Strategies and Solutions for Team Sports Athletes in Isolation due to COVID-19
Abstract
:1. Introduction
2. Detraining Effects in Isolation
3. Other Methodological Issues of Isolation
4. Window of Opportunity during the Isolation
- -
- Encourage, provoke and motivate the athlete to reset their mindset and use this break as an opportunity for personal development [44];
- -
- Organize appropriate guidance and support to athletes by experts (sports coach, strength and conditioning coach, nutritionist, doctor, psychologist) by using technology (video call, e-mail, telephone, text messages);
- -
- Educate and encourage athletes to apply appropriate preventive behavior and hygiene measures to promote immunity and protect their own health and the health of the people in their immediate environment [6];
- -
- Ensure good living conditions in isolation (space, equipment, food, telecommunications). If possible, the athlete’s living space should be equipped with cardio equipment (treadmill, bicycles, rowing ergometer, etc.), resistance training equipment (dumbbells, elastic bands, abdominal wheels, medicine balls, etc.) and other equipment for frequent use (mats, foam rollers, self-massagers, etc.). If not, some forms of body mass resistance circuit-based training could promote (or maintain) neuromuscular and aerobic adaptations [6];
- -
- Organize alternative sports skills training (kinesthetic ball training in a small space, visualization, virtual reality technical aids, video analysis, theoretical training) based on the athlete’s deficits and needs;
- -
- Organize personalized strength and conditioning training at home with available space and material resources that are tailored to the athlete’s individual characteristics and current needs [45]. Focus on neuromuscular plyometrics (i.e., vertical and horizontal jumping) and eccentric training (i.e., elastic bands), to maintain some key adaptations related to the stretch-shortening cycle, strength and power performance. Adaptations of the stabilizer muscles as an indispensable element and facilitator of the efficient sensorimotor action of any act is also extremely important [46,47];
- -
- Educate the athlete about nutrition, supplementation (especially Vitamin D, zinc and proteins) and hydration in isolation conditions, and about strategies to control body mass and body composition [5,36,48,49]. It is important to consume food to fight off viral infections, thus advising against lower carbohydrate/intermittent fasting approaches is likely important [50];
- -
- Organize mental fatigue monitoring and mental training (mental self-help techniques and/or the support of a psychologist by telecommunication) [51];
- -
- Provide adequate methods of recovery (supplementation, sleep, breathing and meditation exercises, self-massage, myofascial relaxation, stretching, low back heat, etc.) [52];
- -
- Use forms of self-assessment (heart rate monitoring, hearth rate variability, hearth rate recovery, orthostatic test, simple movement functional tests, simple VO2max tests, etc.) that an athlete can use on a daily basis and share data with a strength and conditioning coach [53];
- -
- -
- Even though many athletes are not currently injured, the time off is similar to the time off after an injury [56];
- -
- Finally, muscle memory is important to educate athletes, given that any losses are rapidly regained. This should quell some anxiety [57].
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zu, Z.Y.; Jiang, M.D.; Xu, P.P.; Chen, W.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology 2020, 21, 200490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Situation Report 65. 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200325-sitrep-65-covid-19.pdf?sfvrsn=2b74edd8_2 (accessed on 24 April 2020).
