Recovery Methods in Basketball: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Inclusion and Exclusion Criteria
2.3. Methodological Quality
3. Results
4. Discussion
4.1. Sleep
4.2. Nutrition
4.3. Hydration
4.4. Supplements
4.5. Cold-Water Immersion
4.6. Compression Garments
4.7. Massage
4.8. Acupuncture
4.9. Tapering
4.10. Mindfulness
4.11. Red-Light Therapy
4.12. Limitations
5. Conclusions
6. Practical Applications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoffman, J.R. Handbook of sports medicine and science: Basketball. In Physiology of Basketball; McHeag, D.B., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2003; pp. 12–24. [Google Scholar]
- Cabarkapa, D.; Fry, A.C.; Lane, M.T.; Hudy, A.; Dietz, P.R.; Cain, G.J.; Andre, M.J. The importance of lower body strength and power for future success in professional men’s basketball. Sport Sci. Health 2020, 10, 10–16. [Google Scholar] [CrossRef]
- Meckel, Y.; Gottlieb, R.; Eliakim, A. Repeated sprint tests in young basketball players at different game stages. Eur. J. Appl. Phys. 2009, 107, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Narazaki, K.; Berg, K.; Stergiou, N.; Chen, B. Physiological demands of competitive basketball. Scand. J. Med. Sci. Sports 2009, 19, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, A.; Melis, F.; Tocco, F.; Laconi, P.; Lai, C.; Concu, A. External mechanical work versus oxidative energy consumption ratio during a basketball field test. J. Sports Med. Phys. Fit. 2002, 42, 409–417. [Google Scholar]
- Ciuti, C.; Marcello, C.; Macis, A.; Onnis, E.; Solinas, R.; Lai, C.; Concu, A. Improved aerobic power by detraining in basketball players mainly trained for strength. Res. Sports Med. 1996, 6, 325–335. [Google Scholar] [CrossRef]
- Abdelkrim, N.; El Fazaa, S.; El Ati, J. Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br. J. Sports Med. 2007, 41, 69–75. [Google Scholar] [CrossRef]
- McInnes, S.E.; Carlson, J.S.; Jones, C.J.; McKenna, M.J. The physiological load imposed on basketball players during competition. J. Sports Sci. 1995, 13, 387–397. [Google Scholar] [CrossRef]
- Ziv, G.; Lidor, R. Physical attributes, physiological characteristics, on-court performances and nutritional strategies of female and male basketball players. Sports Med. 2009, 39, 547–568. [Google Scholar] [CrossRef]
- Philipp, N.M.; Blackburn, S.D.; Cabarkapa, D.; Fry, A.C. Effect of sprint approach velocity and distance on deceleration performance in NCAA Division-I female softball players. J. Hum. Sport Exerc. 2023, 18, 542–554. [Google Scholar] [CrossRef]
- Philipp, N.M.; Cabarkapa, D.; Eserhaut, D.A.; Yu, D.; Fry, A.C. Repeat sprint fatigue and altered neuromuscular performance in recreationally trained basketball players. PLoS ONE 2023, 18, e0288736. [Google Scholar] [CrossRef]
- Philipp, N.M.; Cabarkapa, D.; Marten, K.M.; Cabarkapa, D.V.; Mirkov, D.M.; Knezevic, O.M.; Aleksic, J.; Faj, L.; Fry, A.C. Horizontal deceleration performance in professional female handball players. Biomechanics 2023, 3, 299–309. [Google Scholar] [CrossRef]
- Morrison, M.; Martin, D.T.; Talpey, S.; Scanlan, A.T.; Delaney, J.; Halson, S.L.; Weakley, J. A systematic review on fitness testing in adult male basketball players: Tests adopted, characteristics reported and recommendations for practice. Sports Med. 2022, 52, 1491–1532. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M.; Mazic, S.; Dikic, N. Profiling in basketball: Physical and physiological characteristics of elite players. J. Strength Cond. Res. 2006, 20, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Latin, R.W.; Berg, K.; Baechle, T. Physical and performance characteristics of NCAA Division-I male basketball players. J. Strength Cond. Res. 1994, 8, 214–218. [Google Scholar]
- Holmes, B. How Fatigue Shaped the Season, and What It Means for the Playoffs. Available online: www.espn.com/nba/story/_/id/23094298/how-fatigue-shaped-nba-season-means-playoffs (accessed on 28 September 2023).
