Effects of Myofascial Release Techniques on Joint Range of Motion of Athletes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Registration of Systematic Review and Meta-Analysis Protocol
2.2. Search Strategy and Selection of Studies
2.3. Eligibility Criteria
2.4. Data Extraction
2.5. Assessment of the Methodological Quality of the Studies
2.6. Assessment of Evidence Quality
2.7. Statistical Analyses
3. Results
3.1. Study Selection
3.2. Characteristics of the Included Studies
3.3. Evaluation of Methodological Quality
3.4. The Results of the Overall Effect Size
3.5. The Results of the Moderator Analyses
3.5.1. Age
3.5.2. Gender
3.5.3. Intervention Duration
3.5.4. Joint Type
3.5.5. Intervention Type
3.6. The Results of Publication Bias Analyses
3.7. The Effects of Outliers on the Analyses
3.8. Certainty Assessment and Power Analysis
3.9. The Adverse Effects Reported by Myofascial Release Interventions
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Clinical Trial Registration
Conflicts of Interest
References
- Simenz, C.J.; Dugan, C.A.; Ebben, W.P. Strength and Conditioning Practices of National Basketball Association Strength and Conditioning Coaches. J. Strength Cond. Res. 2005, 19, 495–504. [Google Scholar] [CrossRef]
- Bloomquist, K.; Langberg, H.; Karlsen, S.; Madsgaard, S.; Boesen, M.; Raastad, T. Effect of Range of Motion in Heavy Load Squatting on Muscle and Tendon Adaptations. Eur. J. Appl. Physiol. 2013, 113, 2133–2142. [Google Scholar] [CrossRef] [PubMed]
- Pallarés, J.G.; Hernández-Belmonte, A.; Martínez-Cava, A.; Vetrovsky, T.; Steffl, M.; Courel-Ibáñez, J. Effects of Range of Motion on Resistance Training Adaptations: A Systematic Review and Meta-Analysis. Scand. J. Med. Sci. Sports 2021, 31, 1866–1881. [Google Scholar] [CrossRef]
- Morishita, K.; Karasuno, H.; Yokoi, Y.; Morozumi, K.; Ogihara, H.; Ito, T.; Hanaoka, M.; Fujiwara, T.; Fujimoto, T.; Abe, K. Effects of Therapeutic Ultrasound on Range of Motion and Stretch Pain. J. Phys. Ther. Sci. 2014, 26, 711. [Google Scholar] [CrossRef]
- Sugimoto, D.; McCartney, R.E.; Parisien, R.L.; Dashe, J.; Borg, D.R.; Meehan, W.P. Range of Motion and Ankle Injury History Association with Sex in Pediatric and Adolescent Athletes. Phys. Sportsmed. 2018, 46, 24–29. [Google Scholar] [CrossRef]
- Pinto, R.S.; Gomes, N.; Radaelli, R.; Botton, C.E.; Brown, L.E.; Bottaro, M. Effect of Range of Motion on Muscle Strength and Thickness. J. Strength Cond. Res. 2012, 26, 2140–2145. [Google Scholar] [CrossRef] [PubMed]
- Krzysztofik, M.; Trybulski, R.; Trąbka, B.; Perenc, D.; Łuszcz, K.; Zajac, A.; Alexe, D.I.; Dobrescu, T.; Moraru, C.E. The Impact of Resistance Exercise Range of Motion on the Magnitude of Upper-Body Post-Activation Performance Enhancement. BMC Sports Sci. Med. Rehabil. 2022, 14, 123. [Google Scholar] [CrossRef]
- Sandamas, P.; Gutierrez-Farewik, E.M.; Arndt, A. The Relationships between Pelvic Range of Motion, Step Width and Performance during an Athletic Sprint Start. J. Sports Sci. 2020, 38, 2200–2207. [Google Scholar] [CrossRef] [PubMed]
- Struzik, A.; Konieczny, G.; Stawarz, M.; Grzesik, K.; Winiarski, S.; Rokita, A. Relationship between Lower Limb Angular Kinematic Variables and the Effectiveness of Sprinting during the Acceleration Phase. Appl. Bionics Biomech. 2016, 2016, 7480709. [Google Scholar] [CrossRef]
