Effects of After-School Basketball Program on Physical Fitness and Cardiometabolic Health in Prepubertal Boys
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Intervention
2.3. Outcomes
2.3.1. Clinical Examination
2.3.2. Body Composition
2.3.3. Blood Pressure
2.3.4. Blood Biomarkers
2.3.5. Cardiorespiratory Fitness (Course Navette Test)
2.3.6. Lower Body Explosive Strength (Horizontal Jump Test)
2.3.7. Core Strength (Abdominal Test)
2.4. Sample Size
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Practical Implications
4.2. Limitations
5. Conclusions
Supplementary Materialss
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
DBP | Diastolic blood pressure |
SBP | Systolic blood pressure |
HR | Heart rate |
HOMA-IR | Homeostasis model assessment of insulin resistance |
HDL-c | High density lipoprotein cholesterol |
LDL-c | Low density lipoprotein cholesterol |
References
- Kabiri, L.S.; Rodriguez, A.X.; Perkins-Ball, A.M.; Diep, C.S. Organized Sports and Physical Activities as Sole Influencers of Fitness: The Homeschool Population. J. Funct. Morphol. Kinesiol. 2019, 4, 13. [Google Scholar] [CrossRef]
- Bu, X.; Gao, Y.; Liang, K.; Bao, W.; Chen, Y.; Guo, L.; Gong, Q.; Lu, H.; Caffo, B.; Mori, S.; et al. Multivariate Associations between Behavioural Dimensions and White Matter across Children and Adolescents with and without Attention-Deficit/Hyperactivity Disorder. J. Child Psychol. Psychiatry 2023, 64, 244–253. [Google Scholar] [CrossRef]
- Chang, S.H.; Kim, K. A Review of Factors Limiting Physical Activity among Young Children from Low-Income Families. J. Exerc. Rehabil. 2017, 13, 375. [Google Scholar] [CrossRef]
- Stea, T.H.; Solaas, S.A.; Kleppang, A.L. Association between Physical Activity, Sedentary Time, Participation in Organized Activities, Social Support, Sleep Problems and Mental Distress among Adults in Southern Norway: A Cross-Sectional Study among 28,047 Adults from the General Population. BMC Public Health 2022, 22, 384. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, D.V.; Branco, B.H.M.; de Jesus, M.C.; Sepúlveda-Loyola, W.; Gonzáles-Caro, H.; Freire, G.L.M.; Dos Santos, N.Q.; Do Nascimento Júnior, J.R.A. Relationship between Vigorous Physical Activity and Body Composition in Older Adults. Nutr. Hosp. 2021, 38, 60–66. [Google Scholar] [CrossRef]
- Zyriax, B.C.; Windler, E. Lifestyle Changes to Prevent Cardio- and Cerebrovascular Disease at Midlife: A Systematic Review. Maturitas 2023, 167, 60–65. [Google Scholar] [CrossRef]
- Thivel, D.; Ring-Dimitriou, S.; Weghuber, D.; Frelut, M.L.; O’Malley, G. Muscle Strength and Fitness in Pediatric Obesity: A Systematic Review from the European Childhood Obesity Group. Obes. Facts 2016, 9, 52–63. [Google Scholar] [CrossRef]
