Short-Term Seasonal Development of Anthropometry, Body Composition, Physical Fitness, and Sport-Specific Performance in Young Olympic Weightlifters
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Design and Procedures
2.3. Assessment of Anthropometry and Body Composition
2.4. Assessment of Physical Fitness
2.5. Assessment of Sport-Specific Performance
2.6. Monitoring of Training Data
2.7. Statistical Analyses
3. Results
3.1. Anthropometry and Body Composition
3.2. Muscle Strength/Power and Dynamic Balance
3.3. Sport-Specific Performance
3.4. Training Types and Volume
4. Discussion
4.1. Anthropometry and Body Composition
4.2. Muscle Strength/Power, Dynamic Balance, and Sport-Specific Performance
4.3. Limitations
5. Conclusions
6. Practical Applications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Storey, A.; Smith, H.K. Unique aspects of competitive weightlifting: Performance, training and physiology. Sports Med. 2012, 42, 769–790. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.A.; Suchomel, T.J.; Comfort, P. Weightlifting Overhead Pressing Derivatives: A Review of the Literature. Sports Med. 2019, 49, 867–885. [Google Scholar] [CrossRef] [PubMed]
- Kauhanen, H. A biomechanical analysis of the snatch and clean & jerk techniques of Finish elite and district level weightlifters. Scand. J. Sports Sci. 1984, 6, 47–56. [Google Scholar]
- Stone, M.H.; Sands, W.A.; Pierce, K.C.; Carlock, J.; Cardinale, M.; Newton, R.U. Relationship of maximum strength to weightlifting performance. Med. Sci. Sports Exerc. 2005, 37, 1037–1043. [Google Scholar]
- Garhammer, J. Biomechanical profiles of Olympic weightlifters. Int. J. Sport Biomech. 1985, 1, 122–130. [Google Scholar] [CrossRef]
- Carlock, J.M.; Smith, S.L.; Hartman, M.J.; Morris, R.T.; Ciroslan, D.A.; Pierce, K.C.; Newton, R.U.; Harman, E.A.; Sands, W.A.; Stone, M.H. The relationship between vertical jump power estimates and weightlifting ability: A field-test approach. J. Strength Cond. Res. 2004, 18, 534–539. [Google Scholar] [CrossRef]
- Côté, J.; Vierimaa, M. The developmental model of sport participation: 15 years after its first conceptualization. Sci. Sports 2014, 29, S63–S69. [Google Scholar] [CrossRef]
- CôTé, J.; Lidor, R.; Hackfort, D. ISSP position stand: To sample or to specialize? Seven postulates about youth sport activities that lead to continued participation and elite performance. Int. J. Sport Exerc. Psychol. 2009, 7, 7–17. [Google Scholar] [CrossRef]
- Moesch, K.; Elbe, A.M.; Hauge, M.L.; Wikman, J.M. Late specialization: The key to success in centimeters, grams, or seconds (cgs) sports. Scand. J. Med. Sci. Sports 2011, 21, e282–e290. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Howard, R.; De Ste Croix, M.B.; Williams, C.A.; Best, T.M.; Alvar, B.A.; Micheli, L.J.; Thomas, D.P.; et al. Long-term athletic development—Part 1: A pathway for all youth. J. Strength Cond. Res. 2015, 29, 1439–1450. [Google Scholar] [CrossRef]
- DiFiori, J.P.; Benjamin, H.J.; Brenner, J.S.; Gregory, A.; Jayanthi, N.; Landry, G.L.; Luke, A. Overuse injuries and burnout in youth sports: A position statement from the American Medical Society for Sports Medicine. Br. J. Sports Med. 2014, 48, 287–288. [Google Scholar] [CrossRef] [PubMed]
