Between-Leg Mechanical Differences as Measured by the Bulgarian Split-Squat: Exploring Asymmetries and Relationships with Sprint Acceleration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. 5RM Bulgarian Split-Squat (BSS) Strength Testing
2.4. 20-m Sprint Testing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
m | Meters |
BSS | Bulgarian split-squat |
5RM | Five repetition-maximum |
kg | Kilograms |
SD | Standard deviation |
CI | Confidence intervals |
p | Significance |
d | Effect size |
ρ | Spearman’s rho correlation coefficient |
m·s−1 | Meters per second |
PP | Peak power |
MP | Mean power |
PF | Peak force |
MF | Mean force |
PV | Peak velocity |
MV | Mean velocity |
References
- Lockie, R.G.; Murphy, A.J.; Spinks, C.D. Effects of resisted sled towing on sprint kinematics in field-sport athletes. J. Strength Cond. Res. 2003, 17, 760–767. [Google Scholar] [PubMed]
- Young, W.; McLean, B.; Ardagna, J. Relationship between strength qualities and sprinting performance. J. Sports Med. Phys. Fit. 1995, 35, 13–19. [Google Scholar]
- Lockie, R.G.; Murphy, A.J.; Knight, T.J.; de Jonge, X.A.K. Factors that differentiate acceleration ability in field sport athletes. J. Strength Cond. Res. 2011, 25, 2704–2714. [Google Scholar] [CrossRef] [PubMed]
- Nimphius, S.; McGuigan, M.R.; Newton, R.U. Relationship between strength, power, speed, and change of direction performance of female softball players. J. Strength Cond. Res. 2010, 24, 885–895. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.M.; Blow, D.; Kirby, T.J.; Haines, T.L.; Dayne, A.M.; Triplett, N.T. Relationship between maximal squat strength and five, ten, and forty yard sprint times. J. Strength Cond. Res. 2009, 23, 1633–1636. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.B.; Hansen, K.T. Strength and power predictors of sports speed. J. Strength Cond. Res. 2005, 19, 349–357. [Google Scholar] [PubMed]
- Dawes, J.J.; Orr, R.M.; Elder, C.L.; Krall, K.; Stierli, M.; Schilling, B. Relationship between selected measures of power and strength and linear running speed amongst Special Weapons and Tactics police officers. J. Aust. Strength Cond. 2015, 23, 23–28. [Google Scholar]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jeffriess, M.D. The relationship between dynamic stability and multidirectional speed. J. Strength Cond. Res. 2016, 30, 3033–3043. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Murphy, A.J.; Schultz, A.B.; Jeffriess, M.D.; Callaghan, S.J. Influence of sprint acceleration stance kinetics on velocity and step kinematics in field sport athletes. J. Strength Cond. Res. 2013, 27, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.B.; Edouard, P.; Samozino, P. Technical ability of force application as a determinant factor of sprint performance. Med. Sci. Sports Exerc. 2011, 43, 1680–1688. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Murphy, A.J.; Jeffriess, M.D.; Callaghan, S.J. Step kinematic predictors of short sprint performance in field sport athletes. Serb. J. Sports Sci. 2013, 7, 71–77. [Google Scholar]
- Brughelli, M.; Cronin, J.; Mendiguchia, J.; Kinsella, D.; Nosaka, K. Contralateral leg deficits in kinetic and kinematic variables during running in Australian rules football players with previous hamstring injuries. J. Strength Cond. Res. 2010, 24, 2539–2544. [Google Scholar] [CrossRef] [PubMed]
- Nimphius, S.; Callaghan, S.J.; Bezodis, N.E.; Lockie, R.G. Change of direction and agility tests: Challenging our current measures of performance. Strength Cond. J. 2017. [Google Scholar] [CrossRef]
- Newton, R.U.; Gerber, A.; Nimphius, S.; Shim, J.K.; Doan, B.K.; Robertson, M.; Pearson, D.R.; Craig, B.W.; Hakkinen, K.; Kraemer, W.J. Determination of functional strength imbalance of the lower extremities. J. Strength Cond. Res. 2006, 20, 971–977. [Google Scholar] [PubMed]