- Panoutsakopoulos, V.; Kotzamanidou, M.C.; Giannakos, A.K.; Kollias, I.A. Relationship of Vertical Jump Performance and Ankle Joint Range of Motion: Effect of Knee Joint Angle and Handedness in Young Adult Handball Players. Sports 2022, 10, 86. [Google Scholar] [CrossRef]
- Gadomski, S.J.; Ratamess, N.A.; Cutrufello, P.T. Range of Motion Adaptations in Powerlifters. J. Strength Cond. Res. 2018, 32, 3020–3028. [Google Scholar] [CrossRef] [PubMed]
- Moromizato, K.; Kimura, R.; Fukase, H.; Yamaguchi, K.; Ishida, H. Whole-Body Patterns of the Range of Joint Motion in Young Adults: Masculine Type and Feminine Type. J. Physiol. Anthropol. 2016, 35, 23. [Google Scholar] [CrossRef] [PubMed]
- Friesen, K.B.; Anz, A.W.; Dugas, J.R.; Andrews, J.R.; Oliver, G.D. The Effects of Body Mass Index on Softball Pitchers’ Hip and Shoulder Range of Motion. Sport. Med. Int. open 2020, 5, E8–E13. [Google Scholar] [CrossRef] [PubMed]
- Beardsley, C.; Škarabot, J. Effects of Self-Myofascial Release: A Systematic Review. J. Bodyw. Mov. Ther. 2015, 19, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Ughreja, R.A.; Venkatesan, P.; Balebail Gopalakrishna, D.; Singh, Y.P. Effectiveness of Myofascial Release on Pain, Sleep, and Quality of Life in Patients with Fibromyalgia Syndrome: A Systematic Review. Complement. Ther. Clin. Pract. 2021, 45, 101477. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Onuma, R.; Kiyono, R.; Yasaka, K.; Sato, S.; Yahata, K.; Fukaya, T.; Konrad, A. The Acute and Prolonged Effects of Different Durations of Foam Rolling on Range of Motion, Muscle Stiffness, and Muscle Strength. J. Sports Sci. Med. 2021, 20, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Konrad, A.; Nakamura, M.; Bernsteiner, D.; Tilp, M. The Accumulated Effects of Foam Rolling Combined with Stretching on Range of Motion and Physical Performance: A Systematic Review and Meta-Analysis. J. Sports Sci. Med. 2021, 20, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Lee, S.I.; Jeong, H.J.; Kim, B.G. Effect of Vibration Foam Rolling on the Range of Motion in Healthy Adults: A Systematic Review and Meta-Analysis. J. Exerc. Rehabil. 2021, 17, 226. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Wilke, J. Do Self-Myofascial Release Devices Release Myofascia? Rolling Mechanisms: A Narrative Review. Sport. Med. 2019, 49, 1173–1181. [Google Scholar] [CrossRef]
- Ajimsha, M.S.; Shenoy, P.D.; Gampawar, N. Role of Fascial Connectivity in Musculoskeletal Dysfunctions: A Narrative Review. J. Bodyw. Mov. Ther. 2020, 24, 423–431. [Google Scholar] [CrossRef]
- Laimi, K.; Mäkilä, A.; Bärlund, E.; Katajapuu, N.; Oksanen, A.; Seikkula, V.; Karppinen, J.; Saltychev, M. Effectiveness of Myofascial Release in Treatment of Chronic Musculoskeletal Pain: A Systematic Review. Clin. Rehabil. 2017, 32, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, Y.; Ye, X.; Chen, Z.; Zhou, R.; Ye, Z.; Huang, J.; Zhu, Y.; Chen, G.; Xu, X. Myofascial Release for Chronic Low Back Pain: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 697986. [Google Scholar] [CrossRef]
- Mauntel, T.C.; Clark, M.A.; Padua, D.A. Effectiveness of Myofascial Release Therapies on Physical Performance Measurements: A Systematic Review. Athl. Train. Sport. Health Care 2014, 6, 189–196. [Google Scholar] [CrossRef]
