Angle Specific Analysis of Side-to-Side Asymmetry in the Shoulder Rotators
Abstract
:1. Introduction
2. Context
3. Method
3.1. Participants
3.2. Experimental Design
3.3. Experimental Procedures
3.4. Outcome Measures
3.5. Statistical Analyses
4. Results
Action | Concentric | Eccentric | ||||||
---|---|---|---|---|---|---|---|---|
IPT (N.m) | AIPT (°) | IPT (N.m) | AIPT (°) | |||||
Preferred | Non-preferred | Preferred | Non-preferred | Preferred | Non-preferred | Preferred | Non-preferred | |
IR | 46.5 ± 16.6 | 44.3 ± 14.1 | −35.6 ± 34.6 | −33.2 ± 40.2 | 58.1 ± 21.0 | 56.9 ± 17.2 | −40.9 ± 24.5 | −16.3 ± 29.7 |
ER | 42.7 ± 13.7 | 39.9 ± 12.1 | 0.7 ± 35.4 | 0.7 ± 31.8 | 52.5 ± 13.8 | 53.6 ± 15.1 | −30.8 ± 10.8 | −26.6 ± 13.9 |
Angle (°) | Concentric | Eccentric | ||
---|---|---|---|---|
AST (N.m) | AST (N.m) | |||
Preferred | Non-Preferred | Preferred | Non-Preferred | |
IR-80 | 38.2 ± 18.7 | 34.1 ± 13.0 | 34.4 ± 23.1 | 23.9 ± 24.8 |
IR-70 | 39.8 ± 17.5 | 37.4 ± 15.1 | 41.0 ± 21.2 | 31.3 ± 21.7 |
IR-60 | 40.9 ± 16.9 | 38.2 ± 15.9 | 47.0 ± 20.9 | 38.0 ± 18.8 |
IR-50 | 41.7 ± 16.8 | 38.0 ± 15.5 | 50.0 ± 20.3 | 45.2 ± 17.9 |
IR-40 | 41.7 ± 16.8 | 36.8 ± 15.0 | 50.9 ± 19.1 | 47.3 ± 18.4 |
IR-30 | 41.2 ± 15.4 | 37.4 ± 15.4 | 51.2 ± 18.5 | 49.6 ± 17.6 |
IR-20 | 39.6 ± 13.6 | 36.5 ± 14.1 | 50.7 ± 16.7 | 50.5 ± 17.3 |
IR-10 | 37.3 ± 12.1 | 36.6 ± 13.5 | 49.9 ± 15.8 | 50.5 ± 15.7 |
IR0 | 36.6 ± 11.6 | 36.8 ± 13.6 | 47.4 ± 16.1 | 50.2 ± 15.7 |
IR10 | 35.6 ± 10.7 | 36.3 ± 13.0 | 44.0 ± 15.0 | 49.1 ± 15.5 |
IR20 | 34.7 ± 9.9 | 35.8 ± 13.2 | 39.8 ± 14.4 | 47.1 ± 15.9 |
IR30 | 32.9 ± 8.9 | 34.9 ± 13.2 | 33.8 ± 14.7 | 42.7 ± 17.9 |
IR40 | 30.7 ± 8.5 | 34.0 ± 13.3 | 25.7 ± 14.9 | 35.7 ± 16.6 |
IR50 | 27.1 ± 9.1 | 32.3 ± 13.2 | 19.5 ± 11.6 | 24.9 ± 15.4 |
ER50 | 33.9 ± 15.1 | 32.8 ± 13.0 | 18.9 ± 14.0 | 19.0 ± 18.9 |
ER40 | 36.9 ± 16.2 | 35.2 ± 13.9 | 24.8 ± 17.3 | 27.6 ± 18.9 |
ER30 | 37.5 ± 16.0 | 35.7 ± 14.0 | 29.9 ± 17.3 | 33.7 ± 17.7 |
ER20 | 38.0 ± 15.2 | 35.9 ± 13.7 | 35.4 ± 15.2 | 37.8 ± 17.7 |
ER10 | 38.0 ± 14.0 | 36.0 ± 12.6 | 39.9 ± 14.7 | 40.6 ± 17.4 |
ER0 | 37.9 ± 13.0 | 35.9 ± 11.5 | 43.7 ± 14.2 | 44.6 ± 16.3 |
ER-10 | 38.0 ± 12.0 | 36.2 ± 11.5 | 46.5 ± 14.1 | 47.7 ± 16.4 |
ER-20 | 37.9 ± 11.1 | 36.5 ± 11.1 | 48.1 ± 13.2 | 50.8 ± 15.6 |
ER-30 | 37.8 ± 10.2 | 36.6 ± 10.5 | 50.9 ± 13.0 | 50.8 ± 14.1 |
ER-40 | 37.2 ± 9.6 | 35.6 ± 9.6 | 49.8 ± 12.9 | 48.4 ± 13.9 |
ER-50 | 35.8 ± 9.0 | 32.9 ± 8.4 | 46.4 ± 13.1 | 43.1 ± 13.2 |
ER-60 | 33.9 ± 9.8 | 29.2 ± 7.1 | 39.1 ± 14.3 | 34.4 ± 12.8 |
ER-70 | 29.1 ± 8.1 | 24.1 ± 6.6 | 29.2 ± 12.0 | 23.5 ± 12.7 |
ER-80 | 23.0 ± 7.9 | 17.2 ± 9.1 | 17.9 ± 10.7 | 14.5 ± 7.8 |
5. Discussion
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Ruas, C.V.; Pinto, R.S.; Hafenstine, R.W.; Pereira, M.C.; Brown, L.E. Specific joint angle assessment of the shoulder rotators. Isokinet. Exerc. Sci. 2014, 22, 197–204. [Google Scholar]
- Gulick, D.T.; Dustman, C.S.; Ossowski, L.L.; Outslay, M.D.; Thomas, C.P.; Trucano, S. Side dominance does not affect dynamic control strength ratios in the shoulder. Isokinet. Exerc. Sci. 2001, 9, 79–84. [Google Scholar]
