Identifying Reliable and Relatable Force–Time Metrics in Athletes—Considerations for the Isometric Mid-Thigh Pull and Countermovement Jump
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Countermovement Jump (CMJ)
2.3. Isometric Mid-Thigh Pull (IMTP)
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M. Monitoring Training and Performance in Athletes; Human Kinetics: Champaign, IL, USA, 2017; ISBN 1-4925-3520-6. [Google Scholar]
- Bullock, S.H.; Jones, B.H.; Gilchrist, J.; Marshall, S.W. Prevention of physical training–related injuries: Recommendations for the military and other active populations based on expedited systematic reviews. Am. J. Prev. Med. 2010, 38, S156–S181. [Google Scholar] [CrossRef] [PubMed]
- Wardle, S.L.; Greeves, J.P. Mitigating the risk of musculoskeletal injury: A systematic review of the most effective injury prevention strategies for military personnel. J. Sci. Med. Sport 2017, 20, S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Fry, A.C.; Kraemer, W.J.; Lynch, J.M.; Marsit, J.L.; Roy, E.P.; Triplett, N.T.; Knuttgen, H.G. Performance decrements with high-intensity resistance exercise overtraining. Med. Sci. Sports Exerc. 1994, 26, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Brady, C.J.; Harrison, A.J.; Comyns, T.M. A review of the reliability of biomechanical variables produced during the isometric mid-thigh pull and isometric squat and the reporting of normative data. Sports Biomech. 2018, 19, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Jones, P.A.; McMahon, J.J.; Newton, R. Effect of knee and trunk angle on kinetic variables during the isometric midthigh pull: Test–retest reliability. Int. J. Sports Physiol. Perform. 2015, 10, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Merrigan, J.J.; Dabbs, N.C.; Jones, M.T. Isometric mid-thigh pull kinetics: Sex differences and response to whole-body vibration. J. Strength Cond. Res. 2020, 34, 2407–2411. [Google Scholar] [CrossRef] [PubMed]
- Buckner, S.L.; Jessee, M.B.; Mattocks, K.T.; Mouser, J.G.; Counts, B.R.; Dankel, S.J.; Loenneke, J.P. Determining strength: A case for multiple methods of measurement. Sports Med. 2017, 47, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Beckham, G.K.; Lamont, H.S.; Sato, K.; Ramsey, M.W.; Haff, G.G.; Stone, M.H. Isometric strength of powerlifters in key positions of the conventional deadlift. J. Trainol. 2012, 1, 32–35. [Google Scholar] [CrossRef] [Green Version]
- De Witt, J.K.; English, K.L.; Crowell, J.B.; Kalogera, K.L.; Guilliams, M.E.; Nieschwitz, B.E.; Hanson, A.M.; Ploutz-Snyder, L.L. Isometric midthigh pull reliability and relationship to deadlift one repetition maximum. J. Strength Cond. Res. 2018, 32, 528–533. [Google Scholar] [CrossRef]
- Beckham, G.; Mizuguchi, S.; Carter, C.; Sato, K.; Ramsey, M.; Lamont, H.; Hornsby, G.; Haff, G.; Stone, M. Relationships of isometric mid-thigh pull variables to weightlifting performance. J. Sports Med. Phys. Fitness 2013, 53, 573–581. [Google Scholar] [PubMed]
