2046–2062. [Google Scholar] [CrossRef]
- Krustrup, P.; Söderlund, K.; Mohr, M.; Bangsbo, J. The slow component of oxygen uptake during intense, sub-maximal exercise in man is associated with additional fibre recruitment. Pflugers Arch. 2004, 447, 855–866. [Google Scholar] [CrossRef]
- Bezodis, I.N.; Kerwin, D.G.; Cooper, S.M.; Salo, A.I.T. Sprint running performance and technique changes in athletes during periodized training: An elite training group case study. Int. J. Sports Physiol. Perform. 2018, 13, 755–762. [Google Scholar] [CrossRef]
- Casado, A.; Hanley, B.; Jiménez-Reyes, P.; Renfree, A. Pacing profiles and tactical behaviors of elite runners. J. Sport Health Sci. 2020, 20, 537–549. [Google Scholar] [CrossRef]
- González-Mohíno, F.; Del Cerro, J.S.; Renfree, A.; Yustres, I.; González-Ravé, J.M. The relationship between tactical positioning and the race outcome in 800-m running at the 2016 Olympic Games and 2017 IAAF World Championship. J. Hum. Kinet. 2020, 71, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandford, G.N.; Kilding, A.E.; Ross, A.; Laursen, P.B. Maximal sprint speed and the anaerobic speed reserve domain: The untapped tools that differentiate the world’s best 800 m runners. Sports Med. 2019, 49, 843–852. [Google Scholar] [CrossRef] [PubMed]
Participant | PB Time (s) | Test Race Time (s) | %PB | (La −)peak (mmol L−1) | |
---|---|---|---|---|---|
1 | 129.67 | 137.4 | 94.32 | 50.1 | 15.7 |
2 | 143.26 | 144.6 | 99.02 | 36.4 | 15.5 |
3 | 132.56 | 143.1 | 92.67 | 51.1 | 14.2 |
4 | 134.15 | 140.1 | 95.76 | 36.8 | 22 |
5 | 119.6 | 130.1 | 91.89 | 50.3 | 18.9 |
6 | 133.58 | 152.6 | 87.49 | 46.2 | 11 |
7 | 142.8 | 144.7 | 99.48 | 50.1 | 14.3 |
8 | 133.61 | 153.1 | 92.71 | 51.2 | 13.6 |
Mean ± SD | 133.65 ± 7.47 | 143.24 ± 7.60 | 94.17 ± 3.94 | 46.52 ± 6.32 | 15.7 ± 3.39 |
Ⴟ (mL kg−1 min−1) | Δ (mL·kg−1 min−1) | τ (s) | TD (s) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phases | CD | P | SC | D | CD | P | SC | D | CD | P | SC | D | CD | P | SC | D |
Participant | ||||||||||||||||
1 | 19.47 | 44.60 | 54.65 | 49.97 | 14.37 | 32.97 | 3.38 | 6.02 | 7.88 | 46.75 | 55.16 | 27.68 | - | 7.88 | 54.63 | 109.79 |
2 | 12.60 | 32.92 | 36.04 | 34.02 | 9.54 | 23.75 | −1.40 | 0.70 | 9.12 | 53.48 | 54.72 | 27.36 | - | 9.12 | 62.6 | 117.32 |
3 | 13.87 | 42.07 | 55.14 | 50.77 | 9.69 | 33.43 | 8.61 | 6.31 | 8.11 | 50.2 | 55.44 | 29.28 | - | 8.11 | 58.31 | 113.75 |
