Protein and Leucine Requirements for Maximal Muscular Development and Athletic Performance Are Achieved with Completely Plant-Based Diets Modeled to Meet Energy Needs in Adult Male Rugby Players
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Protein Requirements and Levels
3.2. Leucine Levels
3.3. Micronutrient and Other Nutrient Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chantler, S.; Martin, R.W.; Sutton, L. Sports Nutrition in Modern Rugby; Davies, B., Baker, J.S., Eds.; Routledge: New York, NY, USA, 2021; p. 22. [Google Scholar]
- Walsh, M.; Cartwright, L.; Corish, C.; Sugrue, S.; Wood-Martin, R. The body composition, nutritional knowledge, attitudes, behaviors, and future education needs of senior schoolboy rugby players in Ireland. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Jooste, M. The prevalence, Knowledge and Reasons for Carbohydrate, Protein, Creatine and Glutamine Use among First Team Rugby Players in Premier Rugby Schools in the Western Cape Province. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2016. [Google Scholar]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Pasin, F.; Caroli, B.; Spigoni, V.; Dei Cas, A.; Volpi, R.; Galli, C.; Passeri, G. Performance and anthropometric characteristics of elite rugby players. Acta Biomed. 2017, 88, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Vaz, L.; Kraak, W.; Batista, M.; Honório, S.; Miguel Fernandes, H. Using anthropometric data and physical fitness scores to predict selection in a national U19 rugby union team. Int. J. Environ. Res. Public. Health 2021, 18, 1499. [Google Scholar] [CrossRef] [PubMed]
- Kelly, V.G.; Oliver, L.S.; Bowtell, J.; Jenkins, D.G. Inside the belly of a beast: Individualizing nutrition for young, professional male rugby league players: A review. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Lako, J.V.; Sotheeswaran, S.; Christi, K.S. Food habits and nutritional status of Fiji rugby players. World Acad. Sci. Eng. Technol. 2010, 68, 742–747. [Google Scholar]
- Spronk, I.; Heaney, S.E.; Prvan, T.; O’Connor, H.T. Relationship between general nutrition knowledge and dietary quality in elite athletes. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 243–251. [Google Scholar] [CrossRef] [PubMed]
- López-Jiménez, A.; Morán-Fagúndez, L.; Sánchez-Sánchez, A.M.; Fernández-Pachón, M.S. The associations between anthropometric characteristics and nutritional parameters in male elite rugby union players. Int. J. Food Sci. Nutr. 2023, 74, 707–718. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. Dietary Guidelines for Americans, 2020–2025, 9th ed.; USDA: Washington, DC, USA, 2020.
- Scientific Advisory Committee on Nutrition. Iron and Health; Department of Health, Ed.; The Stationary Office: Norwich, UK, 2010; pp. 1–360. [Google Scholar]
- National Health and Medical Research Council. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013.
- World Health Organization. Plant-Based Diets and their Impact on Health, Sustainability and the Environment: A Review of the Evidence: WHO European Office for the Prevention and Control of Noncommunicable Diseases; Regional Office for Europe: Geneva, Switzerland, 2021. [Google Scholar]
- Cara, K.C.; Goldman, D.M.; Kollman, B.K.; Amato, S.S.; Tull, M.D.; Karlsen, M.C. Commonalities among dietary recommendations from 2010 to 2021 clinical practice guidelines: A meta-epidemiological study from the American College of Lifestyle Medicine. Adv. Nutr. 2023, 14, 500–515. [Google Scholar] [CrossRef]