- Calleja-González, J.; Marqués-Jiménez, D.; Jones, M.; Huyghe, T.; Navarro, F.; Delextrat, A.; Jukić, I.; Ostojić, S.; Sampaio, J.; Schelling, X.; et al. What are we doing wrong when athletes report higher levels of fatigue from traveling than from training or competition? Front. Psychol. 2020, 11, 194. [Google Scholar] [CrossRef]
- Huyghe, T.; Scanlan, A.T.; Dalbo, V.J.; Calleja-Gonzalez, J. The negative influence of air travel on health and performance in the National Basketball Association: A narrative review. Sports 2018, 6, 89. [Google Scholar] [CrossRef]
- Schwellnus, M.; Soligard, T.; Alonso, J.M.; Bahr, R.; Clarsen, B.; Dijkstra, H.P.; Gabbett, T.J.; Gleeson, M.; Hägglund, M.; Hutchinson, M.R.; et al. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br. J. Sports Med. 2016, 50, 1043–1052. [Google Scholar] [CrossRef]
- Kellmann, M.; Bertollo, M.; Bosquet, L.; Brink, M.; Coutts, A.J.; Duffield, R.; Erlacher, D.; Halson, S.L.; Hecksteden, A.; Heidari, J.; et al. Recovery and Performance in Sport: Consensus Statement. Int. J. Sports Physiol. Perform. 2018, 13, 240–245. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef]
- Terrados, N.; Calleja-Gonzalez, J.; Jukic, I.; Ostojic, S. Physiological and medical strategies in post-competition recovery-practical implications based on scientific evidence. Serb. J. Sport Sci. 2009, 3, 29–37. [Google Scholar]
- Halson, S.L.; Jeukendrup, A.E. Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med. 2004, 34, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Fry, A.C.; Kraemer, W.J. Resistance exercise overtraining and overreaching: Neuroendocrine responses. Sports Med. 1997, 23, 106–129. [Google Scholar] [CrossRef] [PubMed]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhausen, A. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med. Sci. Sports Exerc. 2013, 45, 186–205. [Google Scholar] [CrossRef] [PubMed]
- Urhausen, A.; Kindermann, W. Diagnosis of overtraining: What tools do we have? Sports Med. 2002, 32, 95–102. [Google Scholar] [CrossRef]
- Kreider, R.B.; Fry, A.C.; O’Toole, M.L. Overtraining in Sport; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Zatsiorsky, V.M.; Kraemer, W.J.; Fry, A.C. Science and Practice of Strength Training, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2020. [Google Scholar]
- Roy, B.A. Overreaching/overtraining: More is not always better. Health Fit. J. 2015, 19, 4–5. [Google Scholar] [CrossRef]
- Kreher, J.B. Diagnosis and prevention of overtraining syndrome: An opinion on education strategies. J. Sports Med. 2016, 7, 115–122. [Google Scholar] [CrossRef]
- Edwards, T.; Spiteri, T.; Piggott, B.; Bonhotal, J.; Haff, G.G.; Joyce, C. Monitoring and managing fatigue in basketball. Sports 2018, 6, 19. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Eserhaut, D.A.; Cabarkapa, D.V.; Philipp, N.M.; Fry, A.C. Salivary testosterone and cortisol changes during a game in professional male basketball players. J. Strength Cond. Res. 2023, 37, 1687–1691. [Google Scholar] [CrossRef]
- Luebbers, P.E.; Andre, M.J.; Fry, A.C.; Olsen, L.A.; Pfannestiel, K.B.; Cabarkapa, D. Hormonal responses and jump performance across a season in collegiate women basketball players. Women Sport Phys. Act. J. 2020, 30, 18–26. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Philipp, N.M.; Cabarkapa, D.V.; Fry, A.C. Position-specific differences in countermovement vertical jump force-time metrics in professional male basketball players. Front. Sports Act. Living 2023, 5, 1–6. [Google Scholar] [CrossRef]