4 | 16.85 | 30.60 | 34.73 | 33.20 | 12.81 | 16.50 | 1.30 | 2.05 | 9.28 | 50.2 | 53.64 | 26.96 | - | 9.28 | 59.48 | 113.12 |
5 | 15.9 | 39.09 | 52.43 | 52.67 | 10.1 | 33.65 | 4.80 | 1.15 | 8.28 | 48.76 | 48.95 | 24.15 | - | 8.28 | 57.04 | 105.99 |
6 | 22.6 | 40.97 | 45.02 | 41.13 | 18.35 | 19.85 | 0.25 | 4.33 | 9.00 | 57.32 | 57.6 | 28.64 | - | 9.00 | 66.32 | 123.92 |
7 | 12.70 | 30.89 | 36.78 | 34.67 | 10.2 | 23.70 | 0.10 | 2.20 | 9.1 | 53.52 | 54.64 | 27.5 | - | 9.1 | 62.62 | 117.26 |
8 | 12.37 | 40.57 | 53.71 | 49.60 | 9.06 | 33.43 | 8.61 | 6.31 | 9.24 | 57.24 | 57.84 | 28.74 | - | 9.24 | 66.48 | 124.32 |
Mean ± SD | 15.79 ± 3.69 | 37.71 ± 5.44 * | 46. 06 ± 9.03 *,† | 43.25 ± 8.40 *,Ŧ | 11.76 ± 3.23 | 27.16 ± 7.02 * | 3.20 ± 3.85 *,† | 3.63 ± 2.38 *,† | 8.75 ± 0.56 | 52.18 ± 3.86 | 54.74 ± 2.75 | 27.53 ± 1.58 | - | 8.75 ± 0.56 | 60.93 ± 4.29 | 115.68 ± 6.39 |
Vr (km h−1) | SF (Hz) | SL (m) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phases | CD | P | SC | D | CD | P | SC | D | CD | P | SC | D |
Participant | ||||||||||||
1 | 22.84 | 23.22 | 19.60 | 19.53 | 3.65 | 3.34 | 3.14 | 3.12 | 1.74 | 1.93 | 1.74 | 1.74 |
2 | 19.74 | 20.22 | 19.75 | 19.74 | 3.37 | 3.21 | 3.20 | 3.22 | 1.63 | 1.75 | 1.71 | 1.70 |
3 | 22.19 | 21.56 | 19.50 | 18.44 | 3.45 | 3.23 | 3.15 | 3.11 | 1.79 | 1.85 | 1.72 | 1.65 |
4 | 19.40 | 21.59 | 20.20 | 20.06 | 3.23 | 3.22 | 3.12 | 3.15 | 1.67 | 1.86 | 1.80 | 1.77 |
5 | 21.74 | 22.18 | 22.08 | 22.37 | 3.50 | 3.29 | 3.32 | 3.32 | 1.72 | 1.87 | 1.85 | 1.87 |
6 | 20.00 | 18.87 | 18.76 | 18.86 | 3.44 | 3.11 | 3.12 | 3.11 | 1.61 | 1.68 | 1.67 | 1.69 |
7 | 19.78 | 20.21 | 19.78 | 19.64 | 3.38 | 3.24 | 3.21 | 3.22 | 1.63 | 1.73 | 1.71 | 1.70 |
8 | 19.48 | 18.91 | 18.68 | 18.79 | 3.41 | 3.12 | 3.11 | 3.17 | 1.59 | 1.68 | 1.67 | 1.57 |
Mean ± SD | 20.64 ± 1.37 | 20.84 ± 1.55 | 19.79 ± 1.57 | 19.67 ± 1.21 | 3.42 ± 0.11 | 3.22 ± 0.07 * | 3.17 ± 0.07 * | 3.17 ± 0.07 * | 1.67 ± 0.07 | 1.79 ± 0.95 * | 1.73 ± 0.62 | 1.71 ± 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, V.T.; Díaz-Pintado, J.V.S.-A.; Piero, D.W.d.; Olmedo, F.H.
Usefulness of
Navarro VT, Díaz-Pintado JVS-A, Piero DWd, Olmedo FH.
Usefulness of
Navarro, Vicente Torres, Jose Vicente Sánchez-Alarcos Díaz-Pintado, Diego Warr di Piero, and Florentino Huertas Olmedo.
2023. "Usefulness of
Navarro, V. T., Díaz-Pintado, J. V. S. -A., Piero, D. W. d., & Olmedo, F. H.
(2023). Usefulness of