- Zhong, V.W.; Van Horn, L.; Greenland, P.; Carnethon, M.R.; Ning, H.; Wilkins, J.T.; Lloyd-Jones, D.M.; Allen, N.B. Associations of processed meat, unprocessed red meat, poultry, or fish intake with incident cardiovascular disease and all-cause mortality. JAMA Intern. Med. 2020, 180, 503–512. [Google Scholar] [CrossRef]
- Zhong, V.W.; Van Horn, L.; Cornelis, M.C.; Wilkins, J.T.; Ning, H.; Carnethon, M.R.; Greenland, P.; Mentz, R.J.; Tucker, K.L.; Zhao, L.; et al. Associations of dietary cholesterol or egg consumption with incident cardiovascular disease and mortality. JAMA 2019, 321, 1081–1095. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.X.; Shen, P. Associations of dietary protein intake with all-cause, cardiovascular disease, and cancer mortality: A systematic review and meta-analysis of cohort studies. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020, 370, m2412. [Google Scholar] [CrossRef] [PubMed]
- Russell, E.R.; Mackay, D.F.; Lyall, D.; Stewart, K.; MacLean, J.A.; Robson, J.; Pell, J.P.; Stewart, W. Neurodegenerative disease risk among former international rugby union players. J. Neurol. Neurosurg. Psychiatry 2022, 93, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.; Hind, K.; Cunningham, J.; Davey, D.; Wilson, F. A career in sport does not eliminate risk of cardiovascular disease: A systematic review and meta-analysis of the cardiovascular health of field-based athletes. J. Sci. Med. Sport 2020, 23, 792–799. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, C.R.; Balilionis, G.; Nepocatych, S. Assessment of dietary behaviors, body composition, and cardiovascular disease risk among college club rugby team. Int. J. Exerc. Sci. 2015, 8, 9. [Google Scholar]
- Imamura, H.; Iide, K.; Yoshimura, Y.; Kumagai, K.; Oshikata, R.; Miyahara, K.; Oda, K.; Miyamoto, N.; Nakazawa, A. Nutrient intake, serum lipids and iron status of colligiate rugby players. J. Int. Soc. Sports Nutr. 2013, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Zemski, A.J.; Keating, S.E.; Broad, E.M.; Marsh, D.J.; Hind, K.; Walters, K.J.; Slater, G.J. Differences in visceral adipose tissue and biochemical cardiometabolic risk markers in elite rugby union athletes of Caucasian and Polynesian descent. Eur. J. Sport Sci. 2020, 20, 691–702. [Google Scholar] [CrossRef]
- Climstein, M.; Walsh, J.; Best, J.; Heazlewood, I.T.; Burke, S.; Kettunen, J.; Adams, K.; DeBeliso, M. Incidence of chronic disease and lipid profile in veteran rugby athletes. Int. J. Health Med. Eng. 2011, 5, 362–366. [Google Scholar]
- McHugh, C.; Hind, K.; Kelly, A.; Fearon, U.; Wasfy, M.; Floudas, A.; Barad, Z.; Dane, K.; Farrell, G.; Wilson, F. Cardiovascular risk and systemic inflammation in male professional rugby: A cross-sectional study. BMJ Open Sport Exerc. Med. 2023, 9, e001636. [Google Scholar] [CrossRef]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef]
- Pelly, F.E.; Burkhart, S.J. Dietary regimens of athletes competing at the Delhi 2010 Commonwealth Games. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 28–36. [Google Scholar] [CrossRef]
- Karlsen, M.C.; Rogers, G.; Miki, A.; Lichtenstein, A.H.; Folta, S.C.; Economos, C.D.; Jacques, P.F.; Livingston, K.A.; McKeown, N.M. Theoretical food and nutrient composition of whole-food plant-based and vegan diets compared to current dietary recommendations. Nutrients 2019, 11, 625. [Google Scholar] [CrossRef]
- Goldman, D.M.; Warbeck, C.B.; Karlsen, M.C. Completely plant-based diets that meet energy requirements for resistance training can supply enough protein and leucine to maximize hypertrophy and strength in male bodybuilders: A modeling study. Nutrients 2024, 16, 1122. [Google Scholar] [CrossRef]