- Corsini, A.; Bisciotti, G.N.; Eirale, C.; Volpi, P. Football cannot restart soon during the COVID-19 emergency. A critical perspective from the Italian experience and a call for action. Br. J. Sports Med. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Mao, L.; Nassis, G.P.; Harmer, P.; Ainsworth, B.E.; Li, F. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J. Sport Health Sci. 2020, 9, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.J.; Allison, R.; Close, G.L. Vitamin D and the Athlete: Current Perspectives and New Challenges. Sports Med. 2018, 48 (Suppl. 1), S3–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halabchi, F.; Ahmadinejad, Z.; Selk-Ghaffari, M. COVID-19 Epidemic: Exercise or Not to Exercise; That is the Question! Asian J. Sports Med. 2020, 11, e102630. [Google Scholar] [CrossRef] [Green Version]
- Bosquet, L.; Mujika, I. Detraining. In Endurance training: Science and Practice; Iñigo Mujika, S.L.U., Ed.; Iñigo Mujika: Vitoria-Gasteiz, Spain, 2012; pp. 99–106. [Google Scholar]
- Bosquet, L.; Berryman, N.; Dupuy, O.; Mekary, S.; Arvisais, D.; Biherer, L.; Mujika, I. Effect of training cessation on muscular performance: A meta-analysis. Scand. J. Med. Sci. Sports 2013, 23, e140–e149. [Google Scholar] [CrossRef]
- Melchiorri, G.; Ronconi, M.; Triossi, T.; Viero, V.; De Sanctis, D.; Tancredi, V.; Salvati, A.; Padua, E.; Alvero, J.C. Detraining in young soccer players. J. Sport Med. Phys. Fit. 2014, 54, 27–33. [Google Scholar]
- Mujika, I.; Padilla, S. Muscular characteristics of detraining in humans. Med. Sci. Sport Exerc. 2001, 33, 1297–1303. [Google Scholar] [CrossRef]
- Rodríguez-Fernandez, A.; Sanchez-Sanchez, J.; Ramírez-Campillo, R.; Rodríguez-Marroyo, J.A.; Villa Vicente, J.G.; Nakamura, F.Y. Effects of short-term in-season break detraining on repeated sprint ability and intermittent endurance according to initial performance of soccer player. PLoS ONE 2018, 13, e0201111. [Google Scholar] [CrossRef] [Green Version]
- Hawley, J.; Burke, L. Peak Performance: Training and Nutritional Strategies for Sport; Allen & Unwin: St Leonards, Australia, 1998. [Google Scholar]
- Gondin, J.; Duclay, J.; Martin, A. Neural drive preservation after detraining following neuromuscular electrical stimulation training. Neurosci. Lett. 2006, 409, 210–214. [Google Scholar] [CrossRef]
- García-Pallarés, J.; Sanchez-Medina, L.; Perez, C.E.; Izquierdo-Gabarren, M.; Izquierdo, M. Physiological effects of tapering and detraining in world-class kayakers. Med. Sci. Sports Exerc. 2010, 42, 1209–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, A.C.; Neiva, H.P.; Izquierdo, M.; Cadore, E.L.; Alves, A.R.; Marinho, D.A. Concurrent Training and Detraining: Brief Review on the Effect of Exercise Intensities. Int. J. Sports Med. 2019, 40, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Martínez–Muñoz, F.J.; Rubio-Arias, J.A.; Ramos-Campo, D.; Alcaraz, P.E. Effectiveness of Resistance Circuit-Based Training for Maximum Oxygen Uptake and Upper-Body One-Repetition Maximum Improvements: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 2553–2568. [Google Scholar] [CrossRef]
- Freitas, T.T.; Calleja-González, J.; Alarcón, F.; Alcaraz, P.E. Acute Effects of Two Different Resistance Circuit Training Protocols on Performance and Perceived Exertion in Semiprofessional Basketball Players. J. Strength Cond. Res. 2016, 30, 407–414. [Google Scholar] [CrossRef]
- Neufer, P.D.; Costill, D.L.; Fielding, R.A.; Flynn, M.G.; Kirwan, J.P. Effect of reduced training on muscular strength and endurance in competitive swimmers. Med. Sci. Sports Exerc. 1987, 19, 486–490. [Google Scholar] [CrossRef]
- American College of Sports Medicine. Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; p. 85. [Google Scholar]
- Caldwell, B.P.; Peters, D.M. Seasonal variation in physiological fitness of a semiprofessional soccer team. J. Strength Cond. Res. 2009, 23, 1370–1377. [Google Scholar] [CrossRef]
- López-López, L.; Torres, J.R.; Rubio, A.O.; Torres-Sánchez, I.; Cabrera Martos, I.; Valenza, M.C. Effects of neurodynamic treatment on hamstrings flexibility: A systematic review and meta-analysis. Phys. Ther. Sport 2019, 40, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Nicholson, N.; Thomas, S. Impact of Tai Chi Exercise on Balance Disorders: A Systematic Review. Am. J. Audiol. 2019, 28, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Hortobágyi, T.; Houmard, J.A.; Stevenson, J.R.; Fraser, D.D.; Johns, R.A.; Israel, R.G. The effects of detraining on power athletes. Med. Sci. Sports Exerc. 1993, 25, 929–935. [Google Scholar] [PubMed]
