Altered Drop Jump Landing Biomechanics Following Eccentric Exercise-Induced Muscle Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. EIMD Protocol
2.4. Indicators of Muscle Damage
2.5. Data Collection and DVJ Task
2.6. Data Analyses
2.7. Statistical Analyses
3. Results
3.1. Muscle Damage Indicators
3.2. DVJ Biomechanical Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shimokochi, Y.; Shultz, S.J. Mechanisms of noncontact anterior cruciate ligament injury. J. Athl. Train. 2008, 43, 396–408. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Paterno, M.V.; Quatman, C.E. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. J. Orthop. Res. 2016, 34, 1843–1855. [Google Scholar] [CrossRef] [Green Version]
- Decker, M.J.; Torry, M.R.; Wyland, D.J.; Sterett, W.I.; Steadman, J.R. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin. Biomech. 2003, 18, 662–669. [Google Scholar] [CrossRef]
- Lazaridis, S.; Patikas, D.A.; Bassa, E.; Tsatalas, T.; Hatzikotoulas, K.; Ftikas, C.; Kotzamanidis, C. The acute effects of an intense stretch-shortening cycle fatigue protocol on the neuromechanical parameters of lower limbs in men and prepubescent boys. J. Sports Sci. 2018, 36, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Smeets, A.; Vanrenterghem, J.O.S.; Staes, F.; Vandenneucker, H.; Claes, S.; Verschueren, S. Are Anterior Cruciate Ligament-reconstructed Athletes More Vulnerable to Fatigue than Uninjured Athletes? Med. Sci. Sports Exerc. 2020, 52, 345–353. [Google Scholar] [CrossRef]
- Kellis, E.; Kouvelioti, V. Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing. J. Electromyogr. Kinesiol. 2009, 19, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Leppänen, M.; Pasanen, K.; Kujala, U.M.; Vasankari, T.; Kannus, P.; Äyrämö, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.; et al. Stiff Landings Are Associated with Increased ACL Injury Risk in Young Female Basketball and Floorball Players. Am. J. Sports Med. 2017, 45, 386–393. [Google Scholar] [CrossRef]
- Westin, B.S.D.; Noyes, F.R. Effect of Fatigue Protocols on Lower Limb Neuromuscular Function and Implications for Anterior Cruciate Ligament Injury Prevention Training: A Systematic Review. Am. J. Sports Med. 2017, 45, 3388–3396. [Google Scholar] [CrossRef]
- Benjaminse, A.; Webster, K.E.; Kimp, A.; Meijer, M.; Gokeler, A. Revised Approach to the Role of Fatigue in Anterior Cruciate Ligament Injury Prevention: A Systematic Review with Meta-Analyses. Sports Med. 2019, 49, 565–586. [Google Scholar] [CrossRef] [Green Version]
- Leppänen, M.; Pasanen, K.; Krosshaug, T.; Kannus, P.; Vasankari, T.; Kujala, U.M.; Bahr, R.; Perttunen, J.; Parkkari, J. Sagittal Plane Hip, Knee, and Ankle Biomechanics and the Risk of Anterior Cruciate Ligament Injury: A Prospective Study. Orthop. J. Sports Med. 2017, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.R.; Rumpf, M.C.; Hertzog, M.; Castagna, C.; Farooq, A.; Girard, O.; Hader, K. Acute and Residual Soccer Match-Related Fatigue: A Systematic Review and Meta-analysis. Sports Med. 2018, 48, 539–583. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Neubauer, O.; Gatta, P.A.D.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Twist, C.; Eston, R. Neuromuscular Function after Exercise-Induced Muscle Damage: Theoretical and Applied Implications. Sports Med. 2004, 34, 49–69. [Google Scholar] [CrossRef]
- Carling, C.; McCall, A.; Gall, F.; Dupont, G. The impact of short periods of match congestion on injury risk and patterns in an elite football club. Br. J. Sports Med. 2016, 50, 764–768. [Google Scholar] [CrossRef]
- Dupont, G.; Nedelec, M.; McCall, A.; McCormack, D.; Berthoin, S.; Wisløff, U. Effect of 2 soccer matches in a week on physical performance and injury rate. Am. J. Sports Med. 2010, 38, 1752–1758. [Google Scholar] [CrossRef]
