Anaerobic Power Assessment in Athletes: Are Cycling and Vertical Jump Tests Interchangeable?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Dataset Description
3.2. Summary of Correlations
3.2.1. Power Values (Cross-Sectional Data)
3.2.2. Change Scores (Longitudinal Data)
3.2.3. Magnitude-Based Inferences
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scharer, C.; Lehmann, T.; Naundorf, F.; Taube, W.; Hubner, K. The faster, the better? Relationships between run-up speed, the degree of difficulty (D-score), height and length of flight on vault in artistic gymnastics. PLoS ONE 2019, 14, e0213310. [Google Scholar] [CrossRef]
- Gross, M.; Buchler Greeley, N.; Hubner, K. Prioritizing Physical Determinants of International Elite Pole Vaulting Performance. J. Strength Cond. Res. 2020, 34, 162–171. [Google Scholar] [CrossRef]
- Gross, M.; Schellenberg, F.; Lüthi, G.; Baker, M.; Lorenzetti, S. Performance determinants and leg kinematics in the BMX supercross start. J. Sci. Cycl. 2017, 6, 3–12. [Google Scholar]
- Pojskic, H.; Aslin, E.; Krolo, A.; Jukic, I.; Uljevic, O.; Spasic, M.; Sekulic, D. Importance of Reactive Agility and Change of Direction Speed in Differentiating Performance Levels in Junior Soccer Players: Reliability and Validity of Newly Developed Soccer-Specific Tests. Front. Physiol. 2018, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Chaabene, H.; Negra, Y.; Bouguezzi, R.; Mkaouer, B.; Franchini, E.; Julio, U.; Hachana, Y. Physical and Physiological Attributes of Wrestlers: An Update. J. Strength Cond. Res. 2017, 31, 1411–1442. [Google Scholar] [CrossRef] [PubMed]
- Hebert-Losier, K.; Supej, M.; Holmberg, H.C. Biomechanical factors influencing the performance of elite Alpine ski racers. Sports Med. 2014, 44, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Maulder, P.S.; Bradshaw, E.J.; Keogh, J. Jump kinetic determinants of sprint acceleration performance from starting blocks in male sprinters. J. Sports Sci. Med. 2006, 5, 359–366. [Google Scholar] [PubMed]
- Spiteri, T.; Cochrane, J.L.; Hart, N.H.; Haff, G.G.; Nimphius, S. Effect of strength on plant foot kinetics and kinematics during a change of direction task. Eur. J. Sport Sci. 2013, 13, 646–652. [Google Scholar] [CrossRef]
- Emmonds, S.; Nicholson, G.; Begg, C.; Jones, B.; Bissas, A. Importance of Physical Qualities for Speed and Change of Direction Ability in Elite Female Soccer Players. J. Strength Cond. Res. 2019, 33, 1669–1677. [Google Scholar] [CrossRef]
- Supej, M.; Holmberg, H.C. Recent Kinematic and Kinetic Advances in Olympic Alpine Skiing: Pyeongchang and Beyond. Front. Physiol. 2019, 10, 111. [Google Scholar] [CrossRef]
- Gilgien, M.; Sporri, J.; Kroll, J.; Crivelli, P.; Muller, E. Mechanics of turning and jumping and skier speed are associated with injury risk in men’s World Cup alpine skiing: A comparison between the competition disciplines. Br. J. Sports Med. 2014, 48, 742–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, M.; Stone, M.; Sands, W. Principles and Practice of Resistance Training; Human Kinetics: Champaign, IL, USA, 2007. [Google Scholar]
- Markovic, G.; Jaric, S. Is vertical jump height a body size-independent measure of muscle power? J. Sports Sci. 2007, 25, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Heck, H.; Schulz, H.; Bartmus, U. Diagnostics of anaerobic power and capacity. Eur. J. Sport Sci. 2003, 3, 1–23. [Google Scholar] [CrossRef]
- McMaster, D.T.; Gill, N.; Cronin, J.; McGuigan, M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014, 44, 603–623. [Google Scholar] [CrossRef] [PubMed]
- Vandewalle, H.; Peres, G.; Monod, H. Standard anaerobic exercise tests. Sports Med. 1987, 4, 268–289. [Google Scholar] [CrossRef] [PubMed]