- Cabarkapa, D.; Krsman, D.; Cabarkapa, D.V.; Philipp, N.M.; Fry, A.C. Physical and performance characteristics of 3 × 3 professional male basketball players. Sports 2023, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, J.J.; Stone, J.D.; Martin, J.R.; Hornsby, W.G.; Galster, S.M.; Hagen, J.A. Applying force plate technology to inform human performance programming in tactical populations. Appl. Sci. 2021, 11, 6538. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Stone, J.D.; Hornsby, W.G.; Hagen, J.A. Identifying reliable and relatable force-time metrics in athletes-Considerations for the isometric mid-thigh pull and countermovement jump. Sports 2021, 9, 4. [Google Scholar] [CrossRef]
- Cabarkapa, D.V.; Cabarkapa, D.; Whiting, S.M.; Fry, A.C. Fatigue-induced neuromuscular performance changes in professional male volleyball players. Sports 2023, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Philipp, N.M.; Cabarkapa, D.; Nijem, R.M.; Fry, A.C. Changes in countermovement jump force-time characteristic in elite male basketball players: A season-long analyses. PLoS ONE 2023, 18, e0286581. [Google Scholar] [CrossRef] [PubMed]
- Rowell, A.E.; Aughey, R.J.; Hopkins, W.G.; Stewart, A.M.; Cormack, S.J. Identification of sensitive measures of recovery after external load from football match play. Int. J. Sports Phys. Perf. 2017, 12, 969–976. [Google Scholar] [CrossRef]
- Hecksteden, A.; Skorski, S.; Schwindling, S.; Hammes, D.; Pfeiffer, M.; Kellmann, M.; Ferrauti, A.; Meyer, T. Blood-borne markers of fatigue in competitive athletes—Results from simulated training camps. PLoS ONE 2016, 11, e0148810. [Google Scholar] [CrossRef]
- Nedelec, M.; Leduc, C.; Dawson, B.; Guilhem, G.; Dupont, G. Case study: Sleep and injury in elite soccer-a mixed method approach. J. Strength Cond. Res. 2019, 33, 3085–3091. [Google Scholar] [CrossRef]
- Doeven, S.H.; Brink, M.S.; Kosse, S.J.; Lemmink, K.A.P.M. Postmatch recovery of physical performance and biochemical markers in team ball sports: A systematic review. BMJ Open. Sport Exerc. Med. 2018, 4, e000264. [Google Scholar] [CrossRef]
- Moreira, A.; McGuigan, M.R.; Arruda, A.F.; Freitas, C.G.; Aoki, M.S. Monitoring internal load parameters during simulated and official basketball matches. J. Strength Cond. Res. 2012, 26, 861–866. [Google Scholar] [CrossRef]
- Lupo, C.; Tessitore, A.; Gasperi, L.; Gomez, M.A.R. Session-RPE for quantifying the load of different youth basketball training sessions. Biol. Sport 2017, 34, 11–17. [Google Scholar] [CrossRef]
- Lochbaum, M.; Zanatta, T.; Kirschling, D.; May, E. The profile of moods states and athletic performance: A meta-analysis of published studies. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 50–70. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.A.; Moreira, A.; Crewther, B.T.; Nosaka, K.; Viveiros, L.; Aoki, M.S. Monitoring training load, recovery-stress state, immune-endocrine responses, and physical performance in elite female basketball players during a periodized training program. J. Strength Cond. Res. 2014, 28, 2973–2980. [Google Scholar] [CrossRef] [PubMed]