- Oja, P.; Titze, S.; Kokko, S.; Kujala, U.M.; Heinonen, A.; Kelly, P.; Koski, P.; Foster, C. Health Benefits of Different Sport Disciplines for Adults: Systematic Review of Observational and Intervention Studies with Meta-Analysis. Br. J. Sports Med. 2015, 49, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Xu, G. Effects of Chains Squat Training with Different Chain Load Ratio on the Explosive Strength of Young Basketball Players’ Lower Limbs. Front. Physiol. 2022, 13, 979367. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.L.; Ju, J.; Chen, Z. The Mediating Role of Prosocial and Antisocial Behaviors between Team Trust and Sport Commitment in College Basketball Players. Eur. J. Sport Sci. 2022, 22, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T.; Rikukawa, A.; Nagano, Y.; Sasaki, S.; Ichikawa, H.; Hirose, N. Acceleration Profile of High-Intensity Movements in Basketball Games. J. Strength Cond. Res. 2022, 36, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.N.; Madsen, M.; Nielsen, C.M.; Manniche, V.; Hansen, L.; Bangsbo, J.; Krustrup, P.; Hansen, P.R. Cardiovascular Adaptations after 10 Months of Daily 12-Min Bouts of Intense School-Based Physical Training for 8-10-Year-Old Children. Prog. Cardiovasc. Dis. 2020, 63, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M.; Whitehouse, R.H.; Marubini, E.; Resele, L.F. The Adolescent Growth Spurt of Boys and Girls of the Harpenden Growth Study. Ann. Hum. Biol. 1976, 3, 109–126. [Google Scholar] [CrossRef]
- Sobradillo, B.; Aguirre, A.; Aresti, U.; Bilbao, A.; Fernández-Ramos, C. Curvas y Tablas de Crecimiento (Estudios Longitudinal y Transversal); Ergón Creación, S.A.: Madrid, Spain, 2004. [Google Scholar]
- Ruiz, J.R.; Castro-Piñero, J.; España-Romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.A.M.; Enez-Pavón, D.J.; Chillón, P.; Girela-Rejón, M.J.; Mora, J.; et al. Field-Based Fitness Assessment in Young People: The ALPHA Health-Related Fitness Test Battery for Children and Adolescents. Br. J. Sports Med. 2011, 45, 518–524. [Google Scholar] [CrossRef]
- Cadenas-Sanchez, C.; Martinez-Tellez, B.; Sanchez-Delgado, G.; Mora-Gonzalez, J.; Castro-Piñero, J.; Löf, M.; Ruiz, J.R.; Ortega, F.B. Assessing Physical Fitness in Preschool Children: Feasibility, Reliability and Practical Recommendations for the PREFIT Battery. J. Sci. Med. Sport. 2016, 19, 910–915. [Google Scholar] [CrossRef]
- Cengizel, E.; Cengizel, Ç.Ö.; Öz, E. Effects of 4-Month Basketball Training on Speed, Agility and Jumping in Youth Basketball Players. Afr. Educ. Res. J. 2020, 8, 417–421. [Google Scholar] [CrossRef]
- Lesinski, M.; Herz, M.; Schmelcher, A.; Granacher, U. Effects of Resistance Training on Physical Fitness in Healthy Children and Adolescents: An Umbrella Review. Sports Med. 2020, 50, 1901–1928. [Google Scholar] [CrossRef]
- Palma-Muñoz, I.; Ramírez-Campillo, R.; Azocar-Gallardo, J.; Álvarez, C.; Asadi, A.; Moran, J.; Chaabene, H. Effects of Progressed and Nonprogressed Volume-Based Overload Plyometric Training on Components of Physical Fitness and Body Composition Variables in Youth Male Basketball Players. J. Strength Cond. Res. 2021, 35, 1642–1649. [Google Scholar] [CrossRef]
