Injury Prevention Strategies in Female Football Players: Addressing Sex-Specific Risks
Abstract
:1. Introduction
1.1. A Historical Perspective on Women’s Football
1.2. The Global Rise of Women’s Football
1.3. Challenges Faced by Women in Football
2. Literature Search
- Contained relevant data on the physiology, injury profiles, or injury prevention strategies specific to female football players.
- Focused on topics of genetic, physiological, or training-related factors associated with female football performance or injuries.
- Were written in English.
- Did not address female football players or their specific physiological/injury characteristics.
- Were not peer-reviewed journal articles (e.g., conference abstracts, non-scientific reports).
- Were not written in English.
3. Literature Review
3.1. Sex Differences in Injury Risk
3.2. The Female ACL: Anatomy, Physiology, and Vulnerabilities
3.3. Core Stability as a Risk Factor for Injuries in Female Football Players
3.4. The Impact of Mental Health on Female Football Players
3.5. Adapting Injury Prevention Programs (IPPs) for Female Footballers
3.6. Personalized Injury Prevention in Female Football: The Role of Genetics
3.7. Strengths, Limitations and Practical Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Williams, J.; Hess, R. Women, Football and History: International Perspectives. Int. J. Hist. Sport 2015, 32, 2115–2122. [Google Scholar] [CrossRef]
- Zeen, K. A Brief History of Women’s Football. Available online: https://www.sundried.com/blogs/training/a-brief-history-of-womens-football?currency=GBP (accessed on 11 December 2024).
- Mandelbaum, B.; D’Hooghe, P. Female Athlete Health in Women’s Football. Aspetar Sports Med. J. 2023, 12, 242–244. Available online: https://journal.aspetar.com/en/archive/volume-12-targeted-topic-women-s-football/female-athlete-health-in-womens-football (accessed on 11 December 2024).
- Podewils, K. The Continuing Rise of Women’s Sport; SPORTFIVE Sports Marketing Agency, 2023; Available online: https://sportfive.com/beyond-the-match/insights/womens-sport-the-next-big-thing (accessed on 11 December 2024).
- Fahmy, M. Increased participation and competitions. In Proceedings of the 5th FIFA Women’s Football Symposium, Frankfurt, Germany, 15–17 July 2011. [Google Scholar]
- FIFA. Women’s Football: Member Associations Survey Report. 2023. Available online: https://digitalhub.fifa.com/m/28ed34bd888832a8/original/FIFA-Women-s-Football-MA-Survey-Report-2023.pdf (accessed on 15 December 2024).
- Le Gall, F.; Carling, C.; Reilly, T. Injuries in young elite female soccer players. Am. J. Sports Med. 2008, 36, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Martín-San Agustín, R.; Medina-Mirapeix, F.; Esteban-Catalán, A.; Escriche-Escuder, A.; Sánchez-Barbadora, M.; Benítez-Martínez, J.C. Epidemiology of Injuries in First Division Spanish Women’s Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 3009. [Google Scholar] [CrossRef]
- Clausen, M.B.; Zebis, M.K.; Møller, M.; Krustrup, P.; Hölmich, P.; Wedderkopp, N.; Andersen, L.L.; Christensen, K.B.; Thorborg, K. High Injury Incidence in Adolescent Female Soccer. Am. J. Sports Med. 2014, 42, 2487–2494. [Google Scholar] [CrossRef]
- Grygorowicz, M.; Michałowska, M.; Jurga, P.; Piontek, T.; Jakubowska, H.; Kotwicki, T. Thirty Percent of Female Footballers Terminate Their Careers Due to Injury: A Retrospective Study Among Polish Former Players. J. Sport Rehabil. 2019, 28, 109–114. [Google Scholar] [CrossRef]
- Mendonça, L.D.; Ley, C.; Schuermans, J.; Wezenbeek, E.; IFSPT; Witvrouw, E. How Injury Prevention Programs Are Being Structured and Implemented Worldwide: An International Survey of Sports Physical Therapists. Phys. Ther. Sport 2021, 53, 143–150. [Google Scholar] [CrossRef]