- Chen, T.C.; Nosaka, K.; Lin, M.J.; Chen, H.L.; Wu, C.J. Changes in running economy at different intensities following downhill running. J. Sports Sci. 2009, 27, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Braun, W.A.; Dutto, D.J. The effects of a single bout of downhill running and ensuing delayed onset of muscle soreness on running economy performed 48 h later. Eur. J. Appl. Physiol. 2003, 90, 29–34. [Google Scholar] [CrossRef]
- Tsatalas, T.; Giakas, G.; Spyropoulos, G.; Sideris, V.; Lazaridis, S.; Kotzamanidis, C.; Koutedakis, Y. The effects of eccentric exercise-induced muscle damage on running kinematics at different speeds. J. Sports Sci. 2013, 31, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, G.; Tsatalas, T.; Tsaopoulos, D.E.; Sideris, V.; Giakas, G. Biomechanics of sit-to-stand transition after muscle damage. Gait Posture 2013, 38, 62–67. [Google Scholar] [CrossRef]
- Paquette, M.R.; Peel, S.A.; Schilling, B.K.; Melcher, D.A.; Bloomer, R.J. Soreness-related changes in three-dimensional running biomechanics following eccentric knee extensor exercise. Eur. J. Sport Sci. 2017, 17, 546–554. [Google Scholar] [CrossRef]
- Morio, C.; Nicol, C.; Barla, C.; Barthèlemy, J.; Berton, E. Acute and 2 days delayed effects of exhaustive stretch-shortening cycle exercise on barefoot walking and running patterns. Eur. J. Appl. Physiol. 2012, 112, 2817–2827. [Google Scholar] [CrossRef]
- Snyder, B.J.; Hutchison, R.E.; Mills, C.J.; Parsons, S.J. Effects of Two Competitive Soccer Matches on Landing Biomechanics in Female Division I Soccer Players. Sports 2019, 7, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschalis, V.; Giakas, G.; Baltzopoulos, V.; Jamurtas, A.Z.; Theoharis, V.; Kotzamanidis, C.; Koutedakis, Y. The effects of muscle damage following eccentric exercise on gait biomechanics. Gait Posture 2007, 25, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Nosaka, K.; Tu, J.H. Changes in running economy following downhill running. J. Sports Sci. 2007, 25, 55–63. [Google Scholar] [CrossRef]
- Satkunskiene, D.; Kamandulis, S.; Brazaitis, M.; Snieckus, A.; Skurvydas, A. Effect of high volume stretch-shortening cycle exercise on vertical leg stiffness and jump performance. Sports Biomech. 2018. [Google Scholar] [CrossRef]
- Nicol, C. Reduced stretch-reflex sensitivity after exhausting stretch-shortening cycle exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 72, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Horita, T. Stretch shortening cycle fatigue: Interactions among joint stiness, reflex, and muscle mechanical performance in the drop jump. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 393–403. [Google Scholar] [CrossRef]
- Tsatalas, T.; Giakas, G.; Spyropoulos, G.; Sideris, V.; Kotzamanidis, C.; Koutedakis, Y. Walking kinematics and kinetics following eccentric exercise-induced muscle damage. J. Electromyogr. Kinesiol. 2013, 23, 1229–1236. [Google Scholar] [CrossRef]
- Deli, C.K.; Fatouros, I.G.; Paschalis, V.; Georgakouli, K.; Zalavras, A.; Avloniti, A.; Koutedakis, Y.; Jamurtas, A.Z. A comparison of exercise-induced muscle damage following maximal eccentric contractions in men and boys. Pediatr. Exerc. Sci. 2017, 29, 316–325. [Google Scholar] [CrossRef]
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doma, K.; Leicht, A.; Sinclair, W.; Schumann, M.; Damas, F.; Burt, D.; Woods, C. Impact of exercise-induced muscle damage on performance test outcomes in elite female basketball players. J. Strength Cond. Res. 2018, 32, 1731–1738. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Fu, S.N.; Zhou, D.; Huang, C.; Hug, F. Relationship between pre-exercise muscle stiffness and muscle damage induced by eccentric exercise. Eur. J. Sport Sci. 2019, 19, 508–516. [Google Scholar] [CrossRef]
- Tsatalas, T.; Giakas, G.; Spyropoulos, G