- Slawinski, J.; Bonnefoy, A.; Levèque, J.-M.; Ontanon, G.; Riquet, A.; Dumas, R.; Chèze, L. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start. J. Strength Cond. Res. 2010, 24, 896–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haff, G.G.; Stone, M.; OʼBryant, H.S.; Harman, E.; Dinan, C.; Johnson, R.; Han, K.-H. Force-time dependent characteristics of dynamic and isometric muscle actions. J. Strength Cond. Res. 1997, 11, 269–272. [Google Scholar]
- Beckham, G.K.; Suchomel, T.J.; Bailey, C.A.; Sole, C.J.; Grazer, J.L. The Relationship of the Reactive Strength Index-Modified and Measures of Force Development in the Isometric Mid-Thigh Pull. In Proceedings of the XXXIInd International Conference of Biomechanics in Sports, Johnson City, TN, USA, 12–16 July 2014; Sato, K., Sands, W.A., Mizuguchi, S., Eds.; International Society of Biomechanics in Sports: Konstanz, Germany, 2014; pp. 501–504. [Google Scholar]
- Welsh, T.; Alemany, J.; Montain, S.; Frykman, P.; Tuckow, A.; Young, A.; Nindl, B. Effects of intensified military field training on jumping performance. Int. J. Sports Med. 2008, 29, 45–52. [Google Scholar] [CrossRef]
- Taylor, K.-L.; Chapman, D.W.; Cronin, J.B.; Newton, M.J.; Gill, N. Fatigue monitoring in high performance sport: A survey of current trends. J. Aust. Strength Cond. 2012, 20, 12–23. [Google Scholar]
- Wu, P.P.-Y.; Sterkenburg, N.; Everett, K.; Chapman, D.W.; White, N.; Mengersen, K. Predicting fatigue using countermovement jump force-time signatures: PCA can distinguish neuromuscular versus metabolic fatigue. PLoS ONE 2019, 14, e0219295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.S.; Frantz, B.A.; Bemben, M.G. Countermovement jump reliability performed with and without an arm swing in NCAA Division 1 intercollegiate basketball players. J. Strength Cond. Res. 2020, 34, 546–558. [Google Scholar] [CrossRef]
- Ortega, D.R.; Rodríguez Bíes, E.C.; Berral de la Rosa, F.J. Analysis of the vertical ground reaction forces and temporal factors in the landing phase of a countermovement jump. J. Sports Sci. Med. 2010, 9, 282–287. [Google Scholar]
- Street, G.; McMillan, S.; Board, W.; Rasmussen, M.; Heneghan, J.M. Sources of error in determining countermovement jump height with the impulse method. J. Appl. Biomech. 2001, 17, 43–54. [Google Scholar] [CrossRef]
- Stone, M.; O’Bryant, H.; Hornsby, G.; Cunanan, A.; Mizuguchi, S.; Suarez, D.; South, M.; Marsh, D.J.; Haff, G.; Ramsey, M.; et al. Using the isometric mid-thigh pull in the monitoring of weightlifters: 25 years of experience. Prof. Strength Cond. 2019, 54, 19–26. [Google Scholar]