- Sánchez-Díaz, S.; Yanci, J.; Raya-González, J.; Scanlan, A.T.; Castillo, D. A Comparison in Physical Fitness Attributes, Physical Activity Behaviors, Nutritional Habits, and Nutritional Knowledge Between Elite Male and Female Youth Basketball Players. Front. Psychol. 2021, 12, 685203. [Google Scholar] [CrossRef]
- Malina, R.M.; Eisenmann, J.C.; Cumming, S.P.; Ribeiro, B.; Aroso, J. Maturity-Associated Variation in the Growth and Functional Capacities of Youth Football (Soccer) Players 13-15 Years. Eur. J. Appl. Physiol. 2004, 91, 555–562. [Google Scholar] [CrossRef]
- Rinaldo, N.; Toselli, S.; Gualdi-Russo, E.; Zedda, N.; Zaccagni, L. Effects of Anthropometric Growth and Basketball Experience on Physical Performance in Pre-Adolescent Male Players. Int. J. Environ. Res. Public Health 2020, 17, 2196. [Google Scholar] [CrossRef]
- Temfemo, A.; Hugues, J.; Chardon, K.; Mandengue, S.H.; Ahmaidi, S. Relationship between Vertical Jumping Performance and Anthropometric Characteristics during Growth in Boys and Girls. Eur. J. Pediatr. 2009, 168, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Vaquero-Cristóbal, R.; Albaladejo-Saura, M.; Luna-Badachi, A.E.; Esparza-Ros, F. Differences in Fat Mass Estimation Formulas in Physically Active Adult Population and Relationship with Sums of Skinfolds. Int. J. Environ. Res. Public Health 2020, 17, 7777. [Google Scholar] [CrossRef]
- Hermassi, S.; van den Tillaar, R.; Bragazzi, N.L.; Schwesig, R. The Associations Between Physical Performance and Anthropometric Characteristics in Obese and Non-Obese Schoolchild Handball Players. Front. Physiol. 2021, 11, 580991. [Google Scholar] [CrossRef]
- Nikolaidis, P.T.; Asadi, A.; Santos, E.J.A.M.; Calleja-González, J.; Padulo, J.; Chtourou, H.; Zemkova, E. Relationship of Body Mass Status with Running and Jumping Performances in Young Basketball Players. Muscle Ligaments Tendons J. 2015, 5, 187–194. [Google Scholar] [CrossRef]
- Castro-Collado, C.; Llorente-Cantarero, F.J.; Gil-Campos, M.; Jurado-Castro, J.M. Basketball’s Improvement in Bone Mineral Density Compared to Other Sports or Free Exercise Practice in Children and Adolescents: A Systematic Review and Meta-Analysis. Children 2025, 12, 271. [Google Scholar] [CrossRef]
- Otsuka, H.; Tabata, H.; Shi, H.; Sugimoto, M.; Kaga, H.; Someya, Y.; Naito, H.; Ito, N.; Abudurezake, A.; Umemura, F.; et al. Playing Basketball and Volleyball during Adolescence Is Associated with Higher Bone Mineral Density in Old Age: The Bunkyo Health Study. Front. Physiol 2023, 14, 1227639. [Google Scholar] [CrossRef]
- Pereira, R.; Krustrup, P.; Castagna, C.; Coelho, E.; Santos, R.; Helge, E.W.; Jørgensen, N.R.; Magalhães, J.; Póvoas, S. Effects of Recreational Team Handball on Bone Health, Postural Balance and Body Composition in Inactive Postmenopausal Women—A Randomised Controlled Trial. Bone 2021, 145, 115847. [Google Scholar] [CrossRef]
