Backward Running: Acute Effects on Sprint Performance in Preadolescent Boys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design/Procedures
2.3. Intervention
2.4. 20 m Sprint Test
2.5. Rate of Perceived Exertion (RPE)
2.6. Statistical Analysis
3. Results
3.1. Sprint Speed
3.2. Rate of Perceived Exertion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bishop, D.J. Warm Up II. Performance changes following active warm up and how to structure the warm up. Sport. Med. 2003, 33, 483–498. [Google Scholar] [CrossRef]
- Gray, S.R.; Soderlund, K.; Watson, M.; Ferguson, R.A. Skeletal muscle ATP turnover and single fibre ATP and PCr content during intense exercise at different muscle temperatures in humans. Pflügers Arch. Eur. J. Physiol. 2011, 462, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Oksa, J. Temperature and neuromuscular function. Scand. J. Med. Sci. Sports 2010, 20, 1–18. [Google Scholar] [CrossRef]
- Jones, A.M.; Burnley, M. Oxygen uptake kinetics: An underappreciated determinant of exercise performance. Int. J. Sports Physiol. Perform. 2009, 4, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Duncan, N.M.; Marin, P.J.; Brown, L.E.; Loenneke, J.P.; Wilson, S.M.C.; Jo, E.; Lowery, R.P.; Ugrinowitsch, C. Meta-analysis of postactivation potentiation and power. J. Strength Cond. Res. 2013, 27, 854–859. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.M.; Nimphius, S.; Erickson, T.M. The acute effects of heavy-load squats and loaded countermovement jumps on sprint performance. J. Strength Cond. Res. 2005, 19, 893–897. [Google Scholar]
- Kilduff, L.P.; Bevan, H.R.; Kingsley, M.I.C.; Owen, N.J.; Bennett, M.A.; Bunce, P.J.; Hore, A.M.; Maw, J.R.; Cunningham, D.J. Postactivation potentiation in professional rugby players: optimal recovery. J. Strength Cond. Res. 2007, 21, 1134. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Fernández, F.; Smith, I.C.; Jordan, M.J.; Macintosh, B.R.; López-contreras, G.; Arellano, R.; Herzog, W. Nonlocalized postactivation performance enhancement (PAPE). Appl. Physiol. Nutr. Metab. 2017, 1125, 1122–1125. [Google Scholar] [CrossRef]
- Sale, D.G. Postactivation potentiation: Role in human performance. Exerc. Sport Sci. Rev. 2002, 30, 138–143. [Google Scholar] [CrossRef]
- Hodgson, M.J.; Docherty, D.; Robbins, D. Post-activation potentiation. Sport. Med. 2005, 35, 585–595. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Babault, N. Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatzopoulos, D.E.; Michailidis, C.J.; Giannakos, A.K.; Alexiou, K.C.; Patikas, D.A.; Antonopoulos, C.B.; Kotzamanidis, C.M. Postactivation potentiation effects after heavy resistance exercise on running speed. J. Strength Cond. Res. 2007, 21, 1278–1281. [Google Scholar] [PubMed]
- Rahimi, R. The acute effects of heavy versus light-load squats on sprint performance. Phys. Educ. Sport 2007, 5, 163–169. [Google Scholar]
- Byrne, P.J.; Kenny, J.; O’ Rourke, B. Acute pobloomtentiating effect of depth jumps on sprint performance. J. Strength Cond. Res. 2014, 28, 610–615. [Google Scholar] [CrossRef]
- van den Tillaar, R.; Lerberg, E.; von Heimburg, E. Comparison of three types of warm-up upon sprint ability in experienced soccer players. J. Sport Heal. Sci. 2019, 8, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Yoshimoto, T.; Takai, Y.; Kanehisa, H. Acute effects of different conditioning activities on running performance of sprinters. Springerplus 2016, 5, 1203. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-Júnior, J.B.; Guttierres, A.P.M.; Encarnação, I.G.A.; Lima, J.R.P.; Borba, D.A.; Freitas, E.D.S.; Bemben, M.G.; Vieira, C.A.; Bottaro, M. Effects of different conditioning activities on 100-m dash performance in high school track and field athletes. Percept. Mot. Skills 2018, 125, 003151251876449. [Google Scholar] [CrossRef]