- Goldman, D.M.; Warbeck, C.B.; Karlsen, M.C. Protein requirements for maximal muscle mass and athletic performance are achieved with completely plant-based diets scaled to meet energy needs: A modeling study in professional American football players. Nutrients 2024, 16, 1903. [Google Scholar] [CrossRef]
- Zhou, J.; Li, J.; Campbell, W.W. Vegetarian athletes. In Nutrition and Enhanced Sports Performance; Elsevier: Amsterdam, The Netherlands, 2019; pp. 99–108. [Google Scholar]
- Burd, N.A.; McKenna, C.F.; Salvador, A.F.; Paulussen, K.J.M.; Moore, D.R. Dietary protein quantity, quality, and exercise are key to healthy living: A muscle-centric perspective across the lifespan. Front. Nutr. 2019, 6, 83. [Google Scholar] [CrossRef]
- Ciuris, C.; Lynch, H.M.; Wharton, C.; Johnston, C.S. A comparison of dietary protein digestibility, based on DIAAS scoring, in vegetarian and non-vegetarian athletes. Nutrients 2019, 11, 3016. [Google Scholar] [CrossRef]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-based diets: Considerations for environmental impact, protein quality, and exercise performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef]
- Fogelholm, M. Dairy products, meat and sports performance. Sports Med. 2003, 33, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Venderley, A.M.; Campbell, W.W. Vegetarian diets: Nutritional considerations for athletes. Sports Med. 2006, 36, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Wolinsky, I. Nutrition in Exercise and Sport; CRC Press: Boca Raton, FL, USA, 1997; Volume 13. [Google Scholar]
- Messina, M.; Lynch, H.; Dickinson, J.M.; Reed, K.E. No difference between the effects of supplementing with soy protein versus animal protein on gains in muscle mass and strength in response to resistance exercise. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 674–685. [Google Scholar] [CrossRef]
- Karpinski, C.; Rosenbloom, C.A. Sports Nutrition: A Handbook for Professionals; Academy of Nutrition and Dietetics: Chicago, IL, USA, 2017. [Google Scholar]
- Rogerson, D. Vegan diets: Practical advice for athletes and exercisers. J. Int. Soc. Sports Nutr. 2017, 14, 36. [Google Scholar] [CrossRef]
- De Gavelle, E.; Huneau, J.F.; Bianchi, C.M.; Verger, E.O.; Mariotti, F. Protein adequacy is primarily a matter of protein quantity, not quality: Modeling an increase in plant:animal protein ratio in French adults. Nutrients 2017, 9, 1333. [Google Scholar] [CrossRef]
- Bagchi, D.; Nair, S.; Sen, C.K. (Eds.) Nutrition and Enhanced Sports Performance: Muscle Building, Endurance, and Strength; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Wolinsky, I.; Driskell, J.A. Nutritional Applications in Exercise and Sport; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Maughan, R.J. Nutrition in Sport; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 7. [Google Scholar]
- Shaw, K.A.; Zello, G.A.; Rodgers, C.D.; Warkentin, T.D.; Baerwald, A.R.; Chilibeck, P.D. Benefits of a plant-based diet and considerations for the athlete. Eur. J. Appl. Physiol. 2022, 122, 1163–1178. [Google Scholar] [CrossRef]
- Monteyne, A.J.; Coelho, M.O.C.; Murton, A.J.; Abdelrahman, D.R.; Blackwell, J.R.; Koscien, C.P.; Knapp, K.M.; Fulford, J.; Finnigan, T.J.A.; Dirks, M.L.; et al. Vegan and omnivorous high protein diets support comparable daily myofibrillar protein synthesis rates and skeletal muscle hypertrophy in young adults. J. Nutr. 2023, 153, 1680–1695. [Google Scholar] [CrossRef]