- McLean, B.D.; Coutts, A.J.; Kelly, V.; McGuigan, M.R.; Cormack, S.J. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int. J. Sports Physiol. Perform. 2010, 5, 367–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mooney, M.G.; Cormack, S.; O’Brien, B.J.; Morgan, W.M.; McGuigan, M. Impact of neuromuscular fatigue on match exercise intensity and performance in elite Australian Football. J. Strength Cond. Res. 2013, 27, 166–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, D.G.; Mizuguchi, S.; Hornsby, W.G.; Cunanan, A.J.; Marsh, D.J.; Stone, M.H. Phase-specific changes in rate of force development and muscle morphology throughout a block periodized training cycle in weightlifters. Sports 2019, 7, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornsby, W.G.; Gentles, J.A.; MacDonald, C.J.; Mizuguchi, S.; Ramsey, M.W.; Stone, M.H. Maximum strength, rate of force development, jump height, and peak power alterations in weightlifters across five months of training. Sports 2017, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Norris, D.; Joyce, D.; Siegler, J.; Clock, J.; Lovell, R. Recovery of force–time characteristics after Australian rules football matches: Examining the utility of the isometric midthigh pull. Int. J. Sports Physiol. Perform. 2019, 14, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Dos’Santos, T.; Beckham, G.K.; Stone, M.H.; Guppy, S.N.; Haff, G.G. Standardization and methodological considerations for the isometric midthigh pull. Strength Cond. J. 2019, 41, 57–79. [Google Scholar] [CrossRef]
- Haff, G.G.; Ruben, R.P.; Lider, J.; Twine, C.; Cormie, P. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls. J. Strength Cond. Res. 2015, 29, 386–395. [Google Scholar] [CrossRef]
- James, L.P.; Roberts, L.A.; Haff, G.G.; Kelly, V.G.; Beckman, E.M. Validity and reliability of a portable isometric mid-thigh clean pull. J. Strength Cond. Res. 2017, 31, 1378–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, P.; Moody, J.; Cooper, S.M.; Kinsella, S.; Byrne, P. The reliability of countermovement jump performance and the reactive strength index in identifying drop-jump drop height in hurling players. J. Exerc. Sports Med. 2017, 1, 1–10. [Google Scholar]
- Gathercole, R.; Sporer, B.; Stellingwerff, T.; Sleivert, G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int. J. Sports Physiol. Perform. 2015, 10, 84–92. [Google Scholar] [CrossRef]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Kraemer, W.J.; Nosaka, K. Reliability of performance measurements derived from ground reaction force data during countermovement jump and the influence of sampling frequency. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cormack, S.J.; Newton, R.U.; McGuigan, M.R.; Doyle, T.L.A. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sports Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, W.G. Spreadsheets for analysis of validity and reliability. Sportscience 2017, 21, 36–44. [Google Scholar]
- Merrigan, J.J.; Stone, J.D.; Thompson, A.G.; Hornsby, W.G.; Hagen, J.A. Monitoring neuromuscular performance in military personnel. Int. J. Environ. Res. Public Health 2020, 17, 9147. [Google Scholar] [CrossRef]