- Calleja-González, J.; Terrados, N.; Mielgo-Ayuso, J.; Delextrat, A.; Jukic, I.; Vaquera, A.; Torres, L.; Schelling, X.; Stojanovic, M.; Ostojic, S.M. Evidence-based post-exercise recovery strategies in basketball. Phys. Sportsmed. 2016, 44, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Huyghe, T.; Calleja Gonzalez, J.; Terrados, N. Post-exercise recovery strategies in basketball: Practical applications based on scientific evidence. In Basketball Sports Medicine and Science; Laver, L., Ed.; Springer: Berlin, Germany, 2020; pp. 799–814. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Verhagen, A.P.; deVet, H.C.; deBie, R.A.; Kessels, A.G.; Boers, M.; Bouter, L.M.; Knipschild, P.G. The Delphi list: A criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J. Clin. Epidemiol. 1998, 51, 1235–1241. [Google Scholar] [CrossRef]
- Delextrat, A.; Calleja-González, J.; Hippocrate, A.; Clarke, N.D. Effects of sports massage and intermittent cold-water immersion on recovery from matches by basketball players. J. Sports Sci. 2013, 31, 11–19. [Google Scholar] [CrossRef]
- Delextrat, A.; Hippocrate, A.; Leddington-Wright, S.; Clarke, N.D. Including stretches in a massage routine improves recovery from official matches in basketball players. J. Strength Cond. Res. 2014, 28, 716–727. [Google Scholar] [CrossRef]
- Ho, C.F.; Jiao, Y.; Wei, B.; Yang, Z.; Wang, H.Y.; Wu, Y.Y.; Yang, C.; Tseng, K.W.; Huang, C.Y.; Chen, C.Y.; et al. Protein supplementation enhances cerebral oxygenation during exercise in elite basketball players. Nutrition 2018, 53, 34–37. [Google Scholar] [CrossRef]
- Ronghui, S. The Research on the anti-fatigue effect of whey protein powder in basketball training. Open Biomed. Eng. J. 2015, 9, 330–334. [Google Scholar] [CrossRef]
- Bird, S.P. Sleep, Recovery, and Athletic Performance: A brief review and recommendations. Strength Cond. J. 2013, 35, 43–47. [Google Scholar] [CrossRef]
- Fullagar, H.H.K.; Duffield, R.; Skorski, S.; Coutts, A.J.; Julian, R.; Meyer, T. Sleep and recovery in team sport: Current sleep-related issues facing professional team-sport athletes. Int. J. Sports Physiol. Perform. 2015, 10, 950–957. [Google Scholar] [CrossRef]
- Calder, A. Recovery strategies for sports performance. USOC. Olymp. Coach E-Mag. 2003, 15, 8–11. [Google Scholar]
- Mah, C.D.; Mah, K.E.; Kezirian, E.J.; Dement, W.C. The effects of sleep extension on the athletic performance of collegiate basketball players. Sleep 2011, 34, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.J.; Kirschen, G.W.; Kancharla, S.; Hale, L. Association between late-night tweeting and next-day game performance among professional basketball players. Sleep Health 2019, 5, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Mougin, F.; Davenne, D.; Simon-Rigaud, M.L.; Renaud, A.; Garnier, A.; Magnin, P. Disturbance of sports performance after partial sleep deprivation. Comptes Rendus Séances Société Biol. Fil. 1989, 183, 461–466. [Google Scholar]
- Ajjimaporn, A.; Ramyarangsi, P.; Siripornpanich, V. Effects of a 20-min nap after sleep deprivation on brain activity and soccer performance. Int. J. Sports Med. 2020, 41, 1009–1016. [Google Scholar] [CrossRef]
- Watson, A.; Johnson, M.; Sanfilippo, J. Decreased sleep is an independent predictor of in-season injury in male collegiate basketball layers. Orthop. J. Sports Med. 2020, 8, 2325967120964481. [Google Scholar] [CrossRef]
- Haraldsdottir, K.; Sanfilippo, J.; McKay, L.; Watson, A.M. Decreased sleep and subjective well-being as independent predictors of injury in female collegiate volleyball players. Orthop. J. Sports Med. 2021, 9, 23259671211029285. [Google Scholar] [CrossRef]