- Yang, Y.; Koenigstorfer, J. Determinants of Fitness App Usage and Moderating Impacts of Education-, Motivation-, and Gamification-Related App Features on Physical Activity Intentions: Cross-Sectional Survey Study. J. Med. Int. Res. 2021, 23, e26063. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bruton, A.; Montero-Marín, J.; González-Agüero, A.; García-Campayo, J.; Moreno, L.A.; Casajús, J.A.; Vicente-Rodríguez, G. The Effect of Swimming During Childhood and Adolescence on Bone Mineral Density: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Ingle, L.; Sleap, M.; Tolfrey, K. The Effect of a Complex Training and Detraining Programme on Selected Strength and Power Variables in Early Pubertal Boys. J. Sports Sci. 2006, 24, 987–997. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Silva-Moreno, C.; Correa-Bautista, J.E.; González-Ruíz, K.; Prieto-Benavides, D.H.; Villa-González, E.; García-Hermoso, A. Self-Rated Health Status and Cardiorespiratory Fitness in a Sample of Schoolchildren from Bogotá, Colombia. The FUPRECOL Study. Int. J. Environ. Res. Public Health 2017, 14, 952. [Google Scholar] [CrossRef]
- Lamoneda, J.; Huertas-Delgado, F.J.; Cadenas-Sanchez, C. Feasibility and Concurrent Validity of a Cardiorespiratory Fitness Test Based on the Adaptation of the Original 20 m Shuttle Run: The 20 m Shuttle Run with Music. J. Sports Sci. 2021, 39, 57–63. [Google Scholar] [CrossRef]
- Arnaoutis, G.; Georgoulis, M.; Psarra, G.; Milkonidou, A.; Panagiotakos, D.B.; Kyriakou, D.; Bellou, E.; Tambalis, K.D.; Sidossis, L.S. Association of Anthropometric and Lifestyle Parameters with Fitness Levels in Greek Schoolchildren: Results from the EYZHN Program. Front. Nutr. 2018, 5, 10. [Google Scholar] [CrossRef]
- Högström, G.; Nordström, A.; Nordström, P. High Aerobic Fitness in Late Adolescence Is Associated with a Reduced Risk of Myocardial Infarction Later in Life: A Nationwide Cohort Study in Men. Eur. Heart J. 2014, 35, 3133–3140. [Google Scholar] [CrossRef] [PubMed]
- Romarate, A.; Yanci, J.; Iturricastillo, A. Evolution of the Internal Load and Physical Condition of Wheelchair Basketball Players during the Competitive Season. Front. Physiol 2023, 14, 1106584. [Google Scholar] [CrossRef]
- Pamuk, Ö.; Makaracı, Y.; Ceylan, L.; Küçük, H.; Kızılet, T.; Ceylan, T.; Kaya, E. Associations between Force-Time Related Single-Leg Counter Movement Jump Variables, Agility, and Linear Sprint in Competitive Youth Male Basketball Players. Children 2023, 10, 427. [Google Scholar] [CrossRef] [PubMed]
- DiFiori, J.P.; Güllich, A.; Brenner, J.S.; Côté, J.; Hainline, B.; Ryan, E.; Malina, R.M. The NBA and Youth Basketball: Recommendations for Promoting a Healthy and Positive Experience. Sports Med. 2018, 48, 2053–2065. [Google Scholar] [CrossRef]
- Hormazábal-Aguayo, I.; Muñoz-Pardeza, J.; Huerta-Uribe, N.; Ezzatvar, Y.; García-Hermoso, A. Evaluating the Usability of Diactive-1: MHealth for Personalized Exercise and Education in Children and Adolescents with Type 1 Diabetes. mHealth 2025, 11, 16. [Google Scholar] [CrossRef] [PubMed]
B0 | B12 | Δ | p-Value | |
---|---|---|---|---|
Age (year) | 10.9 ± 1.41 | 11.9 ± 1.41 | 1.0 | <0.001 |
Weight (kg) | 43.8 ± 10.45 | 47.0 ± 10.80 | 3.2 | <0.001 |
Weight percentile | 56.8 ± 28.32 | 54.7 ± 28.61 | 2.1 | 0.826 |