- McMahon, J.J.; Suchomel, T.J.; Lake, J.P.; Comfort, P. Understanding the key phases of the countermovement jump force-time curve. Strength Cond. J. 2018, 40, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Chavda, S.; Bromley, T.; Jarvis, P.; Williams, S.; Bishop, C.; Turner, A.N.; Lake, J.P.; Mundy, P.D. Force-time characteristics of the countermovement jump: Analyzing the curve in Excel. Strength Cond. J. 2018, 40, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G. Measures of Reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Slinde, F.; Suber, C.; Suber, L.; Edwén, C.E.; Svantesson, U. Test-retest reliability of three different countermovement jumping tests. J. Strength Cond. Res. 2008, 22, 640–644. [Google Scholar] [CrossRef]
- Linthorne, N.P. Analysis of standing vertical jumps using a force platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
- Moir, G.L. Three different methods of calculating vertical jump height from force platform data in men and women. Meas Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- Watkins, C.M.; Barillas, S.R.; Wong, M.A.; Archer, D.C.; Dobbs, I.J.; Lockie, R.G.; Coburn, J.W.; Tran, T.T.; Brown, L.E. Determination of vertical jump as a measure of neuromuscular readiness and fatigue. J. Strength Cond. Res. 2017, 31, 3305–3310. [Google Scholar] [CrossRef] [PubMed]
- Kibele, A. Possibilities and limitations in the biomechanical analysis of countermovement jumps: A methodological study. J. Appl. Biomech. 1998, 14, 105–117. [Google Scholar] [CrossRef]
- Vanrenterghem, J.; De Clercq, D.; Cleven, P.V. Necessary precautions in measuring correct vertical jumping height by means of force plate measurements. Ergonomics 2001, 44, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: Impact of training. J. Strength Cond. Res. 2009, 23, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Ebben, W.P.; Petushek, E.J. Using the reactive strength index modified to evaluate plyometric performance. J. Strength Cond. Res. 2010, 24, 1983–1987. [Google Scholar] [CrossRef]
- Kipp, K.; Kiely, M.T.; Geiser, C.F. Reactive strength index modified is a valid measure of explosiveness in collegiate female volleyball players. J. Strength Cond. Res. 2016, 30, 1341–1347. [Google Scholar] [CrossRef] [Green Version]
- Meylan, C.; McMaster, T.; Cronin, J.; Mohammad, N.I.; Rogers, C.; Deklerk, M. Single-Leg lateral, horizontal, and vertical jump assessment: Reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J. Strength Cond. Res. 2009, 23, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Kraska, J.M.; Ramsey, M.W.; Haff, G.G.; Fethke, N.; Sands, W.A.; Stone, M.E.; Stone, M.H. Relationship between strength characteristics and unweighted and weighted vertical jump height. Int. J. Sports Physiol. Perform. 2009, 4, 461–473. [Google Scholar] [CrossRef] [Green Version]
- Scanlan, A.T.; Wen, N.; Guy, J.H.; Elsworthy, N.; Lastella, M.; Pyne, D.B.; Conte, D.; Dalbo, V.J. The isometric midthigh pull in basketball: An effective predictor of sprint and jump performance in male, adolescent players. Int. J. Sports Physiol. Perform. 2020, 15, 409–415. [Google Scholar] [CrossRef]
- Mcguigan, M.R.; Newton, M.J.; Winchester, J.B.; Nelson, A.G. Relationship between isometric and dynamic strength in recreationally trained men. J. Strength Cond. Res. 2010, 24, 2570–2573. [Google Scholar] [CrossRef]