- Lindenfeld, T.N.; Schmitt, D.J.; Hendy, M.P.; Mangine, R.E.; Noyes, F.R. Incidence of injury in indoor soccer. Am. J. Sports Med. 1994, 22, 364–371. [Google Scholar] [CrossRef]
- Arendt, E.A.; Agel, J.; Dick, R. Anterior cruciate ligament injury patterns among collegiate men and women. J. Athl. Train. 1999, 34, 86–92. [Google Scholar]
- Emery, C.A.; Roy, T.-O.; Whittaker, J.L.; Nettel-Aguirre, A.; van Mechelen, W. Neuromuscular training injury prevention strategies in youth sport: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 865–870. [Google Scholar] [CrossRef]
- Lin, C.Y.; Casey, E.; Herman, D.C.; Katz, N.; Tenforde, A.S. Sex differences in common sports injuries. PM&R 2018, 10, 1073–1082. [Google Scholar] [CrossRef]
- Arundale, A.J.H.; Silvers-Granelli, H.J.; Myklebust, G. ACL Injury Prevention: Where Have We Come from and Where Are We Going? J. Orthop. Res. 2022, 40, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, A.M.; Schneider, D.K.; Silva, P.L.; Yut, L.; Webster, K.E.; Riley, M.A.; Kiefer, A.W.; Doherty-Restrepo, J.L.; Myer, G.D. What’s My Risk of Sustaining an ACL Injury While Playing Football (Soccer)? A Systematic Review with Meta-Analysis. Br. J. Sports Med. 2018, 53, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Crossley, K.M.; Patterson, B.E.; Culvenor, A.G.; Bruder, A.M.; Mosler, A.B.; Mentiplay, B.F. Making football safer for women: A systematic review and meta-analysis of injury prevention programmes in 11,773 female football (soccer) players. Br. J. Sports Med. 2020, 54, bjsports-2019-101587. [Google Scholar] [CrossRef] [PubMed]
- Al Attar, W.S.A.; Alshehri, M.A. A meta-analysis of meta-analyses of the effectiveness of FIFA injury prevention programs in soccer. Scand. J. Med. Sci. Sports 2019, 29, 1846–1855. [Google Scholar] [CrossRef]
- Michaelidis, M.; Koumantakis, G.A. Effects of Knee Injury Primary Prevention Programs on Anterior Cruciate Ligament Injury Rates in Female Athletes in Different Sports: A Systematic Review. Phys. Ther. Sport 2014, 15, 200–210. [Google Scholar] [CrossRef]
- Åman, M.; Larsén, K.; Forssblad, M.; Näsmark, A.; Waldén, M.; Hägglund, M. A Nationwide Follow-up Survey on the Effectiveness of an Implemented Neuromuscular Training Program to Reduce Acute Knee Injuries in Soccer Players. Orthop. J. Sports Med. 2018, 6, 232596711881384. [Google Scholar] [CrossRef]
- Iván-Baragaño, I.; Maneiro, R.; Losada, J.L.; Ardá, A. Influence of match status in ball possessions in the FIFA Women’s World Cup France 2019. Proc. Inst. Mech. Eng. P J. Sports Eng. Technol. 2022, 175, e211336. [Google Scholar] [CrossRef]
- Foulis, M. Women three times more likely to get injured than men. Safety Magazine, 2022. Available online: https://www.thesafetymag.com/ca/topics/safety-and-ppe/women-three-times-more-likely-to-get-injured-than-men/326097 (accessed on 15 December 2024).
- Sallis, R.E.; Jones, K.; Sunshine, S.; Smith, G.; Simon, L. Comparing Sports Injuries in Men and Women. Int. J. Sports Med. 2001, 22, 420–423. [Google Scholar] [CrossRef]
- Hallén, A.; Tomás, R.; Ekstrand, J.; Bengtsson, H.; den Steen, E.V.; Hägglund, M.; Waldén, M. UEFA Women’s Elite Club Injury Study: A prospective study on 1527 injuries over four consecutive seasons 2018/2019 to 2021/2022 reveals thigh muscle injuries to be most common and ACL injuries most burdensome. Br. J. Sports Med. 2024, 58, e3. [Google Scholar] [CrossRef]
- Mayo Clinic. ACL Injury—Symptoms and Causes. Available online: https://www.mayoclinic.org/diseases-conditions/acl-injury/symptoms-causes/syc-20350738 (accessed on 11 December 2024).