- Hevia-Larraín, V.; Gualano, B.; Longobardi, I.; Gil, S.; Fernandes, A.L.; Costa, L.A.R.; Pereira, R.M.R.; Artioli, G.G.; Phillips, S.M.; Roschel, H. High-protein plant-based diet versus a protein-matched omnivorous diet to support resistance training adaptations: A comparison between habitual vegans and omnivores. Sports Med. 2021, 51, 1317–1330. [Google Scholar] [CrossRef]
- Morehen, J.; Close, G. Nutritional Requirements for Rugby Players; The Nutrition X-Change: Gloucester, UK, 2022; pp. 1–22. [Google Scholar]
- Rizzo, N.S.; Jaceldo-Siegl, K.; Sabate, J.; Fraser, G.E. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J. Acad. Nutr. Diet. 2013, 113, 1610–1619. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary Reference Intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- Kim, N.; Park, J. Total energy expenditure of collision team sports players measured using doubly labeled water: A systematic review. Phys. Act. Nutr. 2023, 27, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.C. Measurement Techniques for Energy Expenditure. In Exercise, Sport, and Bioanalytical Chemistry; Hackney, A.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 33–42. [Google Scholar] [CrossRef]
- Potgieter, S.; Visser, J.; Croukamp, I.; Markides, M.; Nascimento, J.; Scott, K. Body composition and habitual and match-day dietary intake of the FNB Maties Varsity Cup rugby players. S. Afr. J. Sports Med. 2014, 26, 35–43. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef]
- Casiero, D. Fueling the rugby player: Maximizing performance on and off the pitch. Curr. Sports Med. Rep. 2013, 12, 228–233. [Google Scholar] [CrossRef]
- Potgieter, S. Sport nutrition: A review of the latest guidelines for exercise and sport nutrition from the American College of Sport Nutrition, the International Olympic Committee and the International Society for Sports Nutrition. S. Afr. J. Clin. Nutr. 2013, 26, 6–16. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The role of the anabolic properties of plant- versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef]
- Posthumus, L.; Macgregor, C.; Winwood, P.; Darry, K.; Driller, M.; Gill, N. Physical and fitness characteristics of elite professional rugby union players. Sports 2020, 8, 85. [Google Scholar] [CrossRef]
- European Food Safety Authority. Dietary Reference Values for nutrients: Summary report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar] [CrossRef]
- Nutrition Science Team Public Health England. Government Dietary Recommendations; Department of Health: London, UK, 2016; pp. 1–12. [Google Scholar]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand; Australian Government Department of Health and Ageing, New Zealand Ministry of Health, Eds.; National Health and Medical Research Council: Canberra, Australia, 2006.
- Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Pelaez, C.; et al. Dietary reference values for sodium. Efsa J. 2019, 17, e05778. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare. Diet. Available online: https://www.aihw.gov.au/reports/food-nutrition/diet (accessed on 31 May 2024).
- Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Reidy, P.T.; Rasmussen, B.B. Role of ingested amino acids and protein in the promotion of resistance exercise-induced muscle protein anabolism. J. Nutr. 2016, 146, 155–183. [Google Scholar] [CrossRef]
- Lynch, H.M.; Buman, M.P.; Dickinson, J.M.; Ransdell, L.B.; Johnston, C.S.; Wharton, C.M. No significant differences in muscle growth and strength development when consuming soy and whey protein supplements matched for leucine following a 12 week resistance training program in men and women: A randomized trial. Int. J. Environ. Res. Public Health 2020, 17, 3871. [Google Scholar] [CrossRef]