- Silva, A.; Narciso, F.V.; Soalheiro, I.; Viegas, F.; Freitas, L.S.N.; Lima, A.; Leite, B.A.; Aleixo, H.C.; Duffield, R.; de Mello, M.T. Poor sleep quality’s association with soccer injuries: Preliminary data. Int. J. Sports Phys. Perf. 2020, 15, 671–676. [Google Scholar] [CrossRef]
- Vandenbogaerde, T.J.; Hopkins, W.G. Effects of acute carbohydrate supplementation on endurance performance: A meta-analysis. Sports Med. 2011, 41, 773–792. [Google Scholar] [CrossRef] [PubMed]
- Beelen, M.; Burke, L.M.; Gibala, M.J.; Van Loon, L.J. Nutritional strategies to promote post-exercise recovery. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Shirreffs, S.M. Development of individual hydration strategies for athletes. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 457–472. [Google Scholar] [CrossRef]
- Howard, L.; Hillman, A. Influence of hydration status on cognitive function and skill performance in Division III collegiate female basketball players. Med. Sci. Sport Exerc. 2016, 48, 1045. [Google Scholar] [CrossRef]
- Carvalho, P.; Oliveira, B.; Barros, R.; Padrão, P.; Moreira, P.; Teixeira, V.H. Impact of fluid restriction and ad libitum water intake or an 8% carbohydrate-electrolyte beverage on skill performance of elite adolescent basketball players. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Castro, F.; Astudillo, S.; Calleja-González, J.; Zbinden-Foncea, H.; Ramirez Campillo, R.; Castro-Sepúlveda, M. Change in marker of hydration correspond to decrement in lower body power following basketball match. Sci. Sports 2018, 33, 123–128. [Google Scholar] [CrossRef]
- Kurylas, A.; Zajac, T.; Chycki, J.; Maszczyk, A.; Zajac, A. Anaerobic performance and acid-base balance in basketball players after the consumption of highly alkaline water. Int. J. Food Nutr. Sci. 2018, 5, 134–139. [Google Scholar]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar]
- McRae, K.A.; Galloway, S.D.R. Carbohydrate-electrolyte drink ingestion and skill performance during and after 2 hr of indoor tennis match play. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 38–46. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Williams, D.R.; Emerson, N.S.; Hoffman, M.W.; Wells, A.J.; McVeigh, D.M.; McCormack, W.P.; Mangine, G.T.; Gonzalez, A.M.; Fragala, M.S. L-alanyl-L-glutamine ingestion maintains performance during a competitive basketball game. J. Int. Soc. Sports Nutr. 2012, 9, 4. [Google Scholar] [CrossRef]
- Córdova-Martínez, A.; Caballero-García, A.; Bello, H.J.; Pérez-Valdecantos, D.; Roche, E. Effect of glutamine supplementation on muscular damage biomarkers in professional basketball players. Nutrients 2021, 13, 2073. [Google Scholar] [CrossRef] [PubMed]
- Souglis, A.; Bogdanis, G.C.; Giannopoulou, I.; Papadopoulos, C.; Apostolidis, N. Comparison of inflammatory responses and muscle damage indices following a soccer, basketball, volleyball, and handball game at an elite competitive level. Res. Sports Med. 2015, 23, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Ansdell, P.; Dekerle, J. Sodium bicarbonate supplementation delays neuromuscular fatigue without changes in performance outcomes during a basketball match simulation protocol. J. Strength Cond. Res. 2020, 34, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Chiu, M.S. Branched-chain amino acids and arginine improve physical but not skill performance in two consecutive days of exercise. Sci. Sports 2017, 32, 221–228. [Google Scholar] [CrossRef]