- Alentorn-Geli, E.; Myer, G.D.; Silvers, H.J.; Samitier, G.; Romero, D.; Lázaro-Haro, C.; Cugat, R. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 705–729. [Google Scholar] [CrossRef] [PubMed]
- Ireland, M.L. The female ACL: Why is it more prone to injury? Orthop. Clin. N. Am. 2002, 33, 637–651. [Google Scholar] [CrossRef] [PubMed]
- Waldén, M.; Hägglund, M.; Werner, J.; Ekstrand, J. The Epidemiology of Anterior Cruciate Ligament Injury in Football (Soccer): A Review of the Literature from a Gender-Related Perspective. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Shultz, S.J.; Sander, T.C.; Kirk, S.E.; Perrin, D.H. Sex Differences in Knee Joint Laxity Change Across the Female Menstrual Cycle. J. Sports Med. Phys. Fit. 2005, 45, 594–603. [Google Scholar]
- Martin, D.; Timmins, K.; Cowie, C. Injury Incidence Across the Menstrual Cycle in International Footballers. Front. Sports Act. Living 2021, 3, 616999. [Google Scholar] [CrossRef]
- Smith, R. Female Athletes Six Times More Likely to Get Injured in the Days Leading Up to Their Period. Available online: https://www.technologynetworks.com/proteomics/news/female-athletes-six-times-more-likely-to-get-injured-in-the-days-leading-up-to-their-period-386458 (accessed on 11 December 2024).
- Wojtys, E.M.; Huston, L.J.; Lindenfeld, T.N.; Hewett, T.E.; Greenfield, M.L.V.H. Association Between the Menstrual Cycle and Anterior Cruciate Ligament Injuries in Female Athletes. Am. J. Sports Med. 1998, 26, 614–619. [Google Scholar] [CrossRef]
- Wojtys, E.M.; Huston, L.J.; Boynton, M.D.; Spindler, K.P.; Lindenfeld, T.N. The Effect of the Menstrual Cycle on Anterior Cruciate Ligament Injuries in Women as Determined by Hormone Levels. Am. J. Sports Med. 2002, 30, 182–188. [Google Scholar] [CrossRef]
- Wild, C.Y.; Steele, J.R.; Munro, B.J. Why Do Girls Sustain More Anterior Cruciate Ligament Injuries Than Boys? Sports Med. 2012, 42, 733–749. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Paterno, M.V.; Nick, T.G.; Hewett, T.E. The Effects of Generalized Joint Laxity on Risk of Anterior Cruciate Ligament Injury in Young Female Athletes. Am. J. Sports Med. 2008, 36, 1073–1080. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; Stepanova, A.A.; Biktagirova, E.M.; Semenova, E.A.; Shchuplova, I.S.; Bets, L.V.; Andryushchenko, L.B.; Borisov, O.V.; Andryushchenko, O.N.; Generozov, E.V.; et al. Is testosterone responsible for athletic success in female athletes? J. Sports Med. Phys. Fit. 2020, 60, 1377–1382. [Google Scholar] [CrossRef]
- McFadden, B.A.; Walker, A.J.; Bozzini, B.N.; Hofacker, M.; Russell, M.; Arent, S.M. Psychological and Physiological Changes in Response to the Cumulative Demands of a Women's Division I Collegiate Soccer Season. J. Strength Cond. Res. 2022, 36, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Lovering, R.M.; Romani, W.A. Effect of Testosterone on the Female Anterior Cruciate Ligament. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R15–R22. [Google Scholar] [CrossRef] [PubMed]
- Oberoi, P. Women Athletes Deserve Better Health Resources. Forbes. 2024. Available online: https://www.forbes.com/sites/priyaoberoi/2024/06/13/women-athletes-deserve-better-health-resources/ (accessed on 11 December 2024).