- Ng, G.Y.; Lam, P.C. A study of antagonist/agonist isokinetic work ratios of shoulder rotators in men who play badminton. J. Orthop. Sports Phys. Ther. 2002, 32, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, Y.; Aydin, T.; Sekir, U.; Kiralp, M.Z.; Hazneci, B.; Kalyon, T.A. Shoulder terminal range eccentric antagonist/concentric agonist strength ratios in overhead athletes. Scand. J. Med. Sci. Sports 2006, 16, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Ellenbecker, T.S.; Davies, G.J. The application of isokinetics in testing and rehabilitation of the shoulder complex. J. Athl. Train. 2000, 35, 338–350. [Google Scholar] [PubMed]
- Kellis, E.; Katis, A. Quantification of functional knee flexor to extensor moment ratio using isokinetics and electromyography. J. Athl. Train. 2007, 42, 477–485. [Google Scholar] [PubMed]
- Dehail, P.; Gagnon, D.; Noreau, L.; Nadeau, S. Assessment of agonist-antagonist shoulder torque ratios in individuals with paraplegia: A new interpretative approach. Spinal Cord. 2008, 46, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Evangelidis, P.E.; Pain, M.T.; Folland, J. Angle-specific hamstring-to-quadriceps ratio: A comparison of football players and recreationally active males. J. Sports Sci. 2015, 33, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Scoville, C.R.; Arciero, R.A.; Taylor, D.C.; Stoneman, P.D. End range eccentric antagonist/concentric agonist strength ratios: A new perspective in shoulder strength assessment. J. Orthop. Sports Phys. Ther. 1997, 25, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Ayala, F.; De Ste Croix, M.; Sainz de Baranda, P.; Santonja, F. Absolute reliability of hamstring to quadriceps strength imbalance ratios calculated using peak torque, joint angle-specific torque and joint rom-specific torque values. Int. J. Sports Med. 2012, 33, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Forthomme, B.; Dvir, Z.; Crielaard, J.M.; Croisier, J.L. Isokinetic assessment of the shoulder rotators: A study of optimal test position. Clin. Physiol. Funct. Imaging 2011, 31, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Rhea, M.R. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J. Strength Cond. Res. 2004, 18, 918–920. [Google Scholar] [PubMed]
- Brown, L.E.; Whitehurst, M.; Bryant, J.R.; Buchalter, D.N. Reliability of the biodex system 2 isokinetic dynamometer concentric mode. Isokinet. Exerc. Sci. 1993, 3, 160–163. [Google Scholar]
- Edouard, P.; Codine, P.; Samozino, P.; Bernard, P.L.; Herisson, C.; Gremeaux, V. Reliability of shoulder rotators isokinetic strength imbalance measured using the biodex dynamometer. J. Sci. Med. Sport 2013, 16, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.E.; Weir, J.P. Asep procedures recommendation i: Accurate assessment of muscular strength and power. J. Exerc. Physiol. Online 2001, 4, 1–21. [Google Scholar]
- Ruas, C.V.; Minozzo, F.; Pinto, M.D.; Brown, L.E.; Pinto, R.S. Lower-extremity strength ratios of professional soccer players according to field position. J. Strength Cond. Res. 2015, 29, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Ruas, C.V.; Pinto, M.D.; Brown, L.; Minozzo, F.; Mil-Homens, P.; Pinto, R.S. The association between conventional and dynamic control knee strength ratios in elite soccer players. Isokinet. Exerc. Sci. 2015, 23, 1–12. [Google Scholar]
- Brown, L.E.; Sjostrom, T.; Comeau, M.J.; Whitehurst, M.; Greenwood, M.; Findley, B.W. Kinematics of biophysically asymmetric limbs within rate of velocity development. J. Strength Cond. Res. 2005, 19, 298–301. [Google Scholar] [PubMed]