- Driss, T.; Vandewalle, H. The measurement of maximal (anaerobic) power output on a cycle ergometer: A critical review. Biomed. Res. Int. 2013, 2013, 589361. [Google Scholar] [CrossRef]
- Van Praagh, E. Anaerobic fitness tests: What are we measuring? Med. Sport Sci. 2007, 50, 26–45. [Google Scholar] [CrossRef]
- Driss, T.; Vandewalle, H.; Monod, H. Maximal power and force-velocity relationships during cycling and cranking exercises in volleyball players. Correlation with the vertical jump test. J. Sports Med. Phys. Fit. 1998, 38, 286–293. [Google Scholar]
- Mendez-Villanueva, A.; Bishop, D.; Hamer, P. Reproducibility of a 6-s maximal cycling sprint test. J. Sci. Med. Sport 2007, 10, 323–326. [Google Scholar] [CrossRef]
- Coso, J.D.; Mora-Rodriguez, R. Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test. Appl. Physiol. Nutr. Metab. 2006, 31, 186–189. [Google Scholar] [CrossRef]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Hübner, K.; Sonderegger, K.; Lüthy, F.; Tschopp, M. Explosivkraftniveau der unteren Extremitäten bei Schweizer Nachwuchsathleten. Schweizerische Zeitschrift Fur Sportmedizin Und Sporttraumatologie 2013, 61, 15–22. [Google Scholar]
- Nikolaidis, P.T.; Afonso, J.; Clemente-Suarez, V.J.; Alvarado, J.R.P.; Driss, T.; Knechtle, B.; Torres-Luque, G. Vertical Jumping Tests versus Wingate Anaerobic Test in Female Volleyball Players: The Role of Age. Sports (Basel) 2016, 4, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemdaroglu, U. The relationship between muscle strength, anaerobic performance, agility, sprint ability and vertical jump performance in professional basketball players. J. Hum. Kinet. 2012, 31, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Chiarlitti, N.A.; Delisle-Houde, P.; Reid, R.E.R.; Kennedy, C.; Andersen, R.E. Importance of Body Composition in the National Hockey League Combine Physiological Assessments. J. Strength Cond. Res. 2018, 32, 3135–3142. [Google Scholar] [CrossRef]
- Bertucci, W.M.; Hourde, C. Laboratory Testing and Field Performance in BMX Riders. J. Sports Sci. Med. 2011, 10, 417–419. [Google Scholar]
- Ziv, G.; Lidor, R. Vertical jump in female and male basketball players--a review of observational and experimental studies. J. Sci. Med. Sport 2010, 13, 332–339. [Google Scholar] [CrossRef]
- Samozino, P.; Morin, J.B.; Hintzy, F.; Belli, A. A simple method for measuring force, velocity and power output during squat jump. J. Biomech. 2008, 41, 2940–2945. [Google Scholar] [CrossRef]
- Knudson, D.V. Correcting the use of the term "power" in the strength and conditioning literature. J. Strength Cond. Res. 2009, 23, 1902–1908. [Google Scholar] [CrossRef]
- McLellan, C.P.; Lovell, D.I.; Gass, G.C. The role of rate of force development on vertical jump performance. J. Strength Cond. Res. 2011, 25, 379–385. [Google Scholar] [CrossRef]
- Burns, G.T.; Deneweth Zendler, J.; Zernicke, R.F. Validation of a wireless shoe insole for ground reaction force measurement. J. Sports Sci. 2019, 37, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; Saez de Villarreal, E.; Morin, J.B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sports 2015. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.P.; Marshall, R.N.; McNair, P.J. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J. Appl. Biomech. 2005, 21, 31–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orange, S.T.; Metcalfe, J.W.; Marshall, P.; Vince, R.V.; Madden, L.A.; Liefeith, A. Test-Retest Reliability of a Commercial Linear Position Transducer (GymAware PowerTool) to Measure Velocity and Power in the Back Squat and Bench Press. J. Strength Cond. Res. 2020, 34, 728–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banyard, H.G.; Nosaka, K.; Sato, K.; Haff, G.G. Validity of Various Methods for Determining Velocity, Force, and Power in the Back Squat. Int. J. Sports Physiol. Perform. 2017, 12, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernandez, C.; Glaister, M.; Lockey, R.A. The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef]