- Colliander, E.B.; Tesch, P.A. Effects of detraining following short term resistance training on eccentric and concentric muscle strength. Acta Physiol. Scand. 1992, 144, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Hodikin, A.V. Maintaining the training effect during work stoppage. Teoriya Praktika Fiziocheskoi Kultury 1982, 3, 45–48. [Google Scholar]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Martins, H.; Kitamura, K.; Cal Abad, C.C.; Nakamura, F.Y. Effects of detraining on neuromuscular performance in a selected group of elite women pole-vaulters: A case study. J. Sports Med. Phys. Fit. 2017, 57, 490–495. [Google Scholar]
- Mallinson, J.E.; Murto, A.J. Mechanisms responsible for disuse muscle atrophy: Potential role of protein provision and exercise as countermeasures. Nutrition 2013, 29, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pessin, J.E. Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 243–250. [Google Scholar] [CrossRef]
- Phillips, S.M.; McGlory, C. CrossTalk proposal: The dominant mechanism causing disuse muscle atrophy is decreased protein synthesis. J. Physiol. 2014, 592, 5341–5343. [Google Scholar] [CrossRef]
- Klausen, K.; Andersen, L.B.; Pelle, I. Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol. Scand. 1981, 113, 9–16. [Google Scholar] [CrossRef]
- Boonyarom, O.; Inui, K. Atrophy and hypertrophy of skeletal muscles: Structural and functional aspects. Scand. Physiol. Soc. 2006, 188, 77–89. [Google Scholar] [CrossRef]
- Cos, M.A.; Cos, F. Interpretación de las alteraciones del sistema músculo esquelético. Beneficios del Trabajo excéntrico y concéntrico. Efectos de la inactividad y de la inmovilización en el músculo. Arch. Med. Deporte 1999, 16, 633–638. [Google Scholar]
- de Boer, M.D.; Selby, A.; Atherton, P.; Smith, K.; Seynnes, O.R.; Maganaris, C.N.; Maffulli, N.; Movin, T.; Narici, M.V.; Rennie, M.J. The temporal responses of protein synthesis, gene expression and cell signaling in human quadriceps muscle and patellar tendon to disuse. J. Physiol. 2007, 585, 241–251. [Google Scholar] [CrossRef]
- Mettler, S.; Mitchell, N.; Tipton, K.D. Increased protein intake reduces lean body mass loss during weight loss in athletes. Med. Sci. Sport Exerc. 2010, 42, 326–337. [Google Scholar] [CrossRef]
- Milsom, J.; Barreira, P.; Burgess, D.J.; Iqbal, Z.; Morton, J.P. Case study: Muscle atrophy and hypertrophy in a premier league soccer player during rehabilitation from ACL injury. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.M. Current concepts and unresolved questions in dietary protein requirements and supplements in adults. Front. Nutr. 2017, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, M.; Ibañez, J.; González-Badillo, J.J.; Ratamess, N.A.; Kraemer, W.J.; Hakkinen, K.; Bonnabau, H.; Granados, C.; French, D.N.; Gorostiaga, E.M. Detraining and tapering effects on hormonal responses and strength performance. J. Strength Cond. Res. 2007, 21, 768–775. [Google Scholar] [PubMed] [Green Version]
- Koundourakis, N.E.; Androulakis, N.E.; Malliaraki, N.; Tsatsanis, C.; Venihaki, M.; Margioris, A.N. Discrepancy between exercise performance, body composition, and sex steroid response after a six-week detraining period in professional soccer players. PLoS ONE 2014, 9, e87803. [Google Scholar] [CrossRef]
- Djaoui, L.; Wong, D.P.; Pialoux, V.; Hautier, C.; Da Silva, C.D.; Chamari, K.; Dellal, A. Physical Activity during a Prolonged Congested Period in a Top-Class European Football Team. Asian J. Sports Med. 2014, 5, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Tarragó, J.T.; Massafred-Marimón, M.; Seirul·lo, F.; Cos, F. Training in Team Sports: Structured Training in the FCB. Apunts. Educ. Fís. Deportes 2019, 137, 103–114. [Google Scholar]
- Mujika, I.; Halson, S.; Burke, M.L.; Balague, G.; Darrow, D. An Integrated, Multifactorial Approach to Periodization for Optimal Performance in Individual and Team Sports. Int. J. Sports Physiol. Perform. 2018, 13, 538–561. [Google Scholar] [CrossRef]
- Silva, J.R.; Brito, J.; Akenhead, R.; Nassis, G.P. The Transition Period in Soccer: A Window of Opportunity. Sports Med. 2016, 46, 305–313. [Google Scholar] [CrossRef]