Height (cm) | 149.4 ± 8.67 | 153 ± 9.83 | 3.6 | <0.001 |
Height percentile | 65.2 ± 26.09 | 68.0 ± 9.83 | 2.8 | 0.361 |
BMI (kg/m2) | 19.5 ± 3.04 | 19 ± 2.57 | 0.5 | 0.555 |
BMI Z-score | 0.1 ± 0.96 | −0.1 ± 0.73 | 0.2 | 0.099 |
DBP (mmHg) | 62.9 ± 8.90 | 55 ± 5.99 | 2.1 | 0.311 |
SBP (mmHg) | 114.5 ± 7.68 | 108.2 ± 10.63 | 6.3 | 0.450 |
HR (bpm) | 66.4 ± 11.57 | 69.7 ± 10.84 | 3.3 | 0.005 |
B0 | B12 | Δ | p-Value | Reference Values | |
---|---|---|---|---|---|
Leukocytes (×103/µL) | 6.13 ± 1.56 | 5.49 ± 1.34 | 0.64 | 0.055 | 4–12.4 |
Hemoglobin (g/dL) | 12.82 ± 2.37 | 13.11 ± 0.75 | 0.29 | 0.226 | 12–16 |
Iron (mg/dL) | 60.50 ± 26.70 | 78.82 ± 21.17 | 18.32 | 0.016 | 50–170 |
Ferritin (ng/mL) | 30.78 ± 12.98 | 30.24 ± 13.36 | 0.51 | 0.776 | 10–120 |
Glucose (mg/dL) | 90.15 ± 14.46 | 92.29 ± 7.08 | 2.14 | 0.736 | 74–106 |
Insulin (µUI/mL) | 8.09 ± 6.15 | 8.90 ± 3.59 | 0.81 | 0.962 | 3–25 |
HOMA-IR | 1.89 ± 1.34 | 2.04 ± 0.86 | 0.15 | 0.981 | 0–2.9 |
Total cholesterol (mg/dL) | 169.40 ± 27.83 | 166.18 ± 26.61 | 3.22 | 0.434 | 140–220 |
HDL-c (mg/dL) | 64.15 ± 11.18 | 52.82 ± 11.49 | 11.33 | <0.001 | 40–80 |
LDL-c (mg/dL) | 91.75 ± 24.11 | 99.18 ± 23.42 | 7.43 | 0.077 | 50–130 |
Apolipoprotein a (mg/dL) | 148.26 ± 23.07 | 129.88 ± 19.31 | 18.38 | <0.001 | 105–220 |
Apolipoprotein b (mg/dL) | 60.37 ± 14.66 | 61.06 ± 12.92 | 0.69 | 0.966 | 65–130 |
Triglycerides (mg/dL) | 65.25 ± 20.30 | 68.88 ± 31.00 | 3.63 | 0.467 | 20–250 |
Aspartate Transaminase (U/L) | 26.10 ± 5.31 | 22.82 ± 3.15 | 3.28 | 0.003 | 5–34 |
Alanine transaminase (U/L) | 20.20 ± 11.15 | 17.35 ± 5.58 | 2.85 | 0.115 | 10–49 |
C-reactive protein (mg/dL) | 2.55 ± 4.35 | 0.92 ± 1.25 | 1.63 | 0.017 | 0–10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Collado, C.; Jurado-Castro, J.M.; Gil-Campos, M.; Pastor-Villaescusa, B.; Quintana-Navarro, G.M.; Llorente-Cantarero, F.J. Effects of After-School Basketball Program on Physical Fitness and Cardiometabolic Health in Prepubertal Boys. Sports 2025, 13, 291. https://doi.org/10.3390/sports13090291
Castro-Collado C, Jurado-Castro JM, Gil-Campos M, Pastor-Villaescusa B, Quintana-Navarro GM, Llorente-Cantarero FJ. Effects of After-School Basketball Program on Physical Fitness and Cardiometabolic Health in Prepubertal Boys. Sports. 2025; 13(9):291. https://doi.org/10.3390/sports13090291
Chicago/Turabian StyleCastro-Collado, Cristina, Jose Manuel Jurado-Castro, Mercedes Gil-Campos, Belén Pastor-Villaescusa, Gracia María Quintana-Navarro, and Francisco Jesús Llorente-Cantarero. 2025. "Effects of After-School Basketball Program on Physical Fitness and Cardiometabolic Health in Prepubertal Boys" Sports 13, no. 9: 291. https://doi.org/10.3390/sports13090291
APA StyleCastro-Collado, C., Jurado-Castro, J. M., Gil-Campos, M., Pastor-Villaescusa, B., Quintana-Navarro, G. M., & Llorente-Cantarero, F. J. (2025). Effects of After-School Basketball Program on Physical Fitness and Cardiometabolic Health in Prepubertal Boys. Sports, 13(9), 291. https://doi.org/10.3390/sports13090291