- Chen, I.F.; Wu, H.J.; Chen, C.Y.; Chou, K.M.; Chang, C.K. Branched-chain amino acids, arginine, citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2016, 13, 28. [Google Scholar] [CrossRef]
- Hassmén, P.; Blomstrand, E.; Ekblom, B.; Newsholme, E.A. Branched-chain amino acid supplementation during 30-km competitive run: Mood and cognitive performance. Nutrition 1994, 10, 405–410. [Google Scholar]
- Matsui, Y.; Takayanagi, S.; Ohira, T.; Watanabe, M.; Murano, H.; Furuhata, Y.; Miyakawa, S. Effect of a leucine-enriched essential amino acids mixture on muscle recovery. J. Phys. Ther. Sci. 2019, 31, 95–101. [Google Scholar] [CrossRef]
- Schroder, H.; Navarro, E.; Tramullas, A.; Mora, J.; Galiano, D. Nutrition antioxidant status and oxidative stress in professional basketball players: Effects of a three compound antioxidative supplement. Int. J. Sports Med. 2000, 21, 146–150. [Google Scholar] [CrossRef]
- Naziroglu, M.; Kilinc, F.; Uguz, A.C.; Celik, O.; Bal, R.; Butterworth, P.J.; Baydar, M.L. Oral vitamin C and E combination modulates blood lipid peroxidation and antioxidant vitamin levels in maximal exercising basketball players. Cell Biochem. Funct. 2010, 28, 300–305. [Google Scholar] [CrossRef]
- Chaiyakul, S.; Chaibal, S. Effects of delayed cold-water immersion after high-intensity intermittent exercise on subsequent exercise performance in basketball players. Sport Mont 2021, 19, 3–8. [Google Scholar] [CrossRef]
- Montgomery, P.G.; Pyne, D.B.; Cox, A.J.; Hopkins, W.G.; Minahan, C.L.; Hunt, P.H. Muscle damage, inflammation, and recovery interventions during a 3-day basketball tournament. Eur. J. Sport Sci. 2008, 8, 241–250. [Google Scholar] [CrossRef]
- Pelana, R.; Raharjo, S.; Sulaiman, I.; Hermanto, C. Effects of cold-water immersion to aid basketball athlete’s recovery after high-intensity interval training. Int. J. Adv. Sci. Tech. 2020, 29, 2052–2056. [Google Scholar]
- Seco-Calvo, J.; Mielgo-Ayuso, J.; Calvo-Lobo, C.; Cordova, A. Cold water immersion as a strategy for muscle recovery in professional basketball players during the competitive season. J. Sport Rehabil. 2020, 29, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Ascensão, A.; Leite, M.; Rebelo, A.N.; Magalhäes, S.; Magalhäes, J. Effects of cold-water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J. Sports Sci. 2011, 29, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Brophy-Williams, N.; Landers, G.; Wallman, K. Effect of immediate and delayed cold water immersion after a high-intensity exercise session on subsequent run performance. J. Sports Sci. Med. 2011, 10, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Pooley, S.; Spendiff, O.; Allen, M.; Moir, H.J. Comparative efficacy of active recovery and cold water immersion as post-match recovery interventions in elite youth soccer. J. Sports Sci. 2020, 38, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Roberts, L.A.; Figueiredo, V.C.; Egner, I.; Krog, S.; Aas, S.N.; Suzuki, K.; Markworth, J.F.; Coombes, J.S.; Cameron-Smith, D.; et al. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J. Phys. 2017, 595, 695–711. [Google Scholar] [CrossRef]