- Abt, G.; Boreham, C.; Davison, G.; Jackson, R.; Nevill, A.; Wallace, E.; Williams, M. Power, Precision, and Sample Size Estimation in Sport and Exercise Science Research. J. Sports Sci. 2020, 38, 1933–1935. [Google Scholar] [CrossRef] [PubMed]
- Murad, M.H.; Asi, N.; Alsawas, M.; Alahdab, F. New Evidence Pyramid. BMJ Evidence-Based Med. 2016, 21, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed]
- McKenney, K.; Elder, A.S.; Elder, C.; Hutchins, A. Myofascial Release as a Treatment for Orthopaedic Conditions: A Systematic Review. J. Athl. Train. 2013, 48, 522–527. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Woodcock, J.; Brozek, J.; Helfand, M.; Alonso-Coello, P.; Glasziou, P.; Jaeschke, R.; Akl, E.A.; et al. GRADE Guidelines: 7. Rating the Quality of Evidence—Inconsistency. J. Clin. Epidemiol. 2011, 64, 1294–1302. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Rind, D.; Devereaux, P.J.; Montori, V.M.; Freyschuss, B.; Vist, G.; et al. GRADE Guidelines 6. Rating the Quality of Evidence—Imprecision. J. Clin. Epidemiol. 2011, 64, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Coello, P.A.; Guyatt, G.H.; Yepes-Nuñez, J.J.; Akl, E.A.; Hazlewood, G.; Pardo-Hernandez, H.; Etxeandia-Ikobaltzeta, I.; Qaseem, A.; Williams, J.W.; et al. GRADE Guidelines: 20. Assessing the Certainty of Evidence in the Importance of Outcomes or Values and Preferences-Inconsistency, Imprecision, and Other Domains. J. Clin. Epidemiol. 2019, 111, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Woodcock, J.; Brozek, J.; Helfand, M.; Alonso-Coello, P.; Falck-Ytter, Y.; Jaeschke, R.; Vist, G.; et al. GRADE Guidelines: 8. Rating the Quality of Evidence—Indirectness. J. Clin. Epidemiol. 2011, 64, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Montori, V.; Vist, G.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Djulbegovic, B.; Atkins, D.; Falck-Ytter, Y.; et al. GRADE Guidelines: 5. Rating the Quality of Evidence—Publication Bias. J. Clin. Epidemiol. 2011, 64, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Balbim, G.M.; Falck, R.S.; Barha, C.K.; Starkey, S.Y.; Bullock, A.; Davis, J.C.; Liu-Ambrose, T. Effects of Exercise Training on the Cognitive Function of Older Adults with Different Types of Dementia: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2022, 56, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.W.L. Modeling Dependent Effect Sizes with Three-Level Meta-Analyses: A Structural Equation Modeling Approach. Psychol. Methods 2014, 19, 211–229. [Google Scholar] [CrossRef] [PubMed]
- Tanner-Smith, E.E.; Tipton, E. Robust Variance Estimation with Dependent Effect Sizes: Practical Considerations Including a Software Tutorial in Stata and Spss. Res. Synth. Methods 2014, 5, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.V.; Tipton, E.; Johnson, M.C. Robust Variance Estimation in Meta-Regression with Dependent Effect Size Estimates. Res. Synth. Methods 2010, 1, 39–65. [Google Scholar] [CrossRef]
