Sex-Related Differences in the Maximal Lactate Steady State
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Experimental Design
2.3. Methodology
2.3.1. Maximal Exercise Testing
2.3.2. MLSS Testing
2.3.3. TTE Testing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coyle, E.F.; Holloszy, J.O. Integration of the physiological factors determining endurance performance ability. In Exercise and Sport Sciences Reviews; Holloszy, J.O., Ed.; Williams & Wilkins: Baltimore, MD, USA, 1995; pp. 25–63. [Google Scholar]
- Bassett, D.R.; Howley, E.T. Limiting factor for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Plowman, S.A.; Smith, D.L. Exercise Physiology for Health, Fitness, and Performance, 4th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2014; pp. 102–110. [Google Scholar]
- Bergman, B.C.; Brooks, G.A. Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J. Appl. Physiol. 1999, 86, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Gaesser, G.A.; Brooks, G.A. Muscular efficiency during steady-rate exercise: Effects of speed and work rate. J. Appl. Physiol. 1975, 38, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Goedecke, J.H.; Gibson, A.S.; Grobler, L.; Collins, M.; Noakes, T.D.; Lambert, E.V. Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E1325–E1334. [Google Scholar] [CrossRef] [PubMed]
- Horton, T.J.; Pagliassotti, M.J.; Hobbs, K.; Hill, J.O. Fuel metabolism in men and women during and after long-duration exercise. J. Appl. Physiol. 1998, 85, 1823–1832. [Google Scholar] [CrossRef] [PubMed]
- Tarnopolsky, L.J.; MacDougall, J.D.; Atkinson, S.A.; Tarnopolsky, M.A.; Sutton, J.R. Gender differences in substrate for endurance exercise. J. Appl. Physiol. 1990, 68, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Beneke, R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med. Sci. Sports Exerc. 1995, 27, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, C.; Laurencelle, L.; Trudeau, F. Physiological responses to cycling for 60 min at maximal lactate steady state. Can. J. Appl. Physiol. 2000, 25, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Laplaud, D.; Guinot, M.; Favre-Juvin, A.; Flore, P. Maximal lactate steady state determination with a single incremental test exercise. Eur. J. Appl. Physiol. 2006, 96, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Leti, T.; Mendelson, M.; Laplaud, D.; Flore, P. Prediction of maximal lactate steady state in runners with an incremental test on the field. J. Sports Sci. 2012, 30, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Mendes, T.T.; Fonseca, T.R.; Ramos, G.P.; Wilke, C.F.; Cabido, C.E.; De Barros, C.L.; Lima, A.M.; Mortimer, L.D.; de Carvalho, M.V.; Teixeira, M.M.; et al. Six weeks of aerobic training improves VO2max and MLSS but does not improve the time to fatigue at the MLSS. Eur. J. Appl. Physiol. 2013, 113, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Beneke, R.; Hutler, M.; Leithauser, R.M. Maximal lactate-steady-state independent of performance. Med. Sci. Sports Exerc. 2000, 32, 1135–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haverty, M.; Kenney, W.L.; Hodgson, J.L. Lactate and gas exchange responses to incremental and steady state running. Br. J. Sports Med. 1988, 22, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L.; Demarle, A.; Slawinksi, J.; Koralsztein, J.P. Physical and training characteristics of top-class marathon runners. Med. Sci. Sports Exerc. 2001, 33, 2089–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dittrich, N.; de Lucas, R.D.; Beneke, R.; Guglielmo, L.G.A. Time to exhaustion at continuous and intermittent maximal lactate steady state during running exercise. Int. J. Sports Phys. Per. 2014, 9, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Gross, T.; De Lucas, R.D.; De Souza, K.M.; Guglielmo, L.G. Time to exhaustion at intermittent maximal lactate steady state is longer than continuous cycling exercise. Appl. Physiol. Nutr. Metab. 2012, 37, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Smekal, G.; von Duvillard, S.P.; Pokan, R.; Hofmann, P.; Braun, W.A.; Arciero, P.J.; Tschan, H.; Wonisch, M.; Baron, R.; Bachl, N. Blood lactate concentration at the maximal lactate steady state is not dependent on endurance capacity in healthy recreationally trained individuals. Eur. J. Appl. Physiol. 2012, 112, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Hackney, A.C.; McCracken-Compton, M.A.; Ainsworth, B. Substrate responses to submaximal exercise in the midfollicular and midluteal phases of the menstrual cycle. Int. J. Sport Nutr. 1994, 4, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Jurkowski, J.E.H.; Jones, N.L.; Toews, C.J.; Sutton, J.R. Effects of menstrual cycle on blood lactate, 02 delivery, and performance during exercise. J. Appl. Physiol. 1981, 51, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Zderic, T.W.; Coggan, A.R.; Ruby, B.C. Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases. J. Appl. Physiol. 2001, 90, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Noble, B.J.; Borg, G.A.V.; Jacobs, I.; Ceci, R.; Kaiser, P. A category-ratio perceived exertion scale: Relationship to blood and muscle lactates and heart rate. Med. Sci. Sports Exerc. 1983, 15, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Dill, D.B.; Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L. Use of blood lactate measurements for prediction of exercise performance and for control of training. Sports Med. 1996, 22, 157–175. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L.; Sirvent, P.; Py, G.; Koralsztein, J.P.; Mercier, J. The concept of maximal lactate steady state. Sports Med. 2012, 33, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Hamadeh, M.J.; Devries, M.C.; Tarnopolsky, M.A. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J. Clin. Endocrinol. Metab. 2005, 90, 3592–3599. [Google Scholar] [CrossRef] [PubMed]
- Maher, A.C.; Akhtar, M.; Tarnopolsky, M.A. Men supplemented with 17beta-estradiol have increased beta-oxidation capacity in skeletal muscle. Phsyiol. Genom. 2010, 42, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Beneke, R.; von Duvillard, S.P. Determination of maximal lactate steady state response in selected sports events. Med. Sci. Sports Exerc. 1996, 28, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L.; Sirvent, P.; Lepretre, P.M.; Koralsztein, J.P. Training effect of performance, substrate balance and blood lactate concentration at maximal lactate steady state in master endurance-runners. Pflugers Arch. 2004, 447, 875–883. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.J.; Viguie, C.A.; Mazzeo, R.S.; Brooks, G.A. Carbohydrate dependence during marathon running. Med. Sci. Sports Exerc. 1993, 25, 1009–1017. [Google Scholar] [PubMed]
- Helge, J.W.; Watt, P.W.; Richter, E.A.; Rennie, M.J.; Kiens, B. Fat utilization during exercise: Adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans. J. Phys. 2001, 537, 1009–1020. [Google Scholar] [CrossRef]
- Fontana, P.; Boutellier, U.; Knopfli-Lenzin, C. Time to exhaustion at maximal lactate steady state is similar for cycling and running in moderately trained subjects. Eur. J. Appl. Physiol. 2009, 107, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergstrom, J.; Hermansen, L.; Hultman, E.; Saltin, B. Diet, Muscle glycogen and physical performance. Acta Physiol. Scand. 1967, 71, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F. Fluid and Fuel Intake During Exercise. J. Sports Sci. 2004, 22, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Alonso, J.; Teller, C.; Andersen, S.L.; Jensen, F.B.; Hyldig, T.; Nielsen, B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J. Appl. Physiol. 1999, 86, 1032–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesch, P.; Sjodin, B.; Thorstensson, A.; Karlsson, J. Muscle fatigue and its relation to lactate accumulation and LDH activity in man. Acta Physiol. Scand. 1978, 103, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M. Mechanisms of muscle fatigue: Central factors and task dependency. J. Electromyogr. Kinesiol. 1995, 5, 141–149. [Google Scholar] [CrossRef]
- Baron, B.; Noakes, T.D.; Dekerle, J.; Moullan, F.; Robin, S.; Matran, R.; Pelayo, P. Why does exercise terminate at the maximal lactate steady state intensity? Br. J. Sports Med. 2008, 42, 828–833. [Google Scholar] [CrossRef] [PubMed]
Males (n = 10) | Females (n = 12) | |
---|---|---|
5000 m Best Time (min) | 16.8 ± 0.8 | 17.7 ± 1.1 * |
Training Volume (km·wk−1) | 67.9 ± 23.0 | 85.8 ± 28.0 |
VO2max (L·min−1) | 4.5 ± 0.3 | 3.4 ± 0.2 * |
VO2max (mL·kg−1 ·min−1) | 62.9 ± 4.5 | 59.0 ± 3.2 * |
HRmax (bpm) | 186.4 ± 10.5 | 193.8 ± 9.9 |
RERmax | 1.01 ± 0.03 | 1.00 ± 0.03 |
Males (n = 10) | Females (n = 12) | |
---|---|---|
VO2 (mL·kg−1·min−1) | 52.4 ± 3.8 | 49.1 ± 2.9 |
VO2 (%VO2max) | 83.3 ± 4.6 | 83.0 ± 6.7 |
cMLSS (mmol·L−1) | 2.59 ± 1.14 | 1.79 ± 0.49 * |
HR (bpm) | 166.3 ± 11.2 | 171.3 ± 9.4 |
HR (%HRmax) | 89.5 ± 8.8 | 88.6 ± 6.8 |
RER | 0.88 ± 0.04 | 0.84 ± 0.02 * |
TTE (min) | 79.0 ± 17.0 | 80.0 ± 25.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafen, P.S.; Vehrs, P.R. Sex-Related Differences in the Maximal Lactate Steady State. Sports 2018, 6, 154. https://doi.org/10.3390/sports6040154
Hafen PS, Vehrs PR. Sex-Related Differences in the Maximal Lactate Steady State. Sports. 2018; 6(4):154. https://doi.org/10.3390/sports6040154
Chicago/Turabian StyleHafen, Paul S., and Pat R. Vehrs. 2018. "Sex-Related Differences in the Maximal Lactate Steady State" Sports 6, no. 4: 154. https://doi.org/10.3390/sports6040154
APA StyleHafen, P. S., & Vehrs, P. R. (2018). Sex-Related Differences in the Maximal Lactate Steady State. Sports, 6(4), 154. https://doi.org/10.3390/sports6040154