- Russell, K.A.; Palmieri, R.M.; Zinder, S.M.; Ingersoll, C.D. Sex Differences in Valgus Knee Angle During a Single-Leg Drop Jump. J. Athl. Train. 2006, 41, 166–171. [Google Scholar]
- Cheung, E.C.; Boguszewski, D.V.; Joshi, N.B.; Wang, D.; McAllister, D.R. Anatomic Factors that May Predispose Female Athletes to Anterior Cruciate Ligament Injury. Curr. Sports Med. Rep. 2015, 14, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, J.; Mansouri, H.; Chandrashekar, N.; Slauterbeck, J.R.; Hardy, D.M.; Beynnon, B.D. Age, sex, body anthropometry, and ACL size predict the structural properties of the human anterior cruciate ligament. J. Orthop. Res. 2011, 29, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, J.; Chandrashekar, N.; Gill, B.; Beynnon, B.D.; Slauterbeck, J.R.; Schutt, R.C.; Mansouri, H.; Dabezies, E. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J. Bone Jt. Surg. Am. 2008, 90, 2724–2734. [Google Scholar] [CrossRef]
- Lipps, D.B.; Oh, Y.K.; Ashton-Miller, J.A.; Wojtys, E.M. Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am. J. Sports Med. 2011, 40, 32–40. [Google Scholar] [CrossRef]
- LaPrade, R.F.; Burnett, Q.M. Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. Am. J. Sports Med. 1994, 22, 198–203. [Google Scholar] [CrossRef]
- Whitney, D.C.; Sturnick, D.R.; Vacek, P.M.; DeSarno, M.J.; Gardner-Morse, M.; Tourville, T.W.; Smith, H.C.; Slauterbeck, J.R.; Johnson, R.J.; Shultz, S.J.; et al. Relationship Between the Risk of Suffering a First-Time Noncontact ACL Injury and Geometry of the Femoral Notch and ACL. Am. J. Sports Med. 2014, 42, 1796–1805. [Google Scholar] [CrossRef]
- Garvey, K.D.; Lowenstein, N.A.; Matzkin, E.G. Chapter 5—Anterior Cruciate Ligament Injury Prevention. In The Female Athlete; Frank, R.M., Ed.; Elsevier eBooks; Elsevier BV: Amsterdam, The Netherlands, 2022; pp. 49–63. [Google Scholar] [CrossRef]
- Huston, L.J.; Wojtys, E.M. Neuromuscular performance characteristics in elite female athletes. Am. J. Sports Med. 1996, 24, 427–436. [Google Scholar] [CrossRef]
- Wojtys, E.M.; Huston, L.J.; Taylor, P.D.; Bastian, S.D. Neuromuscular Adaptations in Isokinetic, Isotonic, and Agility Training Programs. Am. J. Sports Med. 1996, 24, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Zebis, M.K.; Aagaard, P.; Andersen, L.L.; Hölmich, P.; Clausen, M.B.; Brandt, M.; Husted, R.S.; Lauridsen, H.B.; Curtis, D.J.; Bencke, J. First-time anterior cruciate ligament injury in adolescent female elite athletes: A prospective cohort study to identify modifiable risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Ireland, M.L.; Bolgla, L.A.; Noehren, B. Gender differences in core strength and lower extremity function during static and dynamic single-leg squat tests. In ACL Injuries in the Female Athlete; Noyes, F.R., Barber-Westin, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 239–257. [Google Scholar]
- De Blaiser, C.; De Ridder, R.; Willems, T.; Vanden Bossche, L.; Danneels, L.; Roosen, P. Impaired Core Stability as a Risk Factor for the Development of Lower Extremity Overuse Injuries: A Prospective Cohort Study. Am. J. Sports Med. 2019, 47, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
- Cresswell, A.G.; Grundström, H.; Thorstensson, A. Observations on intra-abdominal pressure and patterns of abdominal intra-muscular activity in man. Acta Physiol. Scand. 1992, 144, 409–418. [Google Scholar] [CrossRef]
- Richardson, C.; Toppenberg, R.; Jull, G. An Initial Evaluation of Eight Abdominal Exercises for Their Ability to Provide Stabilisation for the Lumbar Spine. Aust. J. Physiother. 1990, 36, 6–11. [Google Scholar] [CrossRef]
- De Blaiser, C.; Roosen, P.; Willems, T.; Danneels, L.; Bossche, L.V.; De Ridder, R. Is core stability a risk factor for lower extremity injuries in an athletic population? A systematic review. Phys. Ther. Sport 2018, 30, 48–56. [Google Scholar] [CrossRef]
- Leetun, D.T.; Ireland, M.L.; Willson, J.D.; Ballantyne, B.T.; Davis, I.M. Core stability measures as risk factors for lower extremity injury in athletes. Med. Sci. Sports Exerc. 2004, 36, 926–934. [Google Scholar] [CrossRef]