- Vandewalle, H.; Peres, G.; Heller, J.; Panel, J.; Monod, H. Force-velocity relationship and maximal power on a cycle ergometer. Correlation with the height of a vertical jump. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 650–656. [Google Scholar] [CrossRef]
- Passfield, L.; Hopker, J.G.; Jobson, S.; Friel, D.; Zabala, M. Knowledge is power: Issues of measuring training and performance in cycling. J. Sports Sci. 2017, 35, 1426–1434. [Google Scholar] [CrossRef]
- Gardner, A.S.; Martin, D.T.; Jenkins, D.G.; Dyer, I.; Van Eiden, J.; Barras, M.; Martin, J.C. Velocity-specific fatigue: Quantifying fatigue during variable velocity cycling. Med. Sci. Sports Exerc. 2009, 41, 904–911. [Google Scholar] [CrossRef]
- Gardner, A.S.; Martin, J.C.; Martin, D.T.; Barras, M.; Jenkins, D.G. Maximal torque- and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests. Eur. J. Appl. Physiol. 2007, 101, 287–292. [Google Scholar] [CrossRef]
- Martin, J.C.; Wagner, B.M.; Coyle, E.F. Inertial-load method determines maximal cycling power in a single exercise bout. Med. Sci. Sports Exerc. 1997, 29, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.; Coggan, A. Training and Racing with a Power Meter; Velopress: Boulder, CO, USA, 2010. [Google Scholar]
- Gonzalez-Tablas, A.; Martin-Santana, E.; Torres, M. Designing a cost-effective power profile test for talent identification programs. J. Sci. Cycl. 2016, 5, 27–28. [Google Scholar]
- Çakir-Atabek, H. Relationship between anaerobic power, vertical jump and aerobic performance in adolescent track and field athletes. J. Phys. Educ. Sport 2014, 14, 643–648. [Google Scholar]
- Rouis, M.; Coudrat, L.; Jaafar, H.; Attiogbe, E.; Vandewalle, H.; Driss, T. Effects of ethnicity on the relationship between vertical jump and maximal power on a cycle ergometer. J. Hum. Kinet. 2016, 51, 209–216. [Google Scholar] [CrossRef]
- Gross, M.; Gross, T. Relationship between Cyclic and Non-Cyclic Force-Velocity Characteristics in BMX Cyclists. Sports (Basel) 2019, 7, 232. [Google Scholar] [CrossRef] [Green Version]
- Duss, R.; Hobi, N. Der prozentuale Anteil der konzentrischen Maximalkraft an der isometrischen Maximalkraft; Eidg. Technische Hochschule Zürich: Zürich, Switzerland, 2003. [Google Scholar]
- Hübner, K. Veränderung der Explosivkraft der unteren Extremitäten in Abhängigkeit vom Widerstand: Studie bei Schweizer Spitzensportlern aus Sportarten mit hohem Explosivkraftanteil (Changes in Explosive Strength of the Lower Extremity in Relation to Resistance: A Study on Elite Swiss Athletes from Sports with a High Explosive Strength Component). Ph.D. Thesis, Universität Leipzig, Leipzig, Germany, 2009. [Google Scholar]
- Wattbike. Full Test Guide (05/2015-v1.0EN). In Wattbike, 05/2015-v1.0EN ed.; Wattbike: Nottingham, UK, 2015. [Google Scholar]
- Hopker, J.; Myers, S.; Jobson, S.A.; Bruce, W.; Passfield, L. Validity and reliability of the Wattbike cycle ergometer. Int. J. Sports Med. 2010, 31, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Driller, M.W.; Argus, C.K.; Shing, C.M. The reliability of a 30-s sprint test on the Wattbike cycle ergometer. Int. J. Sports Physiol. Perform. 2013, 8, 379–383. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G. A spreadsheet for monitoring an individual’s changes and trend. Sportscience 2017, 21, 5–9. [Google Scholar]
- Hopkins, W.G. A Spreadsheet for Monitoring an Individual’s Changes and Trend. Available online: https://sportscience.sportsci.org/resource/stats/xIndividualTrend.xlsx (accessed on 22 March 2020).