- Pääsuke, M.; Ereline, J.; Gapeyeva, H. Twitch contraction properties of plantar flexor muscles in pre- and post-pubertal boys and men. Eur. J. Appl. Physiol. 2000, 82, 459–464. [Google Scholar] [CrossRef]
- Arabatzi, F.; Patikas, D.A.; Zafeiridis, A.; Giavroudis, K.; Kannas, T.; Gourgoulis, V.; Kotzamanidis, C.M. The post-activation potentiation effect on squat jump performance: Age and sex effect. Pediatr. Exerc. Sci. 2014, 26, 187–194. [Google Scholar] [CrossRef]
- Dallas, G. The post-activation effect with two different conditioning stimuli on drop jump performance in pre-adolescent female gymnasts. Artic. J. Phys. Educ. Sport 2018, 18, 2368–2374. [Google Scholar]
- Tsimachidis, C.; Patikas, D.A.; Galazoulas, C.; Bassa, E.I.; Kotzamanidis, C.M. The post-activation potentiation effect on sprint performance after combined resistance/sprint training in junior basketball players. J. Sports Sci. 2013, 31, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Karcher, C.; Buchheit, M. On-court demands of elite handball, with special reference to playing positions. Sport. Med. 2014, 44, 797–814. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The activity demands and physiological responses encountered during basketball match-play: A systematic review. Sport. Med. 2018, 48, 111–135. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical demands of different positions in FA premier league soccer. J. Sport. Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Flynn, T.W.; Soutas-Little, R.W. Mechanical power and muscle action during forward and backward running. J. Orthop. Sports Phys. Ther. 1993, 17, 108–112. [Google Scholar] [CrossRef]
- Wright, S.; Weyand, P.G. The application of ground force explains the energetic cost of running backward and forward. J. Exp. Biol. 2001, 204, 1805–1815. [Google Scholar]
- Roos, P.E.; Barton, N.; van Deursen, R.W.M. Patellofemoral joint compression forces in backward and forward running. J. Biomech. 2012, 45, 1656–1660. [Google Scholar] [CrossRef] [Green Version]
- Cavagna, G.A.; Legramandi, M.A.; La Torre, A. An analysis of the rebound of the body in backward human running. J. Exp. Biol. 2012, 215, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Gillen, Z.M.; Jahn, L.E.; Shoemaker, M.E.; Mckay, B.D.; Mendez, A.I.; Bohannon, N.A.; Cramer, J.T. Effects of eccentric preloading on concentric vertical jump performance in youth athletes. J. Appl. Biomech. 2019, 35, 327–335. [Google Scholar] [CrossRef]
- Lazaridis, S.N.; Bassa, E.I.; Patikas, D.A.; Hatzikotoulas, K.; Lazaridis, F.K.; Kotzamanidis, C.M. Biomechanical comparison in different jumping tasks between untrained boys and men. Pediatr. Exerc. Sci. 2013, 25, 101–113. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Cronin, J.B.; Lloyd, R.S. Maximal sprint speed in boys of increasing maturity. Pediatr. Exerc. Sci. 2015, 27, 85–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uthoff, A.; Oliver, J.; Cronin, J.; Harrison, C.; Winwood, P. Sprint-specific training in youth: Backward running vs. forward running training on speed and power measures in adolescent male athletes. J. Strength Cond. Res. 2020, 34, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [PubMed]
- Thun, E.; Bjorvatn, B.; Flo, E.; Harris, A.; Pallesen, S. Sleep, circadian rhythms, and athletic performance. Sleep Med. Rev. 2015, 23, 1–9. [Google Scholar] [CrossRef]