- Lockie, R.G.; Schultz, A.B.; Jeffriess, M.D.; Callaghan, S.J. The relationship between bilateral differences of knee flexor and extensor isokinetic strength and multi-directional speed. Isokinet. Exerc. Sci. 2012, 20, 211–219. [Google Scholar]
- Kellis, S.; Gerodimos, V.; Kellis, E.; Manou, V. Bilateral isokinetic concentric and eccentric strength profiles of the knee extensors and flexors in young soccer players. Isokinet. Exerc. Sci. 2001, 9, 31. [Google Scholar]
- Bennell, K.; Wajswelner, H.; Lew, P.; Schall-Riaucour, A.; Leslie, S.; Plant, D.; Cirone, J. Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers. Br. J. Sports Med. 1998, 32, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J.J.; Bauman, C.L.; Jones, B.H.; Harris, J.M.; Vaughan, L. Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. Am. J. Sports Med. 1991, 19, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, E.J.; Galna, B.; McKenna, M.J.; Hunt, P.H.; Pyne, D.B. Validation of an optical encoder during free weight resistance movements and analysis of bench press sticking point power during fatigue. J. Strength Cond. Res. 2007, 21, 510–517. [Google Scholar] [PubMed]
- Harris, N.K.; Cronin, J.; Taylor, K.-L.; Boris, J.; Sheppard, J. Understanding position transducer technology for strength and conditioning practitioners. Strength Cond. J. 2010, 32, 66–79. [Google Scholar] [CrossRef]
- Lockie, R.G.; Moreno, M.R.; Lazar, A.; Risso, F.G.; Tomita, T.M.; Stage, A.A.; Birmingham-Babauta, S.A.; Torne, I.A.; Stokes, J.J.; Giuliano, D.V.; et al. The one-repetition maximum mechanics of a high-handle hexagonal bar deadlift compared to a conventional deadlift as measured by a linear position transducer. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Callaghan, S.J.; Moreno, M.R.; Risso, F.G.; Liu, T.M.; Stage, A.A.; Birmingham-Babauta, S.A.; Stokes, J.J.; Giuliano, D.V.; Lazar, A.; et al. An investigation of the mechanics and sticking region of a one-repetition maximum close-grip bench press versus the traditional bench press. Sports 2017, 5, 46. [Google Scholar] [CrossRef]
- McCurdy, K.; Langford, G.A.; Cline, A.L.; Doscher, M.; Hoff, R. The reliability of 1- and 3RM tests of unilateral strength in trained and untrained men and women. J. Sports Sci. Med. 2004, 3, 190–196. [Google Scholar] [PubMed]
- Muehlbauer, T.; Gollhofer, A.; Granacher, U. Associations between measures of balance and lower-extremity muscle strength/power in healthy individuals across the lifespan: A systematic review and meta-analysis. Sports Med. 2015, 45, 1671–1692. [Google Scholar] [CrossRef] [PubMed]
- Dawes, J.; Lentz, D. Methods of developing power to improve acceleration for the non-track athlete. Strength Cond. J. 2012, 34, 44–51. [Google Scholar] [CrossRef]
- Keogh, J. Lower-body resistance training: Increasing functional performance with lunges. Strength Cond. J. 1999, 21, 67–72. [Google Scholar] [CrossRef]
- Mann, R.A.; Hagy, J. Biomechanics of walking, running, and sprinting. Am. J. Sports Med. 1980, 8, 345–350. [Google Scholar]
- Mann, R.A.; Moran, G.T.; Dougherty, S.E. Comparative electromyography of the lower extremity in jogging, running, and sprinting. Am. J. Sports Med. 1986, 14, 501–510. [Google Scholar]
- Murphy, A.J.; Lockie, R.G.; Coutts, A.J. Kinematic determinants of early acceleration in field sport athletes. J. Sports Sci. Med. 2003, 2, 144–150. [Google Scholar]
- Spinks, C.D.; Murphy, A.J.; Spinks, W.L.; Lockie, R.G. Effects of resisted sprint training on acceleration performance and kinematics in soccer, rugby union and Australian football players. J. Strength. Cond. Res. 2007, 21, 77–85. [Google Scholar]
- Baker, D. Cycle-length variants in periodized strength/power training. Strength Cond. J. 2007, 29, 10–17. [Google Scholar] [CrossRef]