- Jukic, I.; Milanovic, L.; Svilar, L.; Njaradi, N.; Calleja-González, J.; Castellano, J.; Ostojic, S.M. Sport preparation system in team sports: Synergy of evidence, practical experience and artistic expression. In Proceedings of the 16th International Conference “Physical Conditioning of Athletes 2018”, Zagreb, Croatia, 23–24 February 2018; pp. 15–24. [Google Scholar]
- Roy-Davis, K.; Wadey, R.; Evans, L. A Grounded Theory of Sport Injury-Related Growth. Sport Exerc. Perform. Psychol. 2017, 6, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Jukic, I.; Milanovic, L.; Krakan, I.; Njaradi, N.; Calleja-González, J.; Cuzzolin, F.; Cos, F.; Sassi, R.; Requena, B. Strength and conditioning in top level team sports: An individual discipline. In Proceedings of the 18th International Conference “Physical Conditioning of Athletes 2020”, Zagreb, Croatia, 21–22 February 2020; pp. 15–25. [Google Scholar]
- Borotikar, B.; Newcomer, R.; Koppes, R.; McLean, S. Combined effects of fatigue and decision making on female lower limb landing postures: Central and peripheral contributions to ACL injury risk. Clin. Biomech. 2007, 23, 81–92. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Romero-Rodríguez, D.; Lloyd, R.; Kushner, A.; Myer, G. Integrative Neuromuscular Training in Youth Athletes. Part II: Strategies to prevent Injuries and Improve Performance. Strength Cond. J. 2016, 38, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Intern. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar]
- Singh, M.; Das, R.R. Zinc for the common cold. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Wang, A.; Huen, S.C.; Luan, H.H.; Yu, S.; Zhang, C.; Gallezot, J.D.; Booth, C.J.; Medzhitov, R. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 2016, 166, 1512–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, S.; Jenkins, D.; Smith, M.; Halson, S.; Kelly, V. The application of mental fatigue research to elite team sport performance: New perspectives. J. Sci. Med. Sport 2019, 22, 723–728. [Google Scholar] [CrossRef]
- Calleja-González, J.; Mielgo-Ayuso, J.; Sampaio, J.; Delextrat, A.; Ostojic, S.M.; Marques-Jiménez, D.; Arratibel, I.; Sánchez-Ureña, B.; Dupont, G.; Schelling, X.; et al. Brief ideas about evidence-based recovery in team sports. J. Exerc. Rehabil. 2018, 14, 545–550. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. The Development of a Personalized Training Framework: Implementation of Emerging Technologies for Performance. J. Funct. Morphol. Kinesiol. 2019, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Calleja-González, J.; Mielgo-Ayuso, J.; Ostojic, S.M.; Jones, M.T.; Marques-Jiménez, D.; Caparros, T.; Terrados, N. Evidence-based post-exercise recovery strategies in rugby: A narrative review. Phys. Sportsmed. 2019, 47, 137–147. [Google Scholar] [CrossRef]
- Saw, A.E.; Main, L.C.; Gastin, P.B. Monitoring the athlete training response: Subjective self-reported measures trump commonly used objective measures: A systematic review. Br. J. Sports Med. 2016, 50, 281–291. [Google Scholar] [CrossRef]
- Tipton, K.D. Nutritional support for exercise-induced injuries. Sports Med. 2015, 45, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Gundersen, K. Muscle memory and a new cellular model for muscle atrophy and hypertrophy. J. Exp. Biol. 2016, 219, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jukic, I.; Calleja-González, J.; Cos, F.; Cuzzolin, F.; Olmo, J.; Terrados, N.; Njaradi, N.; Sassi, R.; Requena, B.; Milanovic, L.; et al. Strategies and Solutions for Team Sports Athletes in Isolation due to COVID-19. Sports 2020, 8, 56. https://doi.org/10.3390/sports8040056
Jukic I, Calleja-González J, Cos F, Cuzzolin F, Olmo J, Terrados N, Njaradi N, Sassi R, Requena B, Milanovic L, et al. Strategies and Solutions for Team Sports Athletes in Isolation due to COVID-19. Sports. 2020; 8(4):56. https://doi.org/10.3390/sports8040056
Chicago/Turabian StyleJukic, Igor, Julio Calleja-González, Francesc Cos, Francesco Cuzzolin, Jesús Olmo, Nicolas Terrados, Nenad Njaradi, Roberto Sassi, Bernardo Requena, Luka Milanovic, and et al. 2020. "Strategies and Solutions for Team Sports Athletes in Isolation due to COVID-19" Sports 8, no. 4: 56. https://doi.org/10.3390/sports8040056
APA StyleJukic, I., Calleja-González, J., Cos, F., Cuzzolin, F., Olmo, J., Terrados, N., Njaradi, N., Sassi, R., Requena, B., Milanovic, L., Krakan, I., Chatzichristos, K., & Alcaraz, P. E. (2020). Strategies and Solutions for Team Sports Athletes in Isolation due to COVID-19. Sports, 8(4), 56. https://doi.org/10.3390/sports8040056