- Uthoff, A.; Oliver, J.; Cronin, J.; Winwood, P.; Harrison, C. Prescribing target running intensities for high-school athletes: Can forward and backward running performance be autoregulated? Sports 2018, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Chaouachi, A. A review of the acute effects of static and dynamic stretching on performance. Eur. J. Appl. Physiol. 2011, 111, 2633–2651. [Google Scholar] [CrossRef]
- Yeadon, M.R.; Kato, T.; Kerwin, D.G. Measuring running speed using photocells. J. Sports Sci. 1999, 17, 249–257. [Google Scholar] [CrossRef]
- Robertson, R.J.; Goss, F.L.; Andreacci, J.L.; Dubé, J.J.; Rutkowski, J.J.; Snee, B.M.; Kowallis, R.A.; Crawford, K.; Aaron, D.J.; Metz, K.F. Validation of the children’s OMNI RPE scale for stepping exercise. Med. Sci. Sports Exerc. 2005, 37, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Lexell, J.; Sjöström, M.; Nordlund, A.S.; Taylor, C.C. Growth and development of human muscle: A quantitative morphological study of whole vastus lateralis from childhood to adult age. Muscle Nerve 1992, 15, 404–409. [Google Scholar] [CrossRef]
- Hamada, T.; Sale, D.G.; MacDougall, J.D.; Tarnopolsky, M.A. Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol. Scand. 2003, 178, 165–173. [Google Scholar] [CrossRef]
- Jo, E.; Judelson, D.A.; Brown, L.E.; Coburn, J.W.; Dabbs, N.C. Influence of recovery duration after a potentiating stimulus on muscular power in recreationally trained individuals. J. Strength Cond. Res. 2010, 24, 343–347. [Google Scholar] [CrossRef]
- Smilios, I.; Sotiropoulos, K.; Barzouka, K.; Christou, M.; Tokmakidis, S.P. Contrast loading increases upper body power output in junior volleyball athletes. Pediatr. Exerc. Sci. 2017, 29, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.; Leveritt, M.; Riek, S. Neural influences on sprint running: training adaptations and acute responses. Sport. Med. 2001, 31, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. The influence of maturation on sprint performance in boys over a 21-month period. Med. Sci. Sports Exerc. 2016, 48, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Teshima, T.; Hirose, N.; Tsunoda, N. Growth changes in morphological and Mechanical properties of human patellar tendon In Vivo. J. Appl. Biomech. 2014, 30, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Waugh, C.M.; Blazevich, A.J.; Fath, F.; Korff, T. Age-related changes in mechanical properties of the Achilles tendon. J. Anat. 2012, 220, 144–155. [Google Scholar] [CrossRef]
- Katsikari, K.; Bassa, E.I.; Skoufas, D.; Lazaridis, S.N.; Kotzamanidis, C.; Patikas, D.A. Kinetic and kinematic changes in vertical jump in prepubescent girls after 10 weeks of plyometric training. Pediatr. Exerc. Sci. 2020, 32, 1–8. [Google Scholar] [CrossRef]
- Till, K.A.; Cooke, C. The effects of postactivation potentiation on sprint and jump performance of male academy soccer players. J. Strength Cond. Res. 2009, 23, 1960–1967. [Google Scholar] [CrossRef]
- Monaghan, D.J.; Cochrane, D.J. Can backward sled towing potentiate sprint performance? J. Strength Cond. Res. 2019, 34, 1. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D.J. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sport. Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Piechota, K.; Pakosz, P.; Borysiuk, Z.; Wa, Z. Coordination aspects of an effective sprint start. Front. Physiol. 2018, 9, 1–7. [Google Scholar]
- Kaczor, J.J.; Ziolkowski, W.; Popinigis, J.; Tarnopolsky, M.A. Anaerobic and aerobic enzyme activities in human skeletal muscle from children and adults. Pediatr. Res. 2005, 57, 331–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratel, S.; Blazevich, A.J. Are prepubertal children metabolically comparable to well-trained adult endurance athletes? Sport. Med. 2017, 47, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, D. The sports performance application of vibration exercise for warm-up, flexibility and sprint speed. Eur. J. Sport Sci. 2013, 13, 256–271. [Google Scholar] [CrossRef]