- Thomas, C.; Jones, P.A.; Rothwell, J.; Chiang, C.Y.; Comfort, P. An investigation into the relationship between maximum isometric strength and vertical jump performance. J. Strength Cond. Res. 2015, 29, 2176–2185. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Jones, P.A.; Hornsby, W.G. Structured testing vs. continual monitoring. In Performance Assessment in Strength and Conditioning; Routledge: Milton Park, UK, 2018; pp. 42–50. [Google Scholar]
Trial 1 Mean ± SD | Trial 2 Mean ± SD | %CV (LCI, UCI) | ICC (LCI, UCI) | SEM (LCI, UCI) | |
---|---|---|---|---|---|
Dip Depth (cm) | −30.57 ± 8.48 | −31.23 ± 9.82 | 7.66 | 0.90 | 2.91 |
(5.00, 10.32) | (0.87, 0.93) | (2.50, 3.33) | |||
ECC Braking Impulse (Ns) | 60.84 ± 72.54 | 60.11 ± 67.76 | 14.53 | 0.98 | 8.92 |
(11.36, 17.70) | (0.98, 0.99) | (7.72, 10.11) | |||
ECC Braking RFD (N∙s−1) | 4780 ± 2060 | 4924 ± 2446 | 10.86 | 0.87 | 815.1 |
(9.26, 12.45) | (0.83, 0.90) | (697.2, 933.0) | |||
ECC Decel. Impulse (Ns) | 95.56 ± 50.31 | 95.26 ± 51.46 | 6.34 | 0.98 | 7.65 |
(4.13, 8.55) | (0.97, 0.98) | (6.54, 8.75) | |||
ECC Decel. RFD (N∙s−1) | 5661 ± 2890 | 5841 ± 3256 | 10.38 | 0.87 | 815.1 |
(8.56, 12.20) | (0.83, 0.90) | (697.2, 933.0) | |||
ECC Duration (ms) | 479.3 ± 76.0 | 479.2 ± 93.7 | 6.41 | 0.76 | 41.61 |
(4.50, 8.31) | (0.60, 0.82) | (35.77, 47.45) | |||
ECC Mean Braking Force (N) | 843.8 ± 193.2 | 846.6 ± 199.2 | 3.38 | 0.96 | 40.97 |
(2.71, 4.05) | (0.94, 0.97) | (35.33, 46.61) | |||
ECC Mean Decel. Force (N) | 1222 ± 309 | 1224 ± 329 | 3.43 | 0.96 | 64.14 |
(2.71, 4.15) | (0.95, 0.97) | (55.08, 73.20) | |||
ECC Mean Force (N) | 689.9 ± 149.7 | 689.8 ± 149.6 | 0.06 | 0.99 | 0.648 |
(0.05, 0.08) | (0.99, 0.99) | (0.557, 0.739) | |||
ECC Mean Power (W) | 438.0 ± 142.1 | 442.5 ± 151.1 | 6.83 | 0.93 | 39.98 |
(4.74, 8.92) | (0.90, 0.95) | (34.30, 45.66) | |||
ECC Peak Force (N) | 1573 ± 406 | 1584 ± 429 | 3.34 | 0.97 | 78.17 |
(2.70, 3.97) | (0.95, 0.97) | (67.49, 88.86) | |||
ECC Peak Power (W) | 1223 ± 525 | 1239 ± 602 | 9.24 | 0.98 | 121.1 |
(6.74, 11.74) | (0.98, 0.99) | (102.7, 139.5) | |||
ECC Peak Velocity (m∙s−1) | −1.23 ± 0.30 | −1.23 ± 0.33 | 6.26 | 0.87 | 0.112 |
(4.04, 8.47) | (0.83, 0.91) | (0.095, 0.129) |
Trial 1 Mean ± SD | Trial 2 Mean ± SD | %CV (LCI, UCI) | ICC (LCI, UCI) | SEM (LCI, UCI) | |
---|---|---|---|---|---|
CON Duration (ms) | 2.80 ± 0.50 | 2.86 ± 0.58 | 4.67 | 0.88 | 19.50 |
(3.84, 5.49) | (0.84, 0.91) | (16.80, 22.19) | |||
CON Impulse (Ns) | 158.46 ± 45.23 | 158.77 ± 45.82 | 1.62 | 0.98 | 5.94 |
(1.03, 2.20) | (0.98, 0.99) | (4.93, 6.94) | |||
CON Mean Force (N) | 1273 ± 319 | 1265 ± 321 | 2.15 | 0.99 | 36.30 |
(1.81, 2.48) | (0.98, 0.99) | (31.83, 40.76) | |||
CON Mean Power (W) | 1633 ± 544 | 1630.7 ± 553 | 3.20 | 0.98 | 77.78 |
(2.55, 3.86) | (0.97, 0.99) | (66.85, 88.71) | |||
CON Peak Force (N) | 1605 ± 407 | 1612 ± 418 | 2.91 | 0.98 | 63.84 |
(2.44, 3.37) | (0.97, 0.98) | (55.77, 71.92) | |||
