Acute Static Stretching Results in Muscle-Specific Alterations amongst the Hamstring Muscles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Measurements
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bandy, W.D.; Irion, J.M. The effect of time on static stretch on the flexibility of the hamstring muscles. Phys. Ther. 1994, 74, 842–845. [Google Scholar] [CrossRef]
- Kokkonen, J.; Nelson, A.G.; Eldredge, C.; Winchester, J.B. Chronic static stretching improves exercise performance. Med. Sci. Sports Exerc. 2007, 39, 1825–1831. [Google Scholar] [CrossRef] [Green Version]
- Herda, T.J.; Cramer, J.T.; Ryan, E.D.; Mchugh, M.P.; Stout, J.R. Acute effects of static versus dynamic stretching on isometric peak torque, electromyography, and mechanomyography of the biceps femoris muscle. J. Strength Cond. Res. 2008, 22, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Babault, N.; Kouassi, B.Y.L.; Desbrosses, K. Acute effects of 15 min static or contract-relax stretching modalities on plantar flexors neuromuscular properties. J. Sci. Med. Sport 2010, 13, 247–252. [Google Scholar] [CrossRef]
- Avela, J.; Kyröläinen, H.; Komi, P. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J. Appl. Physiol. 1999, 86, 1283–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opplert, J.; Genty, J.-B.; Babault, N. Do Stretch Durations Affect Muscle Mechanical and Neurophysiological Properties? Int. J. Sports Med. 2016, 37, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Matsumoto, M.; Umemura, Y. Decrements in stiffness are restored within 10 min. Int. J. Sports Med. 2013, 34, 484–490. [Google Scholar] [CrossRef] [Green Version]
- Kubo, K.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J. Appl. Physiol. 2001, 90, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, T.; Opplert, J.; Cometti, C.; Babault, N. Acute effects of static stretching on muscle–tendon mechanics of quadriceps and plantar flexor muscles. Eur. J. Appl. Physiol. 2017, 117, 1309–1315. [Google Scholar] [CrossRef]
- Babault, N.; Bazine, W.; Deley, G.; Paizis, C.; Lattier, G. Direct relation of acute effects of static stretching on isokinetic torque production with initial flexibility level. Int. J. Sports Physiol. Perform. 2015, 10, 117–119. [Google Scholar] [CrossRef]
- Abellaneda, S.; Guissard, N.; Duchateau, J. The relative lengthening of the myotendinous structures in the medial gastrocnemius during passive stretching differs among individuals. J. Appl. Physiol. 2009, 106, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Miyamoto-Mikami, E.; Kanehisa, H.; Miyamoto, N. Muscle-specific acute changes in passive stiffness of human triceps surae after stretching. Eur. J. Appl. Physiol. 2016, 116, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Ikezoe, T.; Takeno, Y.; Ichihashi, N. Acute and prolonged effect of static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo. J. Orthop. Res. 2011, 29, 1759–1763. [Google Scholar] [CrossRef] [PubMed]
- Lieber, R.L.; Brown, C.G.; Trestik, C.L. Model of muscle-tendon interaction during frog semitendinosis fixed-end contractions. J. Biomech. 1992, 25, 421–428. [Google Scholar] [CrossRef]
- Winter, S.L.; Challis, J.H. The Force-Length Curves of the Human Rectus Femoris and Gastrocnemius Muscles in Vivo. J. Appl. Biomech. 2010, 26, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Kellis, E.; Galanis, N.; Natsis, K.; Kapetanos, G. Validity of architectural properties of the hamstring muscles: Correlation of ultrasound findings with cadaveric dissection. J. Biomech. 2009, 42, 2549–2554. [Google Scholar] [CrossRef]