- Tipton, E. Small Sample Adjustments for Robust Variance Estimation with Meta-Regression. Psychol. Methods 2015, 20, 375–393. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing Heterogeneity in Meta-Analysis: Q Statistic or I² Index? Psychological Methods 2006, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Castilla, B.; Declercq, L.; Jamshidi, L.; Beretvas, S.N.; Onghena, P.; Van den Noortgate, W. Detecting Selection Bias in Meta-Analyses with Multiple Outcomes: A Simulation Study. J. Exp. Educ. 2021, 89, 125–144. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Orwin, R.G. A Fail-Safe N for Effect Size in Meta-Analysis. J. Educ. Stat. 1983, 8, 157. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating Characteristics of a Rank Correlation Test for Publication Bias. Biometrics 1994, 50, 1088. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. Trim and Fill: A Simple Funnel-Plot-Based Method of Testing and Adjusting for Publication Bias in Meta-Analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Fisher, Z.; Tipton, E. Robumeta: An R-Package for Robust Variance Estimation in Meta-Analysis. arXiv 2015, arXiv:1503.02220. [Google Scholar]
- Shalamzari, M.H.; Minoonejad, H.; Seidi, F. The Effects of a Self-Myofascial Release Program on Isokinetic Hamstrings-to-Quadriceps Strength Ratio and Range of Motion of the Knee Joint among Athletes with Hamstring Shortness. J. Sport Rehabil. 2022, 31, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Weber, P.; Klingler, W.; Schleip, R.; Weber, N.; Joisten, C. The Influence of a Single Instrument-Assisted Manual Therapy (IAMT) for the Lower Back on the Structural and Functional Properties of the Dorsal Myofascial Chain in Female Soccer Players: A Randomised, Placebo-Controlled Trial. J. Clin. Med. 2022, 11, 7110. [Google Scholar] [CrossRef] [PubMed]
- Romero-Franco, N.; Romero-Franco, J.; Jiménez-Reyes, P. Jogging and Practical-Duration Foam-Rolling Exercises and Range of Motion, Proprioception, and Vertical Jump in Athletes. J. Athl. Train. 2019, 54, 1171–1178. [Google Scholar] [CrossRef]
- Junker, D.; Stöggl, T. The Training Effects of Foam Rolling on Core Strength Endurance, Balance, Muscle Performance and Range of Motion: A Randomized Controlled Trial. J. Sports Sci. Med. 2019, 18, 229. [Google Scholar] [PubMed]
- Abo-El-Roos, A.-M.M.; Hassan El-Negmy, E.; El-Shemy, S.; Abdel-Hay Sallam, A. International Journal of Research in Pharmaceutical Sciences Assessment of Interleukin-6 in Young Swimmers Suffering from Myofascial Pain Syndrome Using Lidocaine Phonophoresis: A Randomized Controlled Trial. Int. J. Res. Pharm. Sci. 2020, 2020, 2731–2740. [Google Scholar] [CrossRef]
- Ceballos-Laita, L.; Medrano-De-la-fuente, R.; Estébanez-De-miguel, E.; Moreno-Cerviño, J.; Mingo-Gómez, M.T.; Hernando-Garijo, I.; Jiménez-Del-barrio, S. Effects of Dry Needling in Teres Major Muscle in Elite Handball Athletes. A Randomised Controlled Trial. J. Clin. Med. 2021, 10, 4260. [Google Scholar] [CrossRef] [PubMed]
- Haser, C.; Stöggl, T.; Kriner, M.; Mikoleit, J.; Wolfahrt, B.; Scherr, J.; Halle, M.; Pfab, F. Effect of Dry Needling on Thigh Muscle Strength and Hip Flexion in Elite Soccer Players. Med. Sci. Sports Exerc. 2017, 49, 378–383. [Google Scholar] [CrossRef]
- Brandolini, S.; Lugaresi, G.; Santagata, A.; Ermolao, A.; Zaccaria, M.; Marchand, A.M.; Stecco, A. Sport Injury Prevention in Individuals with Chronic Ankle Instability: Fascial Manipulation® versus Control Group: A Randomized Controlled Trial. J. Bodyw. Mov. Ther. 2019, 23, 316–323. [Google Scholar] [CrossRef]
- Guillot, A.; Kerautret, Y.; Queyrel, F.; Schobb, W.; Di Rienzo, F. Foam Rolling and Joint Distraction with Elastic Band Training Performed for 5-7 Weeks Respectively Improve Lower Limb Flexibility. J. Sports Sci. Med. 2019, 18, 160. [Google Scholar] [PubMed]