- Olaniyan, E.T.; O’Halloran, F.; McCarthy, A.L. Dietary protein considerations for muscle protein synthesis and muscle mass preservation in older adults. Nutr. Res. Rev. 2021, 34, 147–157. [Google Scholar] [CrossRef]
- Jenner, S.L.; Buckley, G.L.; Belski, R.; Devlin, B.L.; Forsyth, A.K. Dietary intakes of professional and semi-professional team sport athletes do not meet sport nutrition recommendations-A systematic literature review. Nutrients 2019, 11, 1160. [Google Scholar] [CrossRef]
- Hitendre, S.; Jordan, R.; Theodorakopoulos, C.; White, L. Dietary intakes, knowledge, and perceptions of semi-professional rugby athletes in Scotland. J. Int. Soc. Sports Nutr. 2022, 19, 49–69. [Google Scholar] [CrossRef]
- Black, K.E.; Hindle, C.; McLay-Cooke, R.; Brown, R.C.; Gibson, C.; Baker, D.F.; Smith, B. Dietary intakes differ by body composition goals: An observational study of professional rugby union players in New Zealand. Am. J. Men’s Health 2019, 13, 1557988319891350. [Google Scholar] [CrossRef]
- McHugh, C.; Hind, K.; O’Halloran, A.; Davey, D.; Farrell, G.; Wilson, F. Body mass and body composition changes over 7 years in a male professional rugby union team. Int. J. Sports Med. 2021, 42, 1191–1198. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Toro, R.; Mangas, A.; Quezada, M.; Rodriguez-Rosety, M.; Fournielles, G.; Rodriguez-Rosety, I.; Rodríguez Rosety, M.A.; Alonso, J.A.; García-Cózar, F.J.; Durán, M.C. Influencia de la dieta y el ejercicio en el perfil proteómico de una población deportista. Nutr. Hosp. 2014, 30, 1110–1117. [Google Scholar] [CrossRef]
- Barnard, N.D.; Goldman, D.M.; Loomis, J.F.; Kahleova, H.; Levin, S.M.; Neabore, S.; Batts, T.C. Plant-based diets for cardiovascular safety and performance in endurance sports. Nutrients 2019, 11, 130. [Google Scholar] [CrossRef]
- Bradley, W.J.; Cavanagh, B.P.; Douglas, W.; Donovan, T.F.; Morton, J.P.; Close, G.L. Quantification of training load, energy intake, and physiological adaptations during a rugby preseason: A case study from an elite European rugby union squad. J. Strength Cond. Res. 2015, 29, 534–544. [Google Scholar] [CrossRef]
- Sánchez-Oliver, A.J.; Domínguez, R.; López-Tapia, P.; Tobal, F.M.; Jodra, P.; Montoya, J.J.; Guerra-Hernández, E.J.; Ramos-Álvarez, J.J. A survey on dietary supplement consumption in amateur and professional rugby players. Foods 2020, 10, 7. [Google Scholar] [CrossRef]
- Harmse, B.; Noorbhai, H. Sport supplement use among high school rugby players in South Africa: A scoping review. S. Afr. J. Sports Med. 2022, 34, v34i31a13348. [Google Scholar] [CrossRef] [PubMed]
- Woolfenden, A. Supplement Use in Professional Rugby League. Master’s Thesis, Liverpool John Moores University (United Kingdom), Liverpool, UK, 2017. [Google Scholar]
- Karlsen, M.C.; (American College of Lifestyle Medicine, Chesterfield, MO, USA; University of New England, Biddeford, ME, USA); Goldman, D.M.; (Metabite, Inc. New York, NY, USA). Personal Communication with G.E. Fraser, 2023.