- Hautier, C.A.; Linossier, M.T.; Belli, A.; Lacour, J.R.; Arsac, L.M. Optimal velocity for maximal power production in non-isokinetic cycling is related to muscle fibre type composition. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 74, 114–118. [Google Scholar] [CrossRef]
- Samozino, P.; Horvais, N.; Hintzy, F. Why does power output decrease at high pedaling rates during sprint cycling? Med. Sci. Sports Exerc. 2007, 39, 680–687. [Google Scholar] [CrossRef] [PubMed]
Group | n | Age (y) | Body Height (m) | Body Mass (kg) |
---|---|---|---|---|
females | 7 | 23 ± 5 (18–31) | 1.68 ± 0.04 (1.63–1.74) | 63 ± 5 (56–71) |
males | 13 | 25 ± 4 (18–31) | 1.83 ± 0.09 (1.71–2.01) | 87 ± 10 (70–110) |
all | 20 | 25 ± 4 (18–31) | 1.78 ± 0.1 (1.63–2.01) | 79 ± 14 (56–110) |
Group | 6sCS | SJ | LSJ | CMJ | |||||
---|---|---|---|---|---|---|---|---|---|
N * | W | W/kg ** | W | W/kg ** | W | W/kg ** | W | W/kg ** | |
females | 6 | 680 ± 118 | 10.5 ± 1.9 | 3030 ± 528 | 47 ± 8 | 2660 ± 493 | 41 ± 8 | 3014 ± 554 | 47 ± 7 |
males | 10 | 1317 ± 197 | 15.5 ± 1.5 | 5179 ± 797 | 61 ± 6 | 4528 ± 720 | 53 ± 6 | 5262 ± 820 | 62 ± 6 |
all | 16 | 1121 ± 345 | 14.0 ± 2.8 | 4518 ± 1233 | 57 ± 94 | 3953 ± 1089 | 50 ± 9 | 4570 ± 1284 | 57 ± 10 |
Group | 6sCS, SJ | 6sCS, LSJ | 6sCS, CMJ | SJ, LSJ | SJ, CMJ | |||||
---|---|---|---|---|---|---|---|---|---|---|
W | W/kg * | W | W/kg * | W | W/kg * | W | W/kg * | W | W/kg * | |
females | 0.81 | 0.58 | 0.72 | 0.38 | 0.81 | 0.51 | 0.95 | 0.83 | 0.98 | 0.94 |
males | 0.87 | 0.67 | 0.78 | 0.52 | 0.90 | 0.71 | 0.94 | 0.84 | 0.97 | 0.90 |
all | 0.94 | 0.84 | 0.92 | 0.76 | 0.96 | 0.88 | 0.98 | 0.90 | 0.98 | 0.95 |
6sCS, SJ | 6sCS, LSJ | 6sCS, CMJ | SJ, LSJ | SJ, CMJ | |
---|---|---|---|---|---|
% Change * | % Change* | % Change * | % Change * | % Change * | |
consecutive time points | 0.68 | 0.54 | 0.56 | 0.76 | 0.73 |
time points one year apart | 0.32 | 0.56 | 0.17 | 0.71 | 0.59 |
all time point combinations | 0.61 | 0.47 | 0.48 | 0.69 | 0.71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gross, M.; Lüthy, F. Anaerobic Power Assessment in Athletes: Are Cycling and Vertical Jump Tests Interchangeable? Sports 2020, 8, 60. https://doi.org/10.3390/sports8050060
Gross M, Lüthy F. Anaerobic Power Assessment in Athletes: Are Cycling and Vertical Jump Tests Interchangeable? Sports. 2020; 8(5):60. https://doi.org/10.3390/sports8050060
Chicago/Turabian StyleGross, Micah, and Fabian Lüthy. 2020. "Anaerobic Power Assessment in Athletes: Are Cycling and Vertical Jump Tests Interchangeable?" Sports 8, no. 5: 60. https://doi.org/10.3390/sports8050060
APA StyleGross, M., & Lüthy, F. (2020). Anaerobic Power Assessment in Athletes: Are Cycling and Vertical Jump Tests Interchangeable? Sports, 8(5), 60. https://doi.org/10.3390/sports8050060