- Le Sant, G.; Ates, F.; Brasseur, J.-L.; Nordez, A. Elastography Study of Hamstring Behaviors during Passive Stretching. PLoS ONE 2015, 10, e0139272. [Google Scholar] [CrossRef]
- Kumazaki, T.; Ehara, Y.; Sakai, T. Anatomy and physiology of hamstring injury. Int. J. Sports Med. 2012, 33, 950–954. [Google Scholar]
- Magnusson, S.P.; Aagaard, P.; Nielson, J.J. Passive energy return after repeated stretches of the hamstring muscle-tendon unit. Med. Sci. Sports Exerc. 2000, 32, 1160–1164. [Google Scholar] [CrossRef]
- Kellis, E. Biceps femoris and semitendinosus tendon/aponeurosis strain during passive and active (isometric) conditions. J. Electromyogr. Kinesiol. 2016, 26, 111–119. [Google Scholar] [CrossRef]
- Ryan, E.D.; Herda, T.J.; Costa, P.B.; Defreitas, J.M.; Beck, T.W.; Stout, J.; Cramer, J.T. Determining the minimum number of passive stretches necessary to alter musculotendinous stiffness. J. Sports Sci. 2009, 27, 957–961. [Google Scholar] [CrossRef]
- Morse, C.I.; Degens, H.; Seynnes, O.R.; Maganaris, C.N.; Jones, D.A. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J. Physiol. 2008, 586, 97–106. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Chaabene, H.; Behm, D.G.; Negra, Y.; Granacher, U. Acute Effects of Static Stretching on Muscle Strength and Power: An Attempt to Clarify Previous Caveats. Front. Physiol. 2019, 10, 1468. [Google Scholar] [CrossRef] [PubMed]
- Cannavan, D.; Coleman, D.R.; Blazevich, A.J. Lack of effect of moderate-duration static stretching on plantar flexor force production and series compliance. Clin. Biomech. 2012, 27, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.D.; Blazevich, A.J. Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J. Appl. Physiol. 2009, 106, 1249–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyamoto, N.; Hirata, K.; Kanehisa, H. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers. Scand. J. Med. Sci. Sports 2017, 27, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Konrad, A.; Budini, F.; Tilp, M. Acute effects of constant torque and constant angle stretching on the muscle and tendon tissue properties. Eur. J. Appl. Physiol. 2017, 117, 1649–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, T.J. The integrated function of muscles and tendons during locomotion. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002, 133, 1087–1099. [Google Scholar] [CrossRef]
- Hollville, E.; Nordez, A.; Guilhem, G.; Lecompte, J.; Rabita, G. Interactions between fascicles and tendinous tissues in gastrocnemius medialis and vastus lateralis during drop landing. Scand. J. Med. Sci. Sports 2019, 29, 55–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, E.M.; Ward, S.R.; Lieber, R.L.; Delp, S.L. A Model of the Lower Limb for Analysis of Human Movement. Ann. Biomed. Eng. 2010, 38, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liu, C.; Zhang, Z. Non-uniform Stiffness within Gastrocnemius-Achilles tendon Complex Observed after Static Stretching. J. Sports Sci. Med. 2019, 18, 454–461. [Google Scholar] [PubMed]