- Castellote-Caballero, Y.; Valenza, M.C.; Martín-Martín, L.; Cabrera-Martos, I.; Puentedura, E.J.; Fernández-de-las-Peñas, C. Effects of a Neurodynamic Sliding Technique on Hamstring Flexibility in Healthy Male Soccer Players. A Pilot Study. Phys. Ther. Sport 2013, 14, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Webb, T.R.; Rajendran, D. Myofascial Techniques: What Are Their Effects on Joint Range of Motion and Pain?—A Systematic Review and Meta-Analysis of Randomised Controlled Trials. J. Bodyw. Mov. Ther. 2016, 20, 682–699. [Google Scholar] [CrossRef]
- Cheatham, S.W.; Kolber, M.J.; Cain, M.; Lee, M. The Effects of Self-myofascial Release Using a Foam Roll or Roller Massager on Joint Range of Motion, Muscle Re-Covery, and Performance: A Systematic Review. Int. J. Sports Phys. Ther. 2015, 10, 827. [Google Scholar] [PubMed]
- Brandl, A.; Egner, C.; Reer, R.; Schmidt, T.; Schleip, R. Immediate Effects of Myofascial Release Treatment on Lumbar Microcirculation: A Randomized, Placebo-Controlled Trial. J. Clin. Med. 2023, 12, 1248. [Google Scholar] [CrossRef]
- Katsumata, Y.; Takei, H.; Sasaki, Y.; Watanabe, K. Ultrasonographic Changes in Fascial Properties over Time after Myofascial Release. Integr. J. Orthop. Traumatol. 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Steen, K.H.; Reeh, P.W. Sustained Graded Pain and Hyperalgesia from Harmless Experimental Tissue Acidosis in Human Skin. Neurosci. Lett. 1993, 154, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Sulowska-Daszyk, I.; Skiba, A. The Influence of Self-Myofascial Release on Muscle Flexibility in Long-Distance Runners. Int. J. Environ. Res. Public Health 2022, 19, 457. [Google Scholar] [CrossRef] [PubMed]
- Stecco, C.; Schleip, R. A Fascia and the Fascial System. J. Bodyw. Mov. Ther. 2016, 20, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Chimich, D.; Shrive, N.; Frank, C.; Marchuk, L.; Bray, R. Water Content Alters Viscoelastic Behaviour of the Normal Adolescent Rabbit Medial Collateral Ligament. J. Biomech. 1992, 25, 831–837. [Google Scholar] [CrossRef]
- Parikh, R.J.; Sutaria, J.M.; Ahsan, M.; Nuhmani, S.; Alghadir, A.H.; Khan, M. Effects of Myofascial Release with Tennis Ball on Spasticity and Motor Functions of Upper Limb in Patients with Chronic Stroke: A Randomized Controlled Trial. Medicine 2022, 101, E29926. [Google Scholar] [CrossRef]
- Hicks, M.R.; Cao, T.V.; Campbell, D.H.; Standley, P.R. Mechanical Strain Applied to Human Fibroblasts Differentially Regulates Skeletal Myoblast Differentiation. J. Appl. Physiol. 2012, 113, 465–472. [Google Scholar] [CrossRef]
- Zein-Hammoud, M.; Standley, P.R. Modeled Osteopathic Manipulative Treatments: A Review of Their in Vitro Effects on Fibroblast Tissue Preparations. J. Am. Osteopath. Assoc. 2015, 115, 490–502. [Google Scholar] [CrossRef]
- Langevin, H.M. Connective Tissue: A Body-Wide Signaling Network? Med. Hypotheses 2006, 66, 1074–1077. [Google Scholar] [CrossRef]
- Schleip, R. Fascial Plasticity—A New Neurobiological Explanation: Part 1. J. Bodyw. Mov. Ther. 2003, 7, 11–19. [Google Scholar] [CrossRef]