- Hurd, W.J.; Kaplan, K.M.; ElAttrache, N.S.; Jobe, F.W.; Morrey, B.F.; Kaufman, K.R. A profile of glenohumeral internal and external rotation motion in the uninjured high school baseball pitcher, part ii: Strength. J. Athl. Train. 2011, 46, 289–295. [Google Scholar] [PubMed]
- Codine, P.; Bernard, P.L.; Pocholle, M.; Benaim, C.; Brun, V. Influence of sports discipline on shoulder rotator cuff balance. Med. Sci. Sports Exerc. 1997, 29, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Perrin, D.H.; Robertson, R.J.; Ray, R.L. Bilateral lsokinetic peak torque, torque acceleration energy, power, and work relationships in athletes and nonathletes. J. Orthop. Sports Phys. Ther. 1987, 9, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Sirota, S.C.; Malanga, G.A.; Eischen, J.J.; Laskowski, E.R. An eccentric- and concentric-strength profile of shoulder external and internal rotator muscles in professional baseball pitchers. Am. J. Sports Med. 1997, 25, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Findley, B.W.; Brown, L.E.; Whitehurst, M.; Keating, T.; Murray, D.P.; Gardner, L.M. The influence of body position on load range during isokinetic knee extension/flexion. J. Sport Sci. Med. 2006, 5, 400–406. [Google Scholar]
- Findley, B.W.; Brown, L.E.; Whitehurst, M.; Gilbert, R.; Groo, D.R.; O’neal, J. Sitting vs. Standing isokinetic trunk extension and flexion performance differences. J. Strength Cond Res. 2000, 14, 310–315. [Google Scholar]
- Brown, L.E.; Whitehurst, M.; Gilbert, R.; Buchalter, D.N. The effect of velocity and gender on load range during knee extension and flexion exercise on an isokinetic device. J. Orthop. Sports Phys. Ther. 1995, 21, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.E.; Whitehurst, M.; Findley, B.W.; Gilbert, R.; Buchalter, D.N. Isokinetic load range during shoulder rotation exercise in elite male junior tennis players. J. Strength Cond. Res. 1995, 9, 160–164. [Google Scholar]
- Brown, L.E.; Whitehurst, M.; Findley, B.W.; Gilbert, R.; Groo, D.R.; Jimenez, J.A. Effect of repetitions and gender on acceleration range of motion during knee extension on an isokinetic device. J. Strength Cond. Res. 1998, 12, 222–225. [Google Scholar]
- Huxley, A.F.; Niedergerke, R. Structural changes in muscle during contraction. Nature 1954, 173, 971–973. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruas, C.V.; Pinto, R.S.; Cadore, E.L.; Brown, L.E. Angle Specific Analysis of Side-to-Side Asymmetry in the Shoulder Rotators. Sports 2015, 3, 236-245. https://doi.org/10.3390/sports3030236
Ruas CV, Pinto RS, Cadore EL, Brown LE. Angle Specific Analysis of Side-to-Side Asymmetry in the Shoulder Rotators. Sports. 2015; 3(3):236-245. https://doi.org/10.3390/sports3030236
Chicago/Turabian StyleRuas, Cassio V., Ronei S. Pinto, Eduardo L. Cadore, and Lee E. Brown. 2015. "Angle Specific Analysis of Side-to-Side Asymmetry in the Shoulder Rotators" Sports 3, no. 3: 236-245. https://doi.org/10.3390/sports3030236
APA StyleRuas, C. V., Pinto, R. S., Cadore, E. L., & Brown, L. E. (2015). Angle Specific Analysis of Side-to-Side Asymmetry in the Shoulder Rotators. Sports, 3(3), 236-245. https://doi.org/10.3390/sports3030236