- Greene, F.S.; Perryman, E.; Cleary, C.J.; Cook, S.B. Core Stability and Athletic Performance in Male and Female Lacrosse Players. Int. J. Exerc. Sci. 2019, 12, 1138–1148. [Google Scholar] [CrossRef]
- Gordon, A.T.; Ambegaonkar, J.P.; Caswell, S.V. Relationships between core strength, hip external rotator muscle strength, and star excursion balance test performance in female lacrosse players. Int. J. Sports Phys. Ther. 2013, 8, 97–104. [Google Scholar]
- Zazulak, B.T.; Hewett, T.E.; Reeves, N.P.; Goldberg, B.; Cholewicki, J. The Effects of Core Proprioception on Knee Injury. Am. J. Sports Med. 2007, 35, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Gouttebarge, V.; Frings-Dresen, M.H.; Sluiter, J.K. Mental and Psychosocial Health among Current and Former Professional Footballers. Occup. Med. 2015, 65, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Bilgoe, S.C.; Goedhart, E.; Orhant, E.; Kerkhoffs, G.; Gouttebarge, V. Unmasking Mental Health Symptoms in Female Professional Football Players: A 12-Month Follow-Up Study. BMJ Open Sport Exerc. Med. 2024, 10, e001922. [Google Scholar] [CrossRef] [PubMed]
- Muuns, A. Mental Health and Performance in Professional Female Football Players. LinkedIn Pulse. 2021. Available online: https://www.linkedin.com/pulse/mental-health-performance-professional-female-football-munns (accessed on 11 December 2024).
- Junge, A.; Prinz, B. Depression and Anxiety Symptoms in 17 Teams of Female Football Players Including 10 German First League Teams. Br. J. Sports Med. 2019, 53, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Salam, R.A.; Arshad, A.; Das, J.K.; Khan, M.N.; Mahmood, W.; Freedman, S.B.; Bhutta, Z.A. Interventions to Prevent Unintentional Injuries Among Adolescents: A Systematic Review and Meta-Analysis. J. Adolesc. Health 2016, 59, S76–S87. [Google Scholar] [CrossRef]
- Al Attar, W.; Soomro, N.; Sinclair, P.; Pappas, E.; Sanders, R. How effective are F-MARC injury prevention programs for soccer players? A systematic review and meta-analysis. J. Sci. Med. Sport 2015, 19, e71. [Google Scholar] [CrossRef]
- Al Attar, W.S.A.; Majrashi, A.; Bizzini, M. Effectiveness of FIFA 11+ Injury Prevention Programs in Reducing Head and Neck Injuries, Including Concussion, Among Soccer Players: A Systematic Review and Meta-Analysis. Pediatr. Exerc. Sci. 2024, 36, 1–10. [Google Scholar] [CrossRef]
- Soligard, T.; Myklebust, G.; Steffen, K.; Holme, I.; Silvers, H.; Bizzini, M.; Junge, A.; Dvorak, J.; Bahr, R.; Andersen, T.E. Comprehensive Warm-Up Programme to Prevent Injuries in Young Female Footballers: Cluster Randomised Controlled Trial. BMJ 2008, 337, a2469. [Google Scholar] [CrossRef]
- Ling, D.I.; Cepeda, N.A.; Marom, N.; Jivanelli, B.; Marx, R.G. Injury prevention programmes with plyometric and strengthening exercises improve on-field performance: A systematic review. J. ISAKOS 2020, 5, 48–59. [Google Scholar] [CrossRef]
- Ramos, A.P.; de Mesquita, R.S.; Migliorini, F.; Maffulli, N.; Okubo, R. FIFA 11+ Kids in the Prevention of Soccer Injuries in Children: A Systematic Review. J. Orthop. Surg. Res. 2024, 19, 413. [Google Scholar] [CrossRef]
- Rössler, R.; Verhagen, E.; Rommers, N.; Dvorak, J.; Junge, A.; Lichtenstein, E.; Donath, L.; Faude, O. Comparison of the ‘11+ Kids’ Injury Prevention Programme and a Regular Warm-Up in Children’s Football (Soccer): A Cost Effectiveness Analysis. Br. J. Sports Med. 2019, 53, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Althomali, O.W.; Ibrahim, A.A.; Algharbi, A.F.; Alshammari, S.S.; Alajlan, S.N.; Albaqawi, J.A.; Alshammari, A.F.; Sheeha, B.B.; Hussein, H.M. The FIFA 11+ Injury Prevention Program Reduces the Incidence of Lower Extremity Injuries in Football Players: A Systematic Review and Meta-Analysis. J. Sports Med. Phys. Fit. 2025, 65, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Scott, C. A Training Program to Prevent Leg Injuries in Community Australian Football. Available online: https://coastsport.com.au/wp-content/uploads/2018/02/FootyFirst_-_Manual.pdf (accessed on 11 December 2024).