- Espejo-Antúnez, L.; Tejeda, J.F.H.; Albornoz-Cabello, M.; Rodríguez-Mansilla, J.; de la Cruz-Torres, B.; Ribeiro, F.; Silva, A.G. Dry Needling in the Management of Myofascial Trigger Points: A Systematic Review of Randomized Controlled Trials. Complement. Ther. Med. 2017, 33, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Victoria, G.D.; Carmen, E.; Alexandru, S.; Florin, C.; Daniel, D. The PNF (Proprioceptive Neuromuscular Facilitation) Stretching Technique—A Brief Review. Sci. Mov. Health 2013, 13, 623–628. [Google Scholar]
- Holanda, L.; Fernandes, A.; Cabral, A.C.; Santos Junior, F. Pathophysiology of Myofascial Trigger Points: A Review of Literature. Int. J. Basic Appl. Sci. 2014, 4, 73. [Google Scholar] [CrossRef]
- Huijing, P.A.; Baan, G.C. Myofascial Force Transmission: Muscle Relative Position and Length Determine Agonist and Synergist Muscle Force. J. Appl. Physiol. 2003, 94, 1092–1107. [Google Scholar] [CrossRef] [PubMed]
- Wilke, J.; Krause, F. Myofascial Chains of the Upper Limb: A Systematic Review of Anatomical Studies. Clin. Anat. 2019, 32, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Sherratt, M.J. Tissue Elasticity and the Ageing Elastic Fibre. Age 2009, 31, 305–325. [Google Scholar] [CrossRef]
- Yang, C.; Huang, X.; Li, Y.; Sucharit, W.; Sirasaporn, P.; Eungpinichpong, W. Acute Effects of Percussive Massage Therapy on Thoracolumbar Fascia Thickness and Ultrasound Echo Intensity in Healthy Male Individuals: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2023, 20, 1073. [Google Scholar] [CrossRef]
- Wilke, J.; Macchi, V.; De Caro, R.; Stecco, C. Fascia Thickness, Aging and Flexibility: Is There an Association? J. Anat. 2019, 234, 43–49. [Google Scholar] [CrossRef]
- Pauwels, L.; Chalavi, S.; Swinnen, S.P. Aging and Brain Plasticity. Aging 2018, 10, 1789–1790. [Google Scholar] [CrossRef]
- Tozzi, P. Selected Fascial Aspects of Osteopathic Practice. J. Bodyw. Mov. Ther. 2012, 16, 503–519. [Google Scholar] [CrossRef]
- Yahia, L.H.; Pigeon, P.; DesRosiers, E.A. Viscoelastic Properties of the Human Lumbodorsal Fascia. J. Biomed. Eng. 1993, 15, 425–429. [Google Scholar] [CrossRef]
- Han, Q.; Xiao, X.; Wang, S.; Qin, W.; Yu, C.; Liang, M. Characterization of the Effects of Outliers on ComBat Harmonization for Removing Inter-Site Data Heterogeneity in Multisite Neuroimaging Studies. Front. Neurosci. 2023, 17, 1146175. [Google Scholar] [CrossRef]
- Xu, H.; Platt, R.W.; Luo, Z.C.; Wei, S.; Fraser, W.D. Exploring Heterogeneity in Meta-Analyses: Needs, Resources and Challenges. Paediatr. Perinat. Epidemiol. 2008, 22 (Suppl. S1), 18–28. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Population | Male and female athletes who are healthy, actively participate in training and competitions, and have not experienced any injury in the last three months | Male and female athletes with health problems, active non-athletes, or injuries |
Intervention | Studies using any type of myofascial release interventions, either acute or long-term | Studies combining different techniques with myofascial release intervention. Myofascial release interventions applied biweekly or intermittently |
Comparator | Myofascial release intervention group versus a control group (active or passive) | Studies without an adequate comparator group (e.g., single-group study designs; cross-over sectional studies) |
Outcome | Studies evaluating the effects of myofascial release intervention on ROM | Studies evaluating the effects of myofascial release interventions apart from ROM |