- Post, E.G.; Trigsted, S.M.; Riekena, J.W.; Hetzel, S.; McGuine, T.A.; Brooks, M.A.; Bell, D.R. The Association of Sport Specialization and Training Volume with Injury History in Youth Athletes. Am. J. Sports Med. 2017, 45, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Brenner, J.S. Sports Specialization and Intensive Training in Young Athletes. Pediatrics 2016, 138, e20162148. [Google Scholar] [CrossRef] [PubMed]
- Gullich, A.; Emrich, E. Considering long-term sustainability in the development of world class success. Eur. J. Sport Sci. 2014, 14 (Suppl. 1), S383–S397. [Google Scholar] [CrossRef]
- Hodges, N.J.; Huys, R.; Starkes, J.L. Methodological review and evaluation of research in expert performance in sport. In Handbook of Sport Psychology; Eklund, R.C., Tenenbaum, G., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 161–183. [Google Scholar]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring Athlete Training Loads: Consensus Statement. Int. J. Sports Physiol. Perform. 2017, 12, S2161–S2170. [Google Scholar] [CrossRef]
- Fry, A.C.; Ciroslan, D.; Fry, M.D.; LeRoux, C.D.; Schilling, B.K.; Chiu, L.Z. Anthropometric and performance variables discriminating elite American junior men weightlifters. J. Strength Cond. Res. 2006, 20, 861–866. [Google Scholar] [CrossRef]
- Marchocka, M.; Smuk, E. Analysis of body build of senior weightlifters with particular regard for proportions. Biol. Sport 1984, 1, 56–71. [Google Scholar]
- Keogh, J.W.; Hume, P.A.; Pearson, S.N.; Mellow, P. Anthropometric dimensions of male powerlifters of varying body mass. J. Sports Sci. 2007, 25, 1365–1376. [Google Scholar] [CrossRef]
- Haff, G.G. 17 The essentials of periodisation. In Strength and Conditioning for Sports Performance; Jeffreys, I., Moody, J., Eds.; Routledge: Oxon, UK; New York, NY, USA, 2016; pp. 404–444. [Google Scholar]
- Bompa, T.O.; Haff, G. Periodization: Theory and Methodology of Training, 5th ed.; Human Kinetics: Champaign, IL, USA, 2009. [Google Scholar]
- Hornsby, W.G.; Gentles, J.A.; MacDonald, C.J.; Mizuguchi, S.; Ramsey, M.W.; Stone, M.H. Maximum Strength, Rate of Force Development, Jump Height, and Peak Power Alterations in Weightlifters across Five Months of Training. Sports 2017, 5, 78. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar]
- Wind, A.E.; Takken, T.; Helders, P.J.; Engelbert, R.H. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur. J. Pediatrics 2010, 169, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Coren, S. The lateral preference inventory for measurement of handedness, footedness, eyedness, and earedness: Norms for young adults. Bull. Psychon. Soc. 1993, 31, 1–3. [Google Scholar] [CrossRef]
- Kibele, A. Technical note. Possible errors in the comparative evaluation of drop jumps from different heights. Ergonomics 1999, 42, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Prieske, O.; Muehlbauer, T.; Krueger, T.; Kibele, A.; Behm, D.; Granacher, U. Sex-specific effects of surface instability on drop jump and landing biomechanics. Int. J. Sports Med. 2015, 36, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Filipa, A.; Byrnes, R.; Paterno, M.V.; Myer, G.D.; Hewett, T.E. Neuromuscular training improves performance on the star excursion balance test in young female athletes. J. Orthop. Sports Phys. Ther. 2010, 40, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; Pierce, K.C.; Sands, W.A.; Stone, M.E. Weightlifting: A brief overview. Strength Cond. J. 2006, 28, 50–66. [Google Scholar] [CrossRef]