- Bailey, M. How to Tackle the Increased Rate of ACL Injuries in Women’s Football. BOA Website. 2023. Available online: https://www.boa.ac.uk/resource/how-to-tackle-the-increased-rate-of-acl-injuries-in-women-s-football.html (accessed on 15 December 2024).
- Magnusson, K.; Turkiewicz, A.; Hughes, V.; Frobell, R.; Englund, M. High Genetic Contribution to Anterior Cruciate Ligament Rupture: Heritability ~69. Br. J. Sports Med. 2020, 54, bjsports-2020-102392. [Google Scholar] [CrossRef] [PubMed]
- Juffer, P.; Furrer, R.; González-Freire, M.; Santiago, C.; Verde, Z.; Serratosa, L.; Morate, F.J.; Rubio, J.C.; Martin, M.A.; Ruiz, J.R.; et al. Genotype distributions in top-level soccer players: A role for ACE? Int. J. Sports Med. 2009, 30, 387–392. [Google Scholar] [CrossRef]
- Pickering, C.; Suraci, B.; Semenova, E.A.; Boulygina, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Khabibova, S.A.; Larin, A.K.; Pavlenko, A.V.; et al. A genome-wide association study of sprint performance in elite youth football players. J. Strength Cond. Res. 2019, 33, 2344–2351. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Brownlee, T.E.; Rienzi, E.; Roquero, S.; Moreno, S.; Huertas, G.; Lugioratto, G.; Baumert, P.; Turner, D.C.; Lee, D.; et al. The genetic profile of elite youth soccer players and its association with power and speed depends on maturity status. PLoS ONE 2020, 15, e0234458. [Google Scholar] [CrossRef]
- Pruna, R.; Artells, R.; Ribas, J.; Montoro, B.; Cos, F.; Muñoz, C.; Rodas, G.; Maffulli, N. Single nucleotide polymorphisms associated with non-contact soft tissue injuries in elite professional soccer players: Influence on degree of injury and recovery time. BMC Musculoskelet. Disord. 2013, 14, 221. [Google Scholar] [CrossRef]
- Pruna, R.; Artells, R.; Lundblad, M.; Maffulli, N. Genetic biomarkers in non-contact muscle injuries in elite soccer players. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3311–3318. [Google Scholar] [CrossRef]
- Larruskain, J.; Celorrio, D.; Barrio, I.; Odriozola, A.; Gil, S.M.; Fernandez-Lopez, J.R.; Nozal, R.; Ortuzar, I.; Lekue, J.A.; Aznar, J.M. Genetic Variants and Hamstring Injury in Soccer: An Association and Validation Study. Med. Sci. Sports Exerc. 2018, 50, 361–368. [Google Scholar] [CrossRef]
- Hall, E.C.R.; Baumert, P.; Larruskain, J.; Gil, S.M.; Lekue, J.A.; Rienzi, E.; Moreno, S.; Tannure, M.; Murtagh, C.F.; Ade, J.D.; et al. The genetic association with injury risk in male academy soccer players depends on maturity status. Scand. J. Med. Sci. Sports 2022, 32, 338–350. [Google Scholar] [CrossRef]
- Ficek, K.; Cieszczyk, P.; Kaczmarczyk, M.; Maciejewska-Karłowska, A.; Sawczuk, M.; Cholewinski, J.; Leonska-Duniec, A.; Stepien-Slodkowska, M.; Zarebska, A.; Stepto, N.K.; et al. Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. J. Sci. Med. Sport 2013, 16, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Massidda, M.; Bachis, V.; Corrias, L.; Piras, F.; Scorcu, M.; Calò, C.M. Influence of the COL5A1 rs12722 on musculoskeletal injuries in professional soccer players. J. Sports Med. Phys. Fit. 2015, 55, 1348–1353. [Google Scholar]