Study design | Randomized controlled trials | Single-arm study designs or non-randomized controlled trials |
Additional criteria | Full-text original peer-reviewed articles scoring four or higher on the PEDro scale | Articles scoring three or lower on the PEDro scale, theses, unpublished articles, reviews |
Authors/Year | Age (Mean ± SD) | Gender | Type of Athletes | The Characteristics of Intervention Time | Intervention Type | The Details of Intervention | ROM Measurement Tools |
---|---|---|---|---|---|---|---|
Weber et al. (2022) [49] | 20.9 ± 3.9 | Female | Soccer players | 8 min | IAMT | Metabolization (shirt frictions) and rehydration (slowly moving through the tissue, pushing a shifting skin fold) were performed with the Faser 2 tool. | Inclinometer (AcuAngle, Baseline, Elmsford, New York, NY, USA) |
Junker & Siegel (2019) [51] | 29.3 ± 8.5 | Male + Female | Recreational active athletes | 8 weeks/16 session | Foam rolling | The foam rolling was positioned on calf muscles, quadriceps femoris, hamstrings, iliotibial band, and gluteal muscles. | Stand and reach test vehicle |
Guillot et al. (2019) [56] | 20.6 ± 0.08 | Male | Rugby players | 6 weeks/15 sessions | Foam rolling | SMR 20 and 40 s (hip extensors, hip adductors, knee extensors, knee and plantar flexors). | Electronic goniometer (MLTS700, Australia) |
Castello-Caballero et al. (2013) [57] | 20.7 ± 1.0 | Male | Soccer players | 1 week/3 session | Neurodynamic sliding techniques | Seated straight leg sliders | Passive SLR test- plastic goniometer |
Brandolini et al. (2019) [55] | 29.00 ± 8.58 | Male | Soccer players | 3 weeks/3 session | Fascial manipulation | Deep friction over specific points: Centre of Coordination and Centre of Fusion | Universal goniometer with two arms |
Romero-Franco et al. (2019) [50] | 24.55 ± 4.45 | Male + Female | Athletes | 6 min | Jogging + Foam rolling | 8 min of jogging + 4.5 Gs foam rolling (posterior thigh, from the popliteal fossa to the ischial tuberosity; anterior thigh, from the anterior-superior iliac spine to the quadriceps tendon; and calf, from the popliteal fossa to the Achilles tendon). | Modified Thomas test- mini digital inclinometer (GO 90532, Sweden) |
Abo-El-Roos (2020) [52] | 11.87 ± 1.36 | Male | Young Swimmers | 3 months/36 session | Other methods | Physical therapy program + lidocaine hydrochloride gel + phonophoresis | Goniometer |
Ceballos-Laita (2021) [53] | 22.39 ± 3.73 | Male + Female | Handball players | N/A | Dry needling | A single session of DN guided by ultrasound into active MTrPs in the rectus femoris muscle was placed in a supine position. | Digital inclinometer |
Haser et al. (2016) [54] | 18.4 ± 2.5 | Male | Soccer players | 4 weeks/20 sessions | DN with water pressure massage placebo laser with water | Acupuncture needles were inserted into TP of the front and back of the athletes’ thighs. When the needle elicited a local twitch response, it was removed. | Plurimeter (Baseline, Bubble inclinometer) |
Shalamzari (2022) [48] | 24.91 ± 1.98 | Male | Active athletes | 3 times per week/ 8-week | Self-myofascial release (foam rolling) | The subject was asked to use a foam roller that consisted of a 6-in diameter × 15-in length foam roller for the hamstring muscles. Then, the subject was instructed to support the body weight and roll up and down for 2 min. | Biodex MultiJoint System 4 Pro dynamometer |