- Atkins, R.; Lam, W.K.; Scanlan, A.T.; Beaven, C.M.; Driller, M. Lower-body compression garments worn following exercise improve perceived recovery but not subsequent performance in basketball athletes. J. Sports Sci. 2020, 38, 961–969. [Google Scholar] [CrossRef]
- Ballmann, C.; Hotchkiss, H.; Marshall, M.; Rogers, R. The effect of wearing a lower body compression garment on anaerobic exercise performance in Division I NCAA basketball players. Sports 2019, 7, e144. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Mielgo-Ayuso, J.; Caballero-García, A.; Martínez, A.C.; Seco-Calvo, J.; Fernández-Lázaro, C.I. Compressive cryotherapy as a non-pharmacological muscle recovery strategy and with no adverse effects on basketball. Arch. Med. Deporte 2020, 37, 183–190. [Google Scholar]
- Duffield, R.; Edge, J.; Merrells, R.; Hawke, E.; Barnes, M.; Simcock, D.; Gill, N. The effects of compression garments on intermittent exercise performance and recovery on consecutive days. Int. J. Sports Physiol. Perform. 2008, 3, 454–468. [Google Scholar] [CrossRef] [PubMed]
- Kaesaman, N.; Eungpinichpong, W. The acute effect of traditional Thai massage on recovery from fatigue in basketball players. Int. J. Geomate 2019, 16, 53–58. [Google Scholar] [CrossRef]
- Davis, H.L.; Alabed, S.; Chico, T.J.A. Effect of sports massage on performance and recovery: A systematic review and meta-analysis. BMJ Open. Sport Exerc. Med. 2020, 6, e000614. [Google Scholar] [CrossRef] [PubMed]
- Weerapong, P.; Hume, P.A.; Kolt, G.S. The mechanisms of massage and effects on performance, muscle recovery, and injury prevention. Sports Med. 2005, 35, 235–256. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.-P.; Lan, L.W.; He, T.-Y.; Lin, S.-P.; Lin, J.-G.; Jang, T.-R.; Ho, T.-J. Effects of acupuncture stimulation on recovery ability of male elite basketball athletes. Am. J. Chin. Med. 2009, 37, 471–481. [Google Scholar] [CrossRef]
- Ma, H.; Liu, X.; Wu, Y.; Zhang, N. The intervention effects of acupuncture on fatigue induced by exhaustive physical exercises: A metabolomics investigation. Evid. Based Complement. Altern. Med. 2015, 2015, 508302. [Google Scholar] [CrossRef]
- Lin, J.-G.; Yang, S.-H. Effects of acupuncture on exercise-induced muscle soreness and serum creatine kinase activity. Am. J. Chin. Med. 2012, 27, 299–305. [Google Scholar] [CrossRef]
- Hübscher, M.; Vogt, L.; Bernhörster, M.; Rosenhagen, A.; Banzer, W. Effects of acupuncture on symptoms and muscle function in delayed-onset muscle soreness. J. Altern. Complement. Med. 2008, 14, 1011–1016. [Google Scholar] [CrossRef]
- Le Meur, Y.; Hausswirth, C.; Mujika, I. Tapering for competition: A review. Sci. Sports 2012, 27, 77–87. [Google Scholar] [CrossRef]
- Svilar, L.; Castellano, J.; Jukic, I.; Bok, D. Short-term tapering prior to the match: External and internal load quantification in top-level basketball. Arch. Med. Deporte 2019, 36, 288–295. [Google Scholar]
- Beltran-Valls, M.R.; Camarero-López, G.; Beltran-Garrido, J.V.; Cecilia-Gallego, P. Effects of a tapering period on physical condition in soccer players. J. Strength Cond. Res. 2020, 34, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Hermassi, S.; Ghaith, A.; Schwesig, R.; Shephard, R.J.; Souhaiel Chelly, M. Effects of short-term resistance training and tapering on maximal strength, peak power, throwing ball velocity, and sprint performance in handball players. PLoS ONE 2019, 14, e0214827. [Google Scholar]