- Clos, E.; Pruna, R.; Lundblad, M.; Artells, R.; Esquirol Caussa, J. ACTN3 single nucleotide polymorphism is associated with non-contact musculoskeletal soft-tissue injury incidence in elite professional football players. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 4055–4061. [Google Scholar] [CrossRef] [PubMed]
- Massidda, M.; Voisin, S.; Culigioni, C.; Piras, F.; Cugia, P.; Yan, X.; Eynon, N.; Calò, C.M. ACTN3 R577X Polymorphism Is Associated With the Incidence and Severity of Injuries in Professional Football Players. Clin. J. Sport Med. 2019, 29, 57–61. [Google Scholar] [CrossRef]
- Rodas, G.; Moreno-Pérez, V.; Del Coso, J.; Florit, D.; Osaba, L.; Lucia, A. Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact Muscle Injuries: Preliminary Findings in a Top-Level Soccer Team. Genes 2021, 12, 769. [Google Scholar] [CrossRef]
- Gabbasov, R.T.; Arkhipova, A.A.; Borisova, A.V.; Hakimullina, A.M.; Kuznetsova, A.V.; Williams, A.G.; Day, S.H.; Ahmetov, I.I. The HIF1A Gene Pro582Ser Polymorphism in Russian Strength Athletes. J. Strength Cond. Res. 2013, 27, 2055–2058. [Google Scholar] [CrossRef]
- Maciejewska-Skrendo, A.; Sawczuk, M.; Cięszczyk, P.; Ahmetov, I.I. Genes and power athlete status. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 41–72. [Google Scholar] [CrossRef]
- Moreland, E.; Borisov, O.V.; Semenova, E.A.; Larin, A.K.; Andryushchenko, O.N.; Andryushchenko, L.B.; Generozov, E.V.; Williams, A.G.; Ahmetov, I.I. Polygenic Profile of Elite Strength Athletes. J. Strength Cond. Res. 2022, 36, 2509–2514. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Hall, E.C.R.; Brownlee, T.E.; Drust, B.; Williams, A.G.; Erskine, R.M. The Genetic Association with Athlete Status, Physical Performance, and Injury Risk in Soccer. Int. J. Sports Med. 2023, 44, 941–960. [Google Scholar] [CrossRef]
- Gineviciene, V.; Utkus, A.; Pranckevičienė, E.; Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Perspectives in Sports Genomics. Biomedicines 2022, 10, 298. [Google Scholar] [CrossRef]
- Eynon, N.; Nasibulina, E.S.; Banting, L.K.; Cieszczyk, P.; Maciejewska-Karlowska, A.; Sawczuk, M.; Bondareva, E.A.; Shagimardanova, R.R.; Raz, M.; Sharon, Y.; et al. The FTO A/T polymorphism and elite athletic performance: A study involving three groups of European athletes. PLoS ONE 2013, 8, e60570. [Google Scholar] [CrossRef]
- Semenova, E.A.; Miyamoto-Mikami, E.; Akimov, E.B.; Al-Khelaifi, F.; Murakami, H.; Zempo, H.; Kostryukova, E.S.; Kulemin, N.A.; Larin, A.K.; Borisov, O.V.; et al. The association of HFE gene H63D polymorphism with endurance athlete status and aerobic capacity: Novel findings and a meta-analysis. Eur. J. Appl. Physiol. 2020, 120, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Tanaka, M.; Eynon, N.; North, K.N.; Williams, A.G.; Collins, M.; Moran, C.N.; Britton, S.L.; Fuku, N.; Ashley, E.A.; et al. The Future of Genomic Research in Athletic Performance and Adaptation to Training. Genet. Sports 2016, 61, 55–67. [Google Scholar] [CrossRef]