- Alaunyte, I.; Perry, J.L.; Aubrey, T. Nutritional knowledge and eating habits of professional rugby league players: Does knowledge translate into practice? J. Int. Soc. Sports Nutr. 2015, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.A.; Rinaldi, S.; Scalbert, A.; Ferrari, P.; Achaintre, D.; Gunter, M.J.; Appleby, P.N.; Key, T.J.; Travis, R.C. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: A cross-sectional analysis in the EPIC-Oxford cohort. Eur. J. Clin. Nutr. 2016, 70, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, A.F.; Grala, A.P.; da Silva, R.A.; Soares-Caldeira, L.F.; Pacagnelli, F.L.; Ribeiro, A.S.; da Silva, D.K.; de Andrade, W.B.; Balvedi, M.C.W. Free leucine supplementation during an 8-week resistance training program does not increase muscle mass and strength in untrained young adult subjects. Amino Acids 2017, 49, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- De Andrade, I.; Gualano, B.; Hevia-Larraín, V.; Neves-Junior, J.; Cajueiro, M.; Jardim, F.; Gomes, R.L.; Artioli, G.G.; Phillips, S.M.; Campos-Ferraz, P.; et al. Leucine supplementation has no further effect on training-induced muscle adaptations. Med. Sci. Sports Exerc. 2020, 52, 1809–1814. [Google Scholar] [CrossRef]
- Baroni, L.; Pelosi, E.; Giampieri, F.; Battino, M. The VegPlate for Sports: A plant-based food guide for athletes. Nutrients 2023, 15, 1746. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.J. Free radicals in skin and muscle: Damaging agents or signals for adaptation? Proc. Nutr. Soc. 1999, 58, 673–676. [Google Scholar] [CrossRef]
- Li, S.; Fasipe, B.; Laher, I. Potential harms of supplementation with high doses of antioxidants in athletes. J. Exerc. Sci. Fit. 2022, 20, 269–275. [Google Scholar] [CrossRef]
- Neubauer, O.; Yfanti, C. Antioxidants in athlete’s basic nutrition: Considerations towards a guideline for the intake of vitamin C and vitamin E. In Antioxidants in Sport Nutrition; Lamprecht, M., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Pastor, R.; Tur, J.A. Antioxidant supplementation and adaptive response to training: A systematic review. Curr. Pharm. Des. 2019, 25, 1889–1912. [Google Scholar] [CrossRef]
- Lyall, K.A.; Hurst, S.M.; Cooney, J.; Jensen, D.; Lo, K.; Hurst, R.D.; Stevenson, L.M. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R70–R81. [Google Scholar] [CrossRef]
- Funes, L.; Carrera-Quintanar, L.; Cerdán-Calero, M.; Ferrer, M.D.; Drobnic, F.; Pons, A.; Roche, E.; Micol, V. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils’ oxidative stress in chronic exercise. Eur. J. Appl. Physiol. 2011, 111, 695–705. [Google Scholar] [CrossRef] [PubMed]
- McLeay, Y.; Barnes, M.J.; Mundel, T.; Hurst, S.M.; Hurst, R.D.; Stannard, S.R. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J. Int. Soc. Sports Nutr. 2012, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Kuikman, M.A.; Mountjoy, M.; Stellingwerff, T.; Burr, J.F. A review of nonpharmacological strategies in the treatment of relative energy deficiency in sport. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Ribichini, E.; Scalese, G.; Cesarini, A.; Mocci, C.; Pallotta, N.; Severi, C.; Corazziari, E.S. Exercise-induced gastrointestinal symptoms in endurance sports: A review of pathophysiology, symptoms, and nutritional management. Dietetics 2023, 2, 289–307. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Training the gut for athletes. Sports Med. 2017, 47, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Sports Dietitians Australia. Fact Sheet: Eating and Drinking before Sport; Sport Dietitians Australia: South Melbourne, VIC, Australia, 2009; pp. 1–2. [Google Scholar]
- Armstrong, A.; Anzalone, A.J.; Pethick, W.; Murray, H.; Dahlquist, D.T.; Askow, A.T.; Heileson, J.L.; Hillyer, L.M.; Ma, D.W.L.; Oliver, J.M. An evaluation of omega-3 status and intake in Canadian elite rugby 7s players. Nutrients 2021, 13, 3777. [Google Scholar] [CrossRef] [PubMed]
