The Effect of Aerobic Exercise on Speed and Accuracy Task Components in Motor Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Questionnaire
2.4. Cognitive Tasks
2.5. Keyboard Typing
2.6. Exercise
2.7. Statistical Analysis
3. Results
3.1. Speed of Keyboard Typing
3.2. Accuracy in Keyboard Typing
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambourne, K.; Tomporowski, P. The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Res. 2010, 1341, 12–24. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T.; Hale, B.J. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain Cogn. 2012, 80, 338–351. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T.; Sproule, J.; Turner, A.; Hale, B.J. Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiol. Behav. 2011, 102, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sport Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef] [PubMed]
- Norris, E.; Shelton, N.; Dunsmuir, S.; Duke-Williams, O.; Stamatakis, E. Physically active lessons as physical activity and educational interventions: A systematic review of methods and results. Prev. Med. 2015, 72, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.J.; Blumenthal, J.A.; Hoffman, B.M.; Cooper, H.; Strauman, T.A.; Welsh-Bohmer, K.; Browndyke, J.N.; Sherwood, A. Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosom. Med. 2010, 72, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Den Heijer, A.E.; Groen, Y.; Tucha, L.; Fuermaier, A.B.; Koerts, J.; Lange, K.W.; Thome, J.; Tucha, O. Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with adhd: A systematic literature review. J. Neural Transm. (Vienna) 2017, 124, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Kandola, A.; Hendrikse, J.; Lucassen, P.J.; Yucel, M. Aerobic exercise as a tool to improve hippocampal plasticity and function in humans: Practical implications for mental health treatment. Front. Hum. Neurosci. 2016, 10, 373. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D. Effects of acute bouts of exercise on cognition. Acta Psychol. (Amst) 2003, 112, 297–324. [Google Scholar] [CrossRef]
- Cotman, C.W.; Berchtold, N.C. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002, 25, 295–301. [Google Scholar] [CrossRef]
- Roig, M.; Nordbrandt, S.; Geertsen, S.S.; Nielsen, J.B. The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neurosci. Biobehav. Rev. 2013, 37, 1645–1666. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.T.; Horvath, P.J.; Burton, H.W.; Leddy, J.; Wilding, G.E.; Rosney, D.M.; Shan, G. The Effect of Pre-Exercise Carbohydrate Consumption on Cognitive Function. J. Athl. Enhanc. 2017, 4. [Google Scholar] [CrossRef]
- Backes, T.P.; Horvath, P.J.; Kazial, K.A. The effects of exercise and two pre-exercise fluid amounts on cognition. J. Hum. Sport Exerc. 2015, 10, 615–622. [Google Scholar] [CrossRef]
- Dal Maso, F.; Desormeau, B.; Boudrias, M.H.; Roig, M. Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation. Neuroimage 2018, 174, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Roig, M.; Skriver, K.; Lundbye-Jensen, J.; Kiens, B.; Nielsen, J.B. A single bout of exercise improves motor memory. PLoS ONE 2012, 7, e44594. [Google Scholar] [CrossRef] [PubMed]
- Skriver, K.; Roig, M.; Lundbye-Jensen, J.; Pingel, J.; Helge, J.W.; Kiens, B.; Nielsen, J.B. Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiol. Learn. Mem. 2014, 116, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Statton, M.A.; Encarnacion, M.; Celnik, P.; Bastian, A.J. A single bout of moderate aerobic exercise improves motor skill acquisition. PLoS ONE 2015, 10, e0141393. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.M.; Neva, J.L.; Staines, W.R. Aerobic exercise enhances neural correlates of motor skill learning. Behav. Brain Res. 2016, 301, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Snow, N.J.; Mang, C.S.; Roig, M.; McDonnell, M.N.; Campbell, K.L.; Boyd, L.A. The effect of an acute bout of moderate-intensity aerobic exercise on motor learning of a continuous tracking task. PLoS ONE 2016, 11, e0150039. [Google Scholar] [CrossRef] [PubMed]
- Perini, R.; Bortoletto, M.; Capogrosso, M.; Fertonani, A.; Miniussi, C. Acute effects of aerobic exercise promote learning. Sci. Rep. 2016, 6, 25440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mang, C.S.; Snow, N.J.; Wadden, K.P.; Campbell, K.L.; Boyd, L.A. High-intensity aerobic exercise enhances motor memory retrieval. Med. Sci. Sports Exerc. 2016, 48, 2477–2486. [Google Scholar] [CrossRef] [PubMed]
- Coco, M.; Perciavalle, V.; Cavallari, P.; Perciavalle, V. Effects of an exhaustive exercise on motor skill learning and on the excitability of primary motor cortex and supplementary motor area. Medicine (Baltimore) 2016, 95, e2978. [Google Scholar] [CrossRef] [PubMed]