- Boulygina, E.A.; Borisov, O.V.; Valeeva, E.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Larin, A.K.; Nabiullina, R.M.; Mavliev, F.A.; Akhatov, A.M.; et al. Whole genome sequencing of elite athletes. Biol. Sport 2020, 37, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; John, G.; Semenova, E.A.; Hall, E.C.R. Genomic predictors of physical activity and athletic performance. Adv. Genet. 2024, 111, 311–408. [Google Scholar] [CrossRef]
- Hall, E.C.R.; John, G.; Ahmetov, I.I. Testing in Football: A Narrative Review. Sports 2024, 12, 307. [Google Scholar] [CrossRef]
- Akhmetov, I.I.; Astranenkova, I.V.; Rogozkin, V.A. Association of PPARD gene polymorphism with human physical performance. Mol. Biol. 2007, 41, 852–857. [Google Scholar]
- Domańska-Senderowska, D.; Snochowska, A.; Szmigielska, P.; Jastrzębski, Z.; Jegier, A.; Kiszałkiewicz, J.; Dróbka, K.; Jastrzębska, J.; Pastuszak-Lewandoska, D.; Cięszczyk, P.; et al. Analysis of the PPARD Gene Expression Level Changes in Football Players in Response to the Training Cycle. Balkan J. Med. Genet. 2018, 21, 19–25. [Google Scholar] [CrossRef]
- Kaplan, T.A.; Digel, S.L.; Scavo, V.A.; Arellana, S.B. Effect of Obesity on Injury Risk in High School Football Players. Clin. J. Sport Med. 1995, 5, 43–47. [Google Scholar] [CrossRef]
- Dvorak, J.; Junge, A.; Chomiak, J.; Graf-Baumann, T.; Peterson, L.; Rösch, D.; Hodgson, R. Risk Factor Analysis for Injuries in Football Players: Possibilities for a Prevention Program. Am. J. Sports Med. 2000, 28 (Suppl. 5), S69–S74. [Google Scholar] [CrossRef]
- López-Valenciano, A.; Raya-González, J.; Garcia-Gómez, J.A.; Aparicio-Sarmiento, A.; Sainz de Baranda, P.; De Ste Croix, M.; Ayala, F. Injury Profile in Women’s Football: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 423–442. [Google Scholar] [CrossRef]
- Zech, A.; Hollander, K.; Junge, A.; Steib, S.; Groll, A.; Heiner, J.; Nowak, F.; Pfeiffer, D.; Rahlf, A.L. Sex differences in injury rates in team-sport athletes: A systematic review and meta-regression analysis. J. Sport Health Sci. 2022, 11, 104–114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
John, G.; AlNadwi, A.; Georges Abi Antoun, T.; Ahmetov, I.I. Injury Prevention Strategies in Female Football Players: Addressing Sex-Specific Risks. Sports 2025, 13, 39. https://doi.org/10.3390/sports13020039
John G, AlNadwi A, Georges Abi Antoun T, Ahmetov II. Injury Prevention Strategies in Female Football Players: Addressing Sex-Specific Risks. Sports. 2025; 13(2):39. https://doi.org/10.3390/sports13020039
Chicago/Turabian StyleJohn, George, Ameen AlNadwi, Tiffany Georges Abi Antoun, and Ildus I. Ahmetov. 2025. "Injury Prevention Strategies in Female Football Players: Addressing Sex-Specific Risks" Sports 13, no. 2: 39. https://doi.org/10.3390/sports13020039
APA StyleJohn, G., AlNadwi, A., Georges Abi Antoun, T., & Ahmetov, I. I. (2025). Injury Prevention Strategies in Female Football Players: Addressing Sex-Specific Risks. Sports, 13(2), 39. https://doi.org/10.3390/sports13020039