- Lockie, R.G.; Murphy, A.J.; Schultz, A.B.; Knight, T.J.; Janse de Jonge, X.A.K. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes. J. Strength Cond. Res. 2012, 26, 1539–1550. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; O’Bryant, H.S.; Schilling, B.K.; Johnson, R.L.; Pierce, K.C.; Haff, G.G.; Koch, A.J. Periodization: Effects of manipulating volume and intensity. Part 1. Strength Cond. J. 1999, 21, 56–62. [Google Scholar] [CrossRef]
- Chatzopoulos, D.E.; Michailidis, C.J.; Giannakos, A.K.; Alexiou, K.C.; Patikas, D.A.; Antonopoulos, C.B.; Kotzamanidis, C.M. Postactivation potentiation effects after heavy resistance exercise on running speed. J. Strength Cond. Res. 2007, 21, 1278–1281. [Google Scholar] [PubMed]
- Lockie, R.G.; Davis, D.L.; Giuliano, D.V.; Risso, F.G.; Orjalo, A.J.; Moreno, M.R.; Lazar, A. A preliminary case analysis of the post-activation potentiation effects of plyometrics on sprint performance in women. Sport Sci. Rev. 2016, 25, 300–319. [Google Scholar] [CrossRef]
- Scott, B.R.; Dascombe, B.J.; Delaney, J.A.; Elsworthy, N.; Lockie, R.G.; Sculley, D.V.; Slattery, K.M. The validity and reliability of a customized rigid supportive harness during Smith Machine back squat exercise: Harness back squat validity and reliability. J. Strength Cond. Res. 2014, 28, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Batista, M.A.; Roschel, H.; Barroso, R.; Ugrinowitsch, C.; Tricoli, V. Influence of strength training background on postactivation potentiation response. J. Strength Cond. Res. 2011, 25, 2496–2502. [Google Scholar] [CrossRef] [PubMed]
- Crewther, B.T.; Kilduff, L.P.; Cook, C.J.; Middleton, M.K.; Bunce, P.J.; Yang, G.Z. The acute potentiating effects of back squats on athlete performance. J. Strength Cond. Res. 2011, 25, 3319–3325. [Google Scholar] [CrossRef] [PubMed]
- Tsimahidis, K.; Galazoulas, C.; Skoufas, D.; Papaiakovou, G.; Bassa, E.; Patikas, D.; Kotzamanidis, C. The effect of sprinting after each set of heavy resistance training on the running speed and jumping performance of young basketball players. J. Strength Cond. Res. 2010, 24, 2102–2108. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, E.J.; Moore, N.R.; Bird, S.P. Effects of changing from full range of motion to partial range of motion on squat kinetics. J. Strength Cond. Res. 2012, 26, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Black, M. Reliability and Validity of the GymAware Optical Encoder to Measure Displacement Data. 2010. Available online: http://www.kinetic.com.au/pdf/GA-Report2.pdf (accessed on 3 August 2016).
- De Lacey, J.; Brughelli, M.; McGuigan, M.; Hansen, K.; Samozino, P.; Morin, J.B. The effects of tapering on power-force-velocity profiling and jump performance in professional rugby league players. J. Strength Cond. Res. 2014, 28, 3567–3570. [Google Scholar] [CrossRef] [PubMed]
- Argus, C.K.; Gill, N.D.; Keogh, J.W. Characterization of the differences in strength and power between different levels of competition in rugby union athletes. J. Strength Cond. Res. 2012, 26, 2698–2704. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.P.; Lauder, M.A.; Smith, N.A. Barbell kinematics should not be used to estimate power output applied to the Barbell-and-body system center of mass during lower-body resistance exercise. J. Strength Cond. Res. 2012, 26, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- Hori, N.; Andrews, W.A. Reliability of velocity, force and power obtained from the GymAware optical encoder during countermovement jump with and without external loads. J. Aust. Strength Cond. 2009, 17, 12–17. [Google Scholar]