- Magnusson, S.P.; Narici, M.V.; Maganaris, C.N.; Kjaer, M. Human tendon behaviour and adaptation, in vivo. J. Physiol. 2008, 586, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E. Biceps femoris fascicle length during passive stretching. J. Electromyogr. Kinesiol. 2018, 38, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Garrett, W.E.; Califf, J.C.; Bassett, F.H. Histochemical correlates of hamstring injuries. Am. J. Sports Med. 1984, 12, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Rehorn, M.R.; Blemker, S.S. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J. Biomech. 2010, 43, 2574–2581. [Google Scholar] [CrossRef] [Green Version]
- Kay, A.D.; Blazevich, A.J. Effect of acute static stretch on maximal muscle performance: A systematic review. Med. Sci. Sports Exerc. 2012, 44, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Chaouachi, A. A review of the acute effects of static and dynamic stretching on performance. Eur. J. Appl. Physiol. 2011, 111, 2633–2651. [Google Scholar] [CrossRef]
- Trajano, G.S.; Nosaka, K.; Blazevich, A.J. Neurophysiological Mechanisms Underpinning Stretch-Induced Force Loss. Sports Med. 2017, 47, 1531–1541. [Google Scholar] [CrossRef]
Parameter | Effect | F | p | Partial η2 | Power |
---|---|---|---|---|---|
MVIT | Session | 0.955 | 0.3493 | 0.079 | 0.145 |
Time | 13.553 | 0.0036 * | 0.552 | 0.917 | |
Session × Time | 2.033 | 0.1816 | 0.156 | 0.256 | |
Passive torque | Session | 2.832 | 0.120 | 0.204 | 0.336 |
Time | 25.613 | 0.0003 * | 0.699 | 0.996 | |
Session × Time | 4.796 | 0.051 | 0.303 | 0.515 | |
MTJ displacement | Muscle | 10.803 | 0.0072 * | 0.495 | 0.848 |
Time | 0.205 | 0.659 | 0.018 | 0.069 | |
Muscle × Time | 8.260 | 0.0151 * | 0.429 | 0.744 |
Parameter | Session | PRE | POST | % Change |
---|---|---|---|---|
MVIT (N.m) * | Biceps femoris | 106.3 ± 18.7 | 100.0 ± 19.9 | −5.9 ± 10.3 |
(95% CI) | (94.4; 118.2) | (87.3; 112.6) | (−12.4; 0.7) | |
Semitendinosus | 114.7 ± 21.7 | 101.7 ± 19.6 | −10.7 ± 10.5 | |
(95% CI) | (100.9; 128.5) | (89.2; 114.1) | (−17.4; −4.1) | |
Passive torque (N.m) * | Biceps femoris | 46.3 ± 15.8 | 29.6 ± 12.8 | −34.8 ± 18.2 |
(95% CI) | (36.3; 56.4) | (21.5; 37.8) | (−46.4; −23.2) | |
Semitendinosus | 45.9 ± 12.8 | 35.8 ± 12.4 | −22.1 ± 14.4 | |
(95% CI) | (37.7; 54.0) | (27.9; 43.7) | (−31.2; −13.0) | |
MTJ displacement (mm) | Biceps femoris | 18.6 ± 3.6 | 22.1 ± 4.8 | 22.4 ± 31.6 |
(95% CI) | (16.2; 20.9) | (19.1; 25.2) | (2.3; 42.5) | |
Semitendinosus | 27.0 ± 5.2 † | 24.3 ± 4.3 | −8.4 ± 17.9 † | |
(95% CI) | (23.7; 30.3) | (21.5; 27.0) | (−19.7; 2.9) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccetti, M.; Opplert, J.; Durigan, J.L.Q.; Cometti, C.; Babault, N. Acute Static Stretching Results in Muscle-Specific Alterations amongst the Hamstring Muscles. Sports 2020, 8, 119. https://doi.org/10.3390/sports8090119
Riccetti M, Opplert J, Durigan JLQ, Cometti C, Babault N. Acute Static Stretching Results in Muscle-Specific Alterations amongst the Hamstring Muscles. Sports. 2020; 8(9):119. https://doi.org/10.3390/sports8090119
Chicago/Turabian StyleRiccetti, Manon, Jules Opplert, Joao L. Q. Durigan, Carole Cometti, and Nicolas Babault. 2020. "Acute Static Stretching Results in Muscle-Specific Alterations amongst the Hamstring Muscles" Sports 8, no. 9: 119. https://doi.org/10.3390/sports8090119
APA StyleRiccetti, M., Opplert, J., Durigan, J. L. Q., Cometti, C., & Babault, N. (2020). Acute Static Stretching Results in Muscle-Specific Alterations amongst the Hamstring Muscles. Sports, 8(9), 119. https://doi.org/10.3390/sports8090119