The Effect Size of the Subgroups | Moderator Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Nstudy number | NES number | ES | 95% CI | t | df | p-Value | HTZ Statistic (F) | df | p-Value | I2 |
Age | F = 1.62 | 2 | 0.01 * | 77.00% | |||||||
≤18 years of age | 2 | 11 | 1.10 | 0.47 to 1.72 | 22.52 | 1.00 | 0.02 * | ||||
>18 years of age | 8 | 67 | 0.40 | 0.03 to 0.77 | 2.57 | 6.97 | 0.03 * | ||||
Gender | F = 12 | 3.28 | 0.03 * | 79.00% | |||||||
Male | 6 | 59 | 0.77 | 0.41 to 1.12 | 5.57 | 1.00 | 0.01 * | ||||
Female | 1 | 8 | 0.31 | 0.31 to 0.31 | 70.00 | 4.99 | 0.01 * | ||||
Mix group (male + female) | 3 | 11 | 0.17 | −1.40 to 1.76 | 0.48 | 2.00 | 0.67 | ||||
Intervention duration | F = 9.80 | 4.98 | 0.01 * | 78.00% | |||||||
Acute | 5 | 27 | 0.37 | −0.34 to 1.10 | 1.44 | 3.99 | 0.22 | ||||
Long | 5 | 51 | 0.71 | 0.28 to 1.14 | 4.63 | 3.99 | 0.01 * | ||||
Joint type | F = 1.36 | 3.22 | 0.01 * | 82.00% | |||||||
Ankle | 3 | 30 | 0.59 | −1.48 to 2.62 | 1.83 | 1.41 | 0.25 | ||||
Knee | 3 | 10 | 0.26 | −2.79 to 3.32 | 0.50 | 1.55 | 0.67 | ||||
Hip | 7 | 28 | 0.43 | −0.09 to 0.96 | 2.11 | 4.87 | 0.08 | ||||
Cervical | 1 | 8 | 1.04 | 1.05 to 1.05 | 30.00 | 1.00 | 0.01 * | ||||
Shoulder | 1 | 2 | N/A | ||||||||
Intervention type | F = 4.63 | 14.00 | 0.01 * | 83.00% | |||||||
Instrumental methods | 2 | 10 | 0.61 | −3.43 to 4.65 | 1.92 | 1.00 | 0.30 | ||||
Myofascial release methods | 5 | 59 | 0.41 | −0.18 to 1.01 | 1.79 | 4.99 | 0.13 | ||||
Other methods | 1 | 8 | 1.05 | 1.05 to 1.05 | 65.00 | 1.00 | 0.01 * | ||||
Stretching methods | 1 | 1 | N/A |
Publication Bias Analysis | ROM Performance |
---|---|
Rosenthal Fail-Safe N (p-value) | 4496 (0.0001) * |
Rosenthal Fail-Safe N without outliers (p-value) | 3742 (0.0001) * |
Egger’s regression test (t-value, p-value) | 6.02 (0.01) * |
Egger’s regression test without outliers (t-value, p-value) | 6.49 (0.01) * |
Begg and Mazumdar Test (z-value, p-value) | 0.69 (0.01) * |
Begg and Mazumdar Test without outliers (z-value, p-value) | 0.71 (0.01) * |
Trim-and-fill method (ES [95%CI], p-value) | 0.34 (0.20–0.48) p = 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antohe, B.A.; Alshana, O.; Uysal, H.Ş.; Rață, M.; Iacob, G.S.; Panaet, E.A. Effects of Myofascial Release Techniques on Joint Range of Motion of Athletes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports 2024, 12, 132. https://doi.org/10.3390/sports12050132
Antohe BA, Alshana O, Uysal HŞ, Rață M, Iacob GS, Panaet EA. Effects of Myofascial Release Techniques on Joint Range of Motion of Athletes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports. 2024; 12(5):132. https://doi.org/10.3390/sports12050132
Chicago/Turabian StyleAntohe, Bogdan Alexandru, Osama Alshana, Hüseyin Şahin Uysal, Marinela Rață, George Sebastian Iacob, and Elena Adelina Panaet. 2024. "Effects of Myofascial Release Techniques on Joint Range of Motion of Athletes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials" Sports 12, no. 5: 132. https://doi.org/10.3390/sports12050132
APA StyleAntohe, B. A., Alshana, O., Uysal, H. Ş., Rață, M., Iacob, G. S., & Panaet, E. A. (2024). Effects of Myofascial Release Techniques on Joint Range of Motion of Athletes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports, 12(5), 132. https://doi.org/10.3390/sports12050132