- Banyard, H.G.; Nosaka, K.; Sato, K.; Haff, G.G. Validity of various methods for determining velocity, force and power in the back squat. Int. J. Sports Physiol. Perform. 2017. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.A.; Scott, T.J.; Ballard, D.A.; Duthie, G.M.; Hickmans, J.A.; Lockie, R.G.; Dascombe, B.J. Contributing factors to change-of-direction ability in professional rugby league players. J. Strength Cond. Res. 2015, 29, 2688–2696. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, K.; Langford, G. The relationship between maximum unilateral squat strength and balance in young adult men and women. J. Sports Sci. Med. 2006, 5, 282–288. [Google Scholar] [PubMed]
- Meylan, C.; McMaster, T.; Cronin, J.; Mohammad, N.I.; Rogers, C.; Deklerk, M. Single-leg lateral, horizontal, and vertical jump assessment: Reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J. Strength Cond. Res. 2009, 23, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Bullock, N.; Pearson, S.J. A comparison of maximal squat strength and 5-, 10-, and 20-meter sprint times, in athletes and recreationally trained men. J. Strength Cond. Res. 2012, 26, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, T.; Hunter, I. Differences in technique between sprinters and distance runners at equal and maximal speeds. Sports Biomech. 2007, 6, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Williamson, D.F.; Parker, R.A.; Kendrick, J.S. The box plot: A simple visual method to interpret data. Ann. Intern. Med. 1989, 110, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Jeffriess, M.D.; Schultz, A.B.; McGann, T.S.; Callaghan, S.J.; Lockie, R.G. Effects of preventative ankle taping on planned change-of-direction and reactive agility performance and ankle muscle activity in basketballers. J. Sports Sci. Med. 2015, 14, 864–876. [Google Scholar] [PubMed]
- Lien, D.; Balakrishnan, N. On regression analysis with data cleaning via trimming, winsorization, and dichotomization. Commun. Stat-Simul. C 2005, 34, 839–849. [Google Scholar] [CrossRef]
- Callaghan, S.J.; Lockie, R.G.; Jeffriess, M.D. The acceleration kinematics of cricket-specific starts when completing a quick single. Sports Tech. 2014, 7, 39–51. [Google Scholar] [CrossRef]
- Callaghan, S.J.; Lockie, R.G.; Jeffriess, M.D.; Nimphius, S. The kinematics of faster acceleration performance of the quick single in experienced cricketers. J. Strength Cond. Res. 2015, 29, 2623–2634. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Vincent, W.J.; Weir, J.P. Statistics in Kinesiology, 4th ed.; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. A preliminary investigation into the relationship between functional movement screen scores and athletic physical performance in female team sport athletes. Biol. Sport 2015, 32, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Feise, R.J. Do multiple outcome measures require p-value adjustment? BMC Med. Res. Methodol. 2002, 2. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G. A Scale of Magnitude for Effect Statistics. 2009. Available online: www.sportsci.org/resource/stats/index.html (accessed on 9 January 2016).
- Lockie, R.G.; Callaghan, S.J.; Berry, S.P.; Cooke, E.R.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. Relationship between unilateral jumping ability and asymmetry on multidirectional speed in team-sport athletes. J. Strength Cond. Res. 2014, 28, 3557–3566. [Google Scholar] [CrossRef] [PubMed]
- Negrete, R.J.; Schick, E.A.; Cooper, J.P. Lower-limb dominance as a possible etiologic factor in noncontact anterior cruciate ligament tears. J. Strength Cond. Res. 2007, 21, 270–273. [Google Scholar] [CrossRef] [PubMed]
Variable | Dominant Leg | Non-Dominant Leg | p | d | Difference |
---|---|---|---|---|---|
PP Best Repetition | 999.79 ± 166.36 | 913.76 ± 150.66 * | 0.014 | 0.54 | 8.39 ± 7.48 |
(860.71–1138.87) | (787.80–1039.72) | (2.13–14.65) | |||
PP Set Average | 922.54 ± 144.89 | 838.61 ± 123.55 * | 0.005 | 0.62 | 8.82 ± 6.52 |
(801.41–1043.68) | (735.32–941.89) | (3.37–14.27) | |||
MP Best Repetition | 678.75 ± 104.69 | 603.39 ± 86.52 * | 0.01 | 0.78 | 10.75 ± 8.02 |