- Philpott, J.D.; Witard, O.C.; Galloway, S.D.R. Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance. Res. Sports Med. 2019, 27, 219–237. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.M.; Farmer, V.L.; Nettleton, A.; Cameron, C.M.; Cook, N.R.; Campbell, N.R.C. Assessment of dietary sodium intake using a food frequency questionnaire and 24-hour urinary sodium excretion: A systematic literature review. J. Clin. Hypertens. 2017, 19, 1214–1230. [Google Scholar] [CrossRef] [PubMed]
- Ranchordas, M.K.; Tiller, N.B.; Ramchandani, G.; Jutley, R.; Blow, A.; Tye, J.; Drury, B. Normative data on regional sweat-sodium concentrations of professional male team-sport athletes. J. Int. Soc. Sports Nutr. 2017, 14, 40. [Google Scholar] [CrossRef]
- Barnes, K.A.; Anderson, M.L.; Stofan, J.R.; Dalrymple, K.J.; Reimel, A.J.; Roberts, T.J.; Randell, R.K.; Ungaro, C.T.; Baker, L.B. Normative data for sweating rate, sweat sodium concentration, and sweat sodium loss in athletes: An update and analysis by sport. J. Sports Sci. 2019, 37, 2356–2366. [Google Scholar] [CrossRef]
- Jones, B.L.; O’Hara, J.P.; Till, K.; King, R.F. Dehydration and hyponatremia in professional rugby union players: A cohort study observing english premiership rugby union players during match play, field, and gym training in cool environmental conditions. J. Strength Cond. Res. 2015, 29, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Neufingerl, N.; Eilander, A. Nutrient intake and status in adults consuming plant-based diets compared to meat-eaters: A systematic review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Shomrat, A.; Weinstein, Y.; Katz, A. Effect of creatine feeding on maximal exercise performance in vegetarians. Eur. J. Appl. Physiol. 2000, 82, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Barr, S.I.; Rideout, C.A. Nutritional considerations for vegetarian athletes. Nutrition 2004, 20, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Baguet, A.; Everaert, I.; De Naeyer, H.; Reyngoudt, H.; Stegen, S.; Beeckman, S.; Achten, E.; Vanhee, L.; Volkaert, A.; Petrovic, M.; et al. Effects of sprint training combined with vegetarian or mixed diet on muscle carnosine content and buffering capacity. Eur. J. Appl. Physiol. 2011, 111, 2571–2580. [Google Scholar] [CrossRef] [PubMed]
- Blancquaert, L.; Baguet, A.; Bex, T.; Volkaert, A.; Everaert, I.; Delanghe, J.; Petrovic, M.; Vervaet, C.; De Henauw, S.; Constantin-Teodosiu, D.; et al. Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: A randomised trial. Br. J. Nutr. 2018, 119, 759–770. [Google Scholar] [CrossRef]
- Delpino, F.M.; Figueiredo, L.M.; Forbes, S.C.; Candow, D.G.; Santos, H.O. Influence of age, sex, and type of exercise on the efficacy of creatine supplementation on lean body mass: A systematic review and meta-analysis of randomized clinical trials. Nutrition 2022, 103–104, 111791. [Google Scholar] [CrossRef] [PubMed]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.X.; Dutheil, F. Creatine Supplementation and Upper Limb Strength Performance: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 163–173. [Google Scholar] [CrossRef]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.X.; Dutheil, F. Creatine supplementation and lower limb strength performance: A systematic review and meta-analyses. Sports Med. 2015, 45, 1285–1294. [Google Scholar] [CrossRef]
- Goldman, D.M.; Stiegmann, R.A.; Craddock, J.C. Supplemental creatine, not dietary creatine, appears to improve exercise performance in individuals following omnivorous or meat-free diets: A narrative review. Int. J. Dis. Rev. Prev. 2022, 4, 15. [Google Scholar] [CrossRef]
- Gilenstam, K.M.; Thorsen, K.; Henriksson-Larsén, K.B. Physiological correlates of skating performance in women’s and men’s ice hockey. J. Strength Cond. Res. 2011, 25, 2133–2142. [Google Scholar] [CrossRef] [PubMed]