- Takano, B. Coaching optimal technique in the snatch and the clean and jerk: Part II. Strength Cond. J. 1987, 9, 52–56. [Google Scholar] [CrossRef]
- Hydock, D. The weightlifting pull in power development. Strength Cond. J. 2001, 23, 32–37. [Google Scholar] [CrossRef]
- Scott, B.R.; Duthie, G.M.; Thornton, H.R.; Dascombe, B.J. Training Monitoring for Resistance Exercise: Theory and Applications. Sports Med. 2016, 46, 687–698. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Erlbaum: Hillsdale, MI, USA, 1988. [Google Scholar]
- The, D.J.; Ploutz-Snyder, L. Age, body mass, and gender as predictors of masters olympic weightlifting performance. Med. Sci. Sports Exerc. 2003, 35, 1216–1224. [Google Scholar] [CrossRef]
- Ford, L.E.; Detterline, A.J.; Ho, K.K.; Cao, W. Gender- and height-related limits of muscle strength in world weightlifting champions. J. Appl. Physiol. 2000, 89, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Katch, V.L.; Katch, F.I.; Moffatt, R.; Gittleson, M. Muscular development and lean body weight in body builders and weight lifters. Med. Sci. Sports Exerc. 1980, 12, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.; van Mechelen, W. Children’s Sport and Exercise Medicine; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Armstrong, N.; McManus, A.M. Physiology of elite young male athletes. Med. Sport Sci. 2011, 56, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Kromeyer-Hauschild, K.; Wabitsch, M.; Kunze, D.; Geller, F.; Geiß, H.C.; Hesse, V.; von Hippel, A.; Jaeger, U.; Johnsen, D.; Korte, W.; et al. Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschrift Kinderheilkunde 2001, 149, 807–818. [Google Scholar] [CrossRef]
- Garhammer, J. Power production by Olympic weightlifters. Med. Sci. Sports Exerc. 1980, 12, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Byrd, R.; Pierce, K.; Rielly, L.; Brady, J. Strength and Conditioning (Michael Stone Sub-editor): Young weightlifters’ performance across time. Sports Biomech. 2003, 2, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Sale, D.G. Velocity specificity of resistance training. Sports Med. 1993, 15, 374–388. [Google Scholar] [CrossRef]
- Morrissey, M.C.; Harman, E.A.; Johnson, M.J. Resistance training modes: Specificity and effectiveness. Med. Sci. Sports Exerc. 1995, 27, 648–660. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Cronin, J.B.; Faigenbaum, A.D.; Haff, G.G.; Howard, R.; Kraemer, W.J.; Micheli, L.J.; Myer, G.D.; Oliver, J.L. National Strength and Conditioning Association Position Statement on Long-Term Athletic Development. J. Strength Cond. Res. 2016, 30, 1491–1509. [Google Scholar] [CrossRef]
- Granacher, U.; Lesinski, M.; Busch, D.; Muehlbauer, T.; Prieske, O.; Puta, C.; Gollhofer, A.; Behm, D.G. Effects of Resistance Training in Youth Athletes on Muscular Fitness and Athletic Performance: A Conceptual Model for Long-Term Athlete Development. Front. Physiol. 2016, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Teo, S.Y.; Newton, M.J.; Newton, R.U.; Dempsey, A.R.; Fairchild, T.J. Comparing the Effectiveness of a Short-Term Vertical Jump vs. Weightlifting Program on Athletic Power Development. J. Strength Cond. Res. 2016, 30, 2741–2748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Badillo, J.J.; Izquierdo, M.; Gorostiaga, E.M. Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumes in competitive weightlifters. J. Strength Cond. Res. 2006, 20, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Arabatzi, F.; Kellis, E. Olympic weightlifting training causes different knee muscle-coactivation adaptations compared with traditional weight training. J. Strength Cond. Res. 2012, 26, 2192–2201. [Google Scholar] [CrossRef] [PubMed]