(591.23–766.28) | (531.05–675.72) | (4.04–17.45) | |||
MP Set Average | 630.03 ± 96.94 | 603.38 ± 86.52 * | 0.01 | 0.29 | 12.35 ± 10.12 |
(548.98–711.08) | (487.26–608.39) | (3.88–20.80) | |||
PF Best Repetition | 1754.48 ± 273.43 | 1675.22 ± 218.15 * | 0.032 | 0.32 | 4.20 ± 3.56 |
(1525.89–1983.07) | (1492.84–1857.61) | (1.23–7.18) | |||
PF Set Average | 1684.87 ± 260.08 | 1608.36 ± 236.31 * | 0.012 | 0.31 | 4.45 ± 3.27 |
(1467.44–1902.31) | (1410.80–1805.92) | (1.72–7.18) | |||
MF Best Repetition | 1274.29 ± 201.54 | 1266.59 ± 196.70 * | 0.013 | 0.04 | 0.57 ± 0.40 |
(1105.80–1442.79) | (1102.14–1431.03) | (0.24–0.91) | |||
MF Set Average | 1264.94 ± 200.15 | 1261.17 ± 196.79 | 0.056 | 0.02 | 0.28 ± 0.29 |
(1097.62–1432.27) | (1097.62–1432.27) | (0.03–0.52) | |||
PV Best Repetition | 0.74 ± 0.07 | 0.68 ± 0.09 * | 0.002 | 0.74 | 7.79 ± 5.25 |
(0.68–0.80) | (0.61–0.75) | (3.40–12.19) | |||
PV Set Average | 0.69 ± 0.08 | 0.63 ± 0.08 * | 0.003 | 0.75 | 8.97 ± 5.98 |
(0.62–0.76) | (0.56–0.69) | (3.97–13.96) | |||
MV Best Repetition | 0.54 ± 0.05 | 0.49 ± 0.08 * | 0.006 | 0.75 | 10.27 ± 8.11 |
(0.50–0.58) | (0.42–0.55) | (3.49–17.05) | |||
MV Set Average | 0.50 ± 0.06 | 0.44 ± 0.07 * | 0.006 | 0.92 | 12.57 ± 9.83 |
(0.46–0.55) | (0.38–0.50) | (4.35–20.78) |
Variable | 0–5 m | 0–10 m | 0–20 m | |
---|---|---|---|---|
PP Best Repetition | ρ | 0.19 | 0.167 | 0.143 |
p | 0.651 | 0.639 | 0.76 | |
PP Set Average | ρ | 0.143 | 0.143 | 0.286 |
p | 0.736 | 0.736 | 0.535 | |
MP Best Repetition | ρ | −0.048 | −0.048 | 0.036 |
p | 0.911 | 0.911 | 0.939 | |
MP Set Average | ρ | 0.012 | 0.048 | 0.234 |
p | 0.978 | 0.91 | 0.613 | |
PF Best Repetition | ρ | 0.119 | 0.405 | 0.393 |
p | 0.779 | 0.32 | 0.383 | |
PF Set Average | ρ | 0.143 | 0.381 | 0.464 |
p | 0.736 | 0.352 | 0.294 | |
MF Best Repetition | ρ | −0.810 | −0.476 | −0.071 |
p | 0.015 | 0.233 | 0.879 | |
MF Set Average | ρ | −0.407 | 0.06 | 0.378 |
p | 0.317 | 0.888 | 0.403 | |
PV Best Repetition | ρ | 0 | −0.048 | 0 |
p | 1 | 0.911 | 1 | |
PV Set Average | ρ | 0.143 | 0.143 | 0.286 |
p | 0.736 | 0.736 | 0.535 | |
MV Best Repetition | ρ | −0.071 | 0.119 | 0.214 |
p | 0.867 | 0.779 | 0.645 | |
MV Set Average | ρ | 0.12 | 0.192 | 0.396 |
p | 0.778 | 0.649 | 0.379 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lockie, R.G.; Risso, F.G.; Lazar, A.; Giuliano, D.V.; Stage, A.A.; Liu, T.M.; Beiley, M.D.; Hurley, J.M.; Torne, I.A.; Stokes, J.J.; et al. Between-Leg Mechanical Differences as Measured by the Bulgarian Split-Squat: Exploring Asymmetries and Relationships with Sprint Acceleration. Sports 2017, 5, 65. https://doi.org/10.3390/sports5030065
Lockie RG, Risso FG, Lazar A, Giuliano DV, Stage AA, Liu TM, Beiley MD, Hurley JM, Torne IA, Stokes JJ, et al. Between-Leg Mechanical Differences as Measured by the Bulgarian Split-Squat: Exploring Asymmetries and Relationships with Sprint Acceleration. Sports. 2017; 5(3):65. https://doi.org/10.3390/sports5030065
Chicago/Turabian StyleLockie, Robert G., Fabrice G. Risso, Adrina Lazar, Dominic V. Giuliano, Alyssa A. Stage, Tricia M. Liu, Megan D. Beiley, Jillian M. Hurley, Ibett A. Torne, John J. Stokes, and et al. 2017. "Between-Leg Mechanical Differences as Measured by the Bulgarian Split-Squat: Exploring Asymmetries and Relationships with Sprint Acceleration" Sports 5, no. 3: 65. https://doi.org/10.3390/sports5030065
APA StyleLockie, R. G., Risso, F. G., Lazar, A., Giuliano, D. V., Stage, A. A., Liu, T. M., Beiley, M. D., Hurley, J. M., Torne, I. A., Stokes, J. J., Birmingham-Babauta, S. A., Davis, D. L., Orjalo, A. J., & Moreno, M. R. (2017). Between-Leg Mechanical Differences as Measured by the Bulgarian Split-Squat: Exploring Asymmetries and Relationships with Sprint Acceleration. Sports, 5(3), 65. https://doi.org/10.3390/sports5030065