CON Peak Velocity (m∙s−1) | 2.38 ± 0.26 | 2.38 ± 0.28 | 1.44 | 0.89 | 0.091 |
(0.89, 1.99) | (0.85, 0.92) | (0.075, 0.106) | |||
CON RFD (N∙s−1) | 720 ± 1138 | 759 ± 1244 | 76.45 | 0.57 | 783.4 |
(66.86, 86.03) | (0.45, 0.66) | (662.6, 904.3) | |||
CON RPD (W∙s−1) | 14,673 ± 6521 | 14,308 ± 6599 | 7.15 | 0.95 | 1552 |
(6.08, 8.21) | (0.93, 0.96) | (1342, 1762) | |||
Jump Height (Flight) (cm) | 27.30 ± 6.41 | 27.46 ± 6.36 | 2.92 | 0.97 | 1.03 |
(2.49, 3.35) | (0.96, 0.98) | (0.905, 1.15) | |||
Jump Height (Imp-Dis) (cm) | 26.01 ± 6.40 | 26.17 ± 7.09 | 3.21 | 0.87 | 2.44 |
(2.09, 4.33) | (0.82, 0.90) | (2.01, 2.87) | |||
Jump Height (Imp-Mom) (cm) | 25.96 ± 6.39 | 26.13 ± 7.09 | 3.20 | 0.87 | 2.44 |
(2.08, 4.33) | (0.83, 0.90) | (2.01, 2.87) | |||
Lower Limb Stiffness (N∙m−1) | 4971 ± 3081 | 6181 ± 10,643 | 10.21 | 0.35 | 6345 |
(7.59, 12.82) | (0.21, 0.48) | (5176, 7515) | |||
Peak Power (W) | 2979 ± 972 | 2955 ± 982 | 2.48 | 0.98 | 121.1 |
(1.88, 3.08) | (0.98, 0.99) | (102.7, 139.5) | |||
RSI-modified (m∙s−1) | 0.37 ± 0.11 | 0.37 ± 0.12 | 5.81 | 0.91 | 0.036 |
(4.87, 6.75) | (0.87, 0.93) | (0.031, 0.041) |
Trial 1 Mean ± SD | Trial 2 Mean ± SD | %CV (LCI, UCI) | ICC (LCI, UCI) | SEM (LCI, UCI) | |
---|---|---|---|---|---|
Absolute Impulse 50 ms (Ns) | 46.0 ± 16.7 | 45.1 ± 12.6 | 7.0 | 0.67 | 8.55 |
(5.1, 9.0) | (0.57, 0.74) | (7.09, 10.01) | |||
Absolute Impulse 100 ms (Ns) | 101.2 ± 38.4 | 100.4 ± 31.7 | 7.4 | 0.76 | 17.31 |
(5.6, 9.2) | (0.68, 0.82) | (14.44, 20.17) | |||
Absolute Impulse 150 ms (Ns) | 170.4 ± 67.9 | 170.1 ± 59.7 | 8.2 | 0.83 | 26.677 |
(6.6, 9.9) | (0.77, 0.87) | (22.53, 30.82) | |||
Absolute Impulse 200 ms (Ns) | 253.5 ± 102.9 | 253.8 ± 92.8 | 8.5 | 0.87 | 34.98 |
(6.0, 10.0) | (0.83, 0.91) | (29.99, 40.06) | |||
Force at 50 ms (N) | 983.9 ± 374.4 | 972.2 ± 297.1 | 7.1 | 0.72 | 178.1 |
(5.3, 9.0) | (0.64, 0.79) | (148.0, 208.2) | |||
Force at 100 ms (N) | 1243.0 ± 539.9 | 1251.3 ± 502.3 | 9.9 | 0.84 | 210.1 |
(8.2, 11.7) | (0.78, 0.88) | (179.5, 240.7) | |||
Force at 150 ms (N) | 1524.3 ± 678.9 | 1536.2 ± 640.5 | 10.2 | 0.90 | 207.3 |
(8.6, 11.8) | (0.87, 0.93) | (181.0, 233.6) | |||
Force at 200 ms (N) | 1793.6 ± 775.0 | 1807.3 ± 714.7 | 9.5 | 0.92 | 211.2 |
(8.0, 11.0) | (0.89, 0.94) | (185.9, 236.4) | |||
Net Force at 50 ms (N) | 99.5 ± 100.3 | 105.7 ± 103.7 | 28.4 | 0.75 | 51.34 |
(24.7, 32.1) | (0.67, 0.81) | (43.54, 59.13) | |||
Net Force at 100 ms (N) | 358.7 ± 314.0 | 384.8 ± 348.9 | 31.4 | 0.82 | 140.9 |
(27.0, 35.8) | (0.76, 0.87) | (122.6, 159.1) | |||
Net Force at 150 ms (N) | 640.0 ± 480.1 | 669.7 ± 486.4 | 26.7 | 0.86 | 181.0 |
(22.7, 30.8) | (0.81, 090) | (159.4, 202.6) | |||
Net Force at 200 ms (N) | 909.3 ± 591.6 | 940.8 ± 554.9 | 22.2 | 0.87 | 206.4 |
(18.5, 25.9) | (0.83, 0.90 | (181.6, 231.2) | |||
Net Peak Vertical Force (N) | 1905.9 ± 805.1 | 1949.8 ± 818.1 | 7.1 | 0.94 | 192.1 |
(5.7, 8.5) | (0.93, 0.96) | (164.5, 219.9) | |||
Peak Vertical Force (N) | 2790.2 ± 984.6 | 2816.3 ± 983.7 | 3.5 | 0.99 | 116.1 |
(3.0, 4.1) | (0.98, 0.99) | (102.6, 129.7) | |||