- Krespi, M.; Sporis, G.; Trajkovic, N. Effects of two different tapering protocols on fitness and physical match performance in elite junior soccer players. J. Strength Cond. Res. 2020, 34, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- Kabat-Zinn, J. Mindfulness-based interventions in context: Past, present, and future. In Clinical Psychology: Science and Practice; Nezu, A.M., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2006; pp. 144–156. [Google Scholar]
- Gardner, F.L.; Moore, Z.E. Mindfulness and acceptance models in sport psychology: A decade of basic and applied scientific advancements. Can. Psychol. 2012, 53, 309. [Google Scholar] [CrossRef]
- Iwasaki, S.; Fry, M.D. Female adolescent soccer players’ perceived motivational climate, goal orientations, and mindful engagement. Psychol. Sport Exerc. 2016, 27, 222–231. [Google Scholar] [CrossRef]
- Vidic, Z.; Martin, M.S.; Oxhandler, R. Mindfulness intervention with a U.S. Women’s NCAA division in basketball team: Impact on stress, athletic coping skills and perceptions of intervention. Sport Psychol. 2017, 31, 147–159. [Google Scholar] [CrossRef]
- Ajilchi, B.; Amini, H.R.; Ardakani, Z.P.; Zadeh, M.M.; Kisely, S. Applying mindfulness training to enhance the mental toughness and emotional intelligence of amateur basketball players. Australas. Psychiatry 2019, 27, 291–296. [Google Scholar] [CrossRef]
- Jones, B.J.; Kaur, S.; Miller, M.; Spencer, R.M.C. Mindfulness-based stress reduction benefits psychological well-being, sleep quality, and athletic performance in female collegiate rowers. Front. Psychol. 2020, 11, 572980. [Google Scholar] [CrossRef]
- Chen, J.H.; Tsai, P.H.; Lin, Y.C.; Chen, C.K.; Chen, C.Y. Mindfulness training enhances flow state and mental health among baseball players in Taiwan. Psychol. Res. Behav. Manag. 2018, 12, 15–21. [Google Scholar] [CrossRef]
- Chambers, R.; Lo, B.C.Y.; Allen, N.B. The impact of intensive mindfulness training on attentional control, cognitive style, and affect. Cogn. Ther. Res. 2008, 32, 303–322. [Google Scholar] [CrossRef]
- Zadeh, M.M.; Ajilchi, B.; Salman, Z.; Kisely, S. Effect of mindfulness programme training to prevent the sport injury and improve the performance of semi-professional soccer players. Australas. Psychiatry 2019, 27, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tian, Y.; Nie, J.; Xu, J.; Liu, D. Red light and the sleep quality and endurance performance of Chinese female basketball players. J. Athl. Train. 2012, 47, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M..; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihajlovic, M.; Cabarkapa, D.; Cabarkapa, D.V.; Philipp, N.M.; Fry, A.C. Recovery Methods in Basketball: A Systematic Review. Sports 2023, 11, 230. https://doi.org/10.3390/sports11110230
Mihajlovic M, Cabarkapa D, Cabarkapa DV, Philipp NM, Fry AC. Recovery Methods in Basketball: A Systematic Review. Sports. 2023; 11(11):230. https://doi.org/10.3390/sports11110230
Chicago/Turabian StyleMihajlovic, Mladen, Dimitrije Cabarkapa, Damjana V. Cabarkapa, Nicolas M. Philipp, and Andrew C. Fry. 2023. "Recovery Methods in Basketball: A Systematic Review" Sports 11, no. 11: 230. https://doi.org/10.3390/sports11110230
APA StyleMihajlovic, M., Cabarkapa, D., Cabarkapa, D. V., Philipp, N. M., & Fry, A. C. (2023). Recovery Methods in Basketball: A Systematic Review. Sports, 11(11), 230. https://doi.org/10.3390/sports11110230