- Zaras, N.; Stasinaki, A.N.; Spiliopoulou, P.; Hadjicharalambous, M.; Terzis, G. Lean body mass, muscle architecture, and performance in well-trained female weightlifters. Sports 2020, 8, 67. [Google Scholar] [CrossRef] [PubMed]
Body Mass (kg) [52] | Energy Requirements (kcal/day) [52] | Absolute Protein Requirements (g/day) [55] | Modeled Absolute Protein Levels (g/day) | Modeled Relative Protein Levels (g/kg/day) | Modeled Absolute Leucine Levels (g/day) [59] | Modeled Leucine Levels per Meal (g) |
---|---|---|---|---|---|---|
98.9 | 4587.5 | 158 | 166 | 1.68 | 11.7 | 2.9 |
AHS-2 Strict Vegetarians * | Male Rugby Players | Nutrient Target in USA (Source) † | Nutrient Target in England (Source) ‡ | Nutrient Target in Australia and New Zealand (Source) § | Targets Met? | |
---|---|---|---|---|---|---|
Calorie Intake (kcal) | 2000 | 4587.5 | - | - | N/A | |
Saturated Fat | ||||||
(g) | 25 | 25 | <31 | ✓ | ||
(% of kcal) | 5 | 5 | <10 (DGA) | <10% | <10% | ✓ |
Omega-3 | ||||||
(g) | 2 ¶ | 5 ¶ | 1.6 # (AI) | 1.3 # (AI) | ✓ | |
(% of kcal) | 0.9 | 0.9 | 0.5 # (AI) | ✓ | ||
Linoleic Acid | ||||||
(g) | 20 | 45 | 17 (AI) | 13 (AI) | ✓ | |
(% of kcal) | 9 | 9 | 4 (AI) | ✓ | ||
Fiber (g) | 47 | 107 | 64 ** (DGA) | 25 (AI)) | 30 (AI) | ✓ |
Vitamin A (mcg RAE ††) | 1108 | 2541 | 900 (RDA) | 750 (PRI) | 900 (RDI) | ✓ |
Vitamin B6 (mg) | 14.4 | 33 | 1.3 (RDA) | 1.7 (PRI) | 1.3 (RDI) | ✓ |
Folate (mcg) | 888 | 2037 | 400 (RDA) | 330 (PRI) | 400 (RDI) | ✓ |
Vitamin B12 (mcg) | 23.3 | 53.4 | 2.4 (RDA) | 4.0 (AI) | 2.4 (RDI) | ✓ |
Vitamin C (mg) | 531 | 1218 | 90 (RDA) | 119 (PRI) | 45 (RDI) | ✓ |
Vitamin D (IU) | 252 | 578 | 600 (RDA) | 600 (AI) | 200 (AI) | ✗ |
Vitamin E (mg) | 101 | 232 | 15 (RDA) | 13 (AI) | 10 (AI) | ✓ |
Calcium (mg) | 1156 | 2652 | 1000 (RDA) | 1000 (PRI) | 1000 (RDI) | ✓ |
Iron (mg) | 32 | 72 | 8 (RDA) | 11 (PRI) | 8 (RDI) | ✓ |
Magnesium (mg) | 652 | 1496 | 400 (RDA) | 350 (AI) | 400 (RDI) | ✓ |
Phosphorus (mg) | 1371 | 3145 | 700 (RDA) | 550 (AI) | 1000 (RDI) | ✓ |
Potassium (mg) | 4234 | 9712 | 3400 (AI) | 3500 (AI) | 3800 (AI) | ✓ |
Sodium (mg) | 3531 | 8099 | 2300 (CDRR) | 2000 mg (AI) | 2000 (SDT) | ✗ |
Zinc (mg) | 16 | 37 | 11 (RDA) | 16.3 (PRI) | 14 (RDI) | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldman, D.M.; Warbeck, C.B.; Karlsen, M.C. Protein and Leucine Requirements for Maximal Muscular Development and Athletic Performance Are Achieved with Completely Plant-Based Diets Modeled to Meet Energy Needs in Adult Male Rugby Players. Sports 2024, 12, 186. https://doi.org/10.3390/sports12070186
Goldman DM, Warbeck CB, Karlsen MC. Protein and Leucine Requirements for Maximal Muscular Development and Athletic Performance Are Achieved with Completely Plant-Based Diets Modeled to Meet Energy Needs in Adult Male Rugby Players. Sports. 2024; 12(7):186. https://doi.org/10.3390/sports12070186
Chicago/Turabian StyleGoldman, David M., Cassandra B. Warbeck, and Micaela C. Karlsen. 2024. "Protein and Leucine Requirements for Maximal Muscular Development and Athletic Performance Are Achieved with Completely Plant-Based Diets Modeled to Meet Energy Needs in Adult Male Rugby Players" Sports 12, no. 7: 186. https://doi.org/10.3390/sports12070186
APA StyleGoldman, D. M., Warbeck, C. B., & Karlsen, M. C. (2024). Protein and Leucine Requirements for Maximal Muscular Development and Athletic Performance Are Achieved with Completely Plant-Based Diets Modeled to Meet Energy Needs in Adult Male Rugby Players. Sports, 12(7), 186. https://doi.org/10.3390/sports12070186