- Audiffren, M. Acute exercise and psychological functions: A cognitive-energetic approach. In Exercise and Cognitive Function; McMorris, T., Tomporowski, P., Audiffren, M., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 3–39. [Google Scholar]
- Cooper, C.J. Anatomical and physiological mechanisms of arousal, with special reference to effects of exercise. Ergonomics 1973, 16, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Kahneman, D. Attention and Effort; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]
- Sanders, A.F. Towards a model of stress and human performance. Acta Psychol. (Amst) 1983, 53, 61–97. [Google Scholar] [CrossRef]
- Yerkes, R.M.; Dodson, J.D. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 1908, 18, 459–482. [Google Scholar] [CrossRef]
- Grabowski, J. The internal structure of university students’ keyboard skills. J. Writ. Res. 2008, 1, 27–52. [Google Scholar] [CrossRef]
- Kurtze, N.; Rangul, V.; Hustvedt, B.E. Reliability and validity of the international physical activity questionnaire in the nord-trondelag health study (hunt) population of men. BMC Med. Res. Methodol. 2008, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form (ipaq-sf): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Haut, M.W.; Kuwabara, H.; Leach, S.; Arias, R.G. Neural activation during performance of number-letter sequencing. Appl. Neuropsychol. 2000, 7, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Jacola, L.M.; Willard, V.W.; Ashford, J.M.; Ogg, R.J.; Scoggins, M.A.; Jones, M.M.; Wu, S.; Conklin, H.M. Clinical utility of the n-back task in functional neuroimaging studies of working memory. J. Clin. Exp. Neuropsychol. 2014, 36, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Shelton, J.T.; Elliott, E.M.; Hill, B.D.; Calamia, M.R.; Gouvier, W.D. A comparison of laboratory and clinical working memory tests and their prediction of fluid intelligence. Intelligence 2009, 37, 283. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. Working memory. Science 1992, 255, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Shah, P. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Cambridge University Press: New York, NY, USA, 1999. [Google Scholar]
- Typing.Com. Available online: https://www.typing.com/ (accessed on 25 February 2019).
- Nes, B.M.; Janszky, I.; Wisloff, U.; Stoylen, A.; Karlsen, T. Age-predicted maximal heart rate in healthy subjects: The hunt fitness study. Scand. J. Med. Sci. Sports 2013, 23, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Leh, S.E.; Petrides, M.; Strafella, A.P. The neural circuitry of executive functions in healthy subjects and parkinson’s disease. Neuropsychopharmacology 2010, 35, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Ramos, B.P.; Arnsten, A.F. Adrenergic pharmacology and cognition: Focus on the prefrontal cortex. Pharmacol. Ther. 2007, 113, 523–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMorris, T.; Collard, K.; Corbett, J.; Dicks, M.; Swain, J.P. A test of the catecholamines hypothesis for an acute exercise-cognition interaction. Pharmacol. Biochem. Behav. 2008, 89, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Doyon, J.; Penhune, V.; Ungerleider, L.G. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 2003, 41, 252–262. [Google Scholar] [CrossRef]
Study Group | |||
---|---|---|---|
Variable | Exercise (n = 13) | Control (n = 13) | p1 |
Male/Female (n) | 4/9 | 7/6 | 0.70 2 |
Age (years) | 23.50 (2.54) | 22.20 (2.78) | 0.34 |
BMI (weight/height 2) | 22.31 (2.45) | 22.10 (2.52) | 0.93 |
Spanboard | 5.46 (1.13) | 5.15 (0.80) | 0.43 |
LNS | 10.31 (3.04) | 11.31 (1.84) | 0.32 |
PA Level-leisure Moderate | 75.5% | 69.2% | 0.50 2 |
PA Level-leisure High | 25.0% | 30.8% | - |
Sedentary time (hours) | 8.91 (2.39) | 9.23 (2.28) | 0.74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stranda, H.; Haga, M.; Sigmundsson, H.; Lorås, H. The Effect of Aerobic Exercise on Speed and Accuracy Task Components in Motor Learning. Sports 2019, 7, 54. https://doi.org/10.3390/sports7030054
Stranda H, Haga M, Sigmundsson H, Lorås H. The Effect of Aerobic Exercise on Speed and Accuracy Task Components in Motor Learning. Sports. 2019; 7(3):54. https://doi.org/10.3390/sports7030054
Chicago/Turabian StyleStranda, Håvard, Monika Haga, Hermundur Sigmundsson, and Håvard Lorås. 2019. "The Effect of Aerobic Exercise on Speed and Accuracy Task Components in Motor Learning" Sports 7, no. 3: 54. https://doi.org/10.3390/sports7030054
APA StyleStranda, H., Haga, M., Sigmundsson, H., & Lorås, H. (2019). The Effect of Aerobic Exercise on Speed and Accuracy Task Components in Motor Learning. Sports, 7(3), 54. https://doi.org/10.3390/sports7030054