Start Time to Peak Force (s) | 2.61 ± 1.30 | 2.57 ± 1.41 | 31.2 | 0.48 | 0.97 |
(26.8, 35.6) | (0.36, 0.60) | (0.86, 1.09) |
Trial 1 Mean ± SD | Trial 2 Mean ± SD | %CV (LCI, UCI) | ICC (LCI, UCI) | SEM (LCI, UCI) | |
---|---|---|---|---|---|
RFD 30 ms (N∙s−1) | 1307.5 ± 2020.9 | 1229.9 ± 986.5 | 26.6 | 0.41 | 1216.1 |
(23.0, 30.3) | (0.28, 0.54) | (1000.7, 1431.5) | |||
RFD 50 ms (N∙s−1) | 1990.2 ± 2006.1 | 2113.7 ± 2075.0 | 28.4 | 0.75 | 1026.85 |
(24.6, 32.1) | (0.67, 0.81) | (870.86, 1182.8) | |||
RFD 50–100 ms (N∙s−1) | 5182.3 ± 4577.9 | 5582.7 ± 4995.1 | 35.4 | 0.81 | 2121.8 |
(30.3, 40.5) | (0.74, 0.85) | (1856.1, 2387.5) | |||
RFD 100 ms (N∙s−1) | 3586.3 ± 3140.1 | 3848.2 ± 3489.3 | 31.4 | 0.82 | 1408.6 |
(27.0, 35.9) | (0.76, 0.87) | (1226.1, 1591.1) | |||
RFD 100–150 ms (N∙s−1) | 5626.6 ± 3969.9 | 5696.2 ± 3485.0 | 28.9 | 0.73 | 1934.1 |
(23.8, 34.0) | (0.65, 0.80) | (1670.0, 2198.3) | |||
RFD 150 ms (N∙s−1) | 4266.4 ± 3200.7 | 4461.1 ± 3227.6 | 26.8 | 0.86 | 1203.9 |
(22.7, 30.8) | (0.81, 0.90) | (1060.1, 1347.7) | |||
RFD 150–200 ms (N∙s−1) | 5385.0 ± 2888.7 | 5466.0 ± 2790.8 | 28.1 | 0.64 | 1706.6 |
(23.5, 32.7) | (0.70, 0.84) | (1496.6, 1916.5) | |||
RFD 200 ms (N∙s−1) | 4546.1 ± 2957.8 | 4703.8 ± 2774.3 | 22.2 | 0.87 | 1031.70 |
(18.5, 25.9) | (0.83, 0.90) | (908.08, 1155.3) |
Force at 50 ms (N/kg) | Force at 100 ms (N/kg) | Force at 150 ms (N/kg) | Force at 200 ms (N/kg) | Peak Force (N/kg) | |
---|---|---|---|---|---|
Concentric Mean Power (W/kg) | 0.26 * | 0.42 * | 0.44 * | 0.44 * | 0.43 * |
Concentric Peak Force (N/kg) | 0.22 * | 0.35 * | 0.37 * | 0.38 * | 0.35 * |
Eccentric Mean Power (W/kg) | 0.08 | 0.16 | 0.15 | 0.15 | 0.18 |
Eccentric Peak Force (N/kg) | 0.20 * | 0.34 * | 0.35 * | 0.36 * | 0.36 * |
Jump Height (Imp-Mom) (cm) | 0.23 * | 0.39 * | 0.40 * | 0.41 * | 0.46 * |
RSI-modified (m/s) | 0.27 * | 0.41 * | 0.43 * | 0.42 * | 0.35 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merrigan, J.J.; Stone, J.D.; Hornsby, W.G.; Hagen, J.A. Identifying Reliable and Relatable Force–Time Metrics in Athletes—Considerations for the Isometric Mid-Thigh Pull and Countermovement Jump. Sports 2021, 9, 4. https://doi.org/10.3390/sports9010004
Merrigan JJ, Stone JD, Hornsby WG, Hagen JA. Identifying Reliable and Relatable Force–Time Metrics in Athletes—Considerations for the Isometric Mid-Thigh Pull and Countermovement Jump. Sports. 2021; 9(1):4. https://doi.org/10.3390/sports9010004
Chicago/Turabian StyleMerrigan, Justin J., Jason D. Stone, W. Guy Hornsby, and Joshua A. Hagen. 2021. "Identifying Reliable and Relatable Force–Time Metrics in Athletes—Considerations for the Isometric Mid-Thigh Pull and Countermovement Jump" Sports 9, no. 1: 4. https://doi.org/10.3390/sports9010004
APA StyleMerrigan, J. J., Stone, J. D., Hornsby, W. G., & Hagen, J. A. (2021). Identifying Reliable and Relatable Force–Time Metrics in Athletes—Considerations for the Isometric Mid-Thigh Pull and Countermovement Jump. Sports, 9(1), 4. https://doi.org/10.3390/sports9010004