- Lazaridis, S.N.; Bassa, E.I.; Patikas, D.A.; Giakas, G.; Gollhofer, A.; Kotzamanidis, C.M. Neuromuscular differences between prepubescents boys and adult men during drop jump. Eur. J. Appl. Physiol. 2010, 110, 67–74. [Google Scholar] [CrossRef]
- Cortis, C.; Tessitore, A.; Perroni, F.; Lupo, C.; Pesce, C.; Ammendolia, A.; Capranica, L. Interlimb coordination, strength, and power in soccer players across the lifespan. J. Strength Cond. Res. 2009, 23, 2458–2466. [Google Scholar] [CrossRef]
- Cortis, C.; Tessitore, A.; Lupo, C.; Pesce, C.; Fossile, E.; Figura, F.; Capranica, L. Inter-limb coordination, strength, jump, and sprint performances ollowing a youth men’s basketball game. J. Strength Cond. Res. 2011, 25, 135–142. [Google Scholar] [CrossRef]
- Lupo, C.; Ungureanu, A.N.; Varalda, M.; Brustio, P.R. Running technique is more effective than soccer-specific training for improving the sprint and agility performances with ball possession of prepubescent soccer players. Biol. Sport 2019, 36, 249–255. [Google Scholar] [CrossRef]
- Seitz, L.B.; Haff, G.G. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: A systematic review with meta-analysis. Sport. Med. 2016, 46, 231–240. [Google Scholar] [CrossRef]
- Johnson, B.A.; Salzberg, C.L.; Stevenson, D.A. A systematic review: Plyometric training programs for young children. J. Strength Cond. Res. 2011, 25, 2623–2633. [Google Scholar] [CrossRef]
- Chaouachi, A.; Ben, O.A.; Hammami, R.; Drinkwater, E.J.; Behm, D.G. The combination of plyometric and balance training improves sprint and shuttle run performances more often than plyometric-only training with children. J. Strength Cond. Res. 2014, 28, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Masumoto, K.; Galor, K.; Craig-Jones, A.; Mercer, J.A. Metabolic costs during backward running with body weight support. Int. J. Sports Med. 2019, 40, 269–275. [Google Scholar] [CrossRef] [PubMed]
1. Hip in. | 3. Heel kicks | 5. Side steps (1 per side) | 7. Knee hugs |
2. Hip out | 4. Speed skips | 6. Karaoke (1 per side) | 8. Front leg swings (10 per leg) |
Distance | CON | BwR | FwR | p-Value |
---|---|---|---|---|
0–5 m | 4.64 ± 0.28 | 4.66 ± 0.38 | 4.58 ± 0.34 | 0.714 |
5–10 m | 5.53 ± 0.45 | 5.47 ± 0.29 | 5.47 ± 0.37 | 0.769 |
0–10 m | 5.04 ± 0.27 | 5.02 ± 0.28 | 4.98 ± 0.29 | 0.634 |
10–20 m | 6.15 ± 0.50 | 6.31 ± 0.61 * | 6.25 ± 0.56 | 0.008 |
0–20 m | 5.53 ± 0.33 | 5.58 ± 0.37 | 5.54 ± 0.38 | 0.465 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrakis, D.; Bassa, E.; Papavasileiou, A.; Xenofondos, A.; Patikas, D.A. Backward Running: Acute Effects on Sprint Performance in Preadolescent Boys. Sports 2020, 8, 55. https://doi.org/10.3390/sports8040055
Petrakis D, Bassa E, Papavasileiou A, Xenofondos A, Patikas DA. Backward Running: Acute Effects on Sprint Performance in Preadolescent Boys. Sports. 2020; 8(4):55. https://doi.org/10.3390/sports8040055
Chicago/Turabian StylePetrakis, Dimitrios, Eleni Bassa, Anastasia Papavasileiou, Anthi Xenofondos, and Dimitrios A. Patikas. 2020. "Backward Running: Acute Effects on Sprint Performance in Preadolescent Boys" Sports 8, no. 4: 55. https://doi.org/10.3390/sports8040055
APA StylePetrakis, D., Bassa, E., Papavasileiou, A., Xenofondos, A., & Patikas, D. A. (2020). Backward Running: Acute Effects on Sprint Performance in Preadolescent Boys. Sports, 8(4), 55. https://doi.org/10.3390/sports8040055