Anthropometric and Body Composition Variables | N | T1 (Mean and SD) | T2 (Mean and SD) | T3 (Mean and SD) | T1–T2 (%) | T1–T3 (%) | T2–T3 (%) | Time (d) |
---|---|---|---|---|---|---|---|---|
Body height (cm) | 13 | 161.4 ± 11.6 | 162.6 ± 11.5 | 164.4 ± 11.1 | 0.7 ** | 1.8 *** | 1.1 *** | 5.7 *** |
Body mass (kg) | 13 | 55.5 ± 2.8 | 56.3 ± 2.8 | 58.6 ± 3.0 | 1.5 | 5.4 ** | 3.9 ** | 1.6 * |
BMI (kg/m2) | 13 | 20.9 ± 0.6 | 20.9 ± 0.5 | 21.3 ± 0.6 | 0.3 | 2.1 | 1.8 | 1.0 |
Lean body mass (kg) | 12 | 26.2 ± 1.5 | 27.4 ± 1.5 | 28.1 ± 1.5 | 4.4 *** | 6.7 *** | 2.4 ** | 1.7 ** |
Fat mass (%) | 12 | 16.9 ± 5.0 | 15.0 ± 4.9 | 16.5 ± 5.0 | −13.1 ** | −2.8 | 9.1 ** | 1.9 ** |
Upper limb lean mass (kg) | 12 | 4.9 ± 0.3 | 5.2 ± 0.3 | 5.6 ± 0.4 | 5.9 | 12.3 | 6.8 | 0.3 |
Lower limb lean mass (kg) | 12 | 14.1 ± 0.8 | 14.5 ± 0.8 | 15.0 ± 0.8 | 2.5 ** | 6.2 *** | 3.7 *** | 2.2 *** |
Measures of Physical Fitness and Sport-Specific Performance | N | T1 | T2 | T3 | T1–T2 (%) | T1–T3 (%) | T2–T3 (%) | Time (d) |
---|---|---|---|---|---|---|---|---|
(Mean and SD) | (Mean and SD) | (Mean and SD) | ||||||
Grip strength (kg/BM) | 13 | 0.54 ± 0.06 | 0.57 ± 0.07 | 0.56 ± 0.07 | 6.2 | 4.3 | −1.7 | 0.8 |
CMJ (cm) | 13 | 28.0 ± 6.2 | 28.5 ± 5.46 | 29.1 ± 3.7 | 3.4 | 3.9 | 1.9 | 0.4 |
DJ (cm) | 13 | 22.9 ± 3.5 | 23.9 ± 5.3 | 23.1 ± 3.8 | 3.9 | 0.8 | −3.2 | 0.3 |
RSI (m/s) | 13 | 1.0 ± 0.2 | 1.1 ± 0.3 | 1.0 ± 0.2 | 9.9 * | 4.8 | −5.7 | 1.1 * |
DJ contact time (ms) | 13 | 255.1 ± 57.8 | 216.7 ± 15.0 | 222.9 ± 28.4 | −15.3 | −12.6 | 2.9 | 1.3 |
Y–balance–test right leg (score) | 13 | 101.5 ± 5.2 | 101.0 ± 5.9 | 101.3 ± 6.2 | −0.5 | −0.2 | 0.3 | 0.1 |
Y-balance-test left leg (score) | 13 | 101.7 ± 4.8 | 101.3 ± 7.7 | 103.6 ± 6.2 | −0.4 | 1.8 | 2.2 | 0.7 |
Snatch (kg/BM) | 9 | 0.79 ± 0.14 | 0.84 ± 0.12 | 0.88 ± 0.10 | 6.2 ** | 11.3 ** | 4.8 | 2.7 *** |
Clean-and-Jerk (kg/BM) | 9 | 1.00 ± 0.17 | 1.05 ± 0.15 | 1.10 ± 0.15 | 4.9 * | 9.8 ** | 4.6* | 3.1 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaabene, H.; Prieske, O.; Lesinski, M.; Sandau, I.; Granacher, U. Short-Term Seasonal Development of Anthropometry, Body Composition, Physical Fitness, and Sport-Specific Performance in Young Olympic Weightlifters. Sports 2019, 7, 242. https://doi.org/10.3390/sports7120242
Chaabene H, Prieske O, Lesinski M, Sandau I, Granacher U. Short-Term Seasonal Development of Anthropometry, Body Composition, Physical Fitness, and Sport-Specific Performance in Young Olympic Weightlifters. Sports. 2019; 7(12):242. https://doi.org/10.3390/sports7120242
Chicago/Turabian StyleChaabene, Helmi, Olaf Prieske, Melanie Lesinski, Ingo Sandau, and Urs Granacher. 2019. "Short-Term Seasonal Development of Anthropometry, Body Composition, Physical Fitness, and Sport-Specific Performance in Young Olympic Weightlifters" Sports 7, no. 12: 242. https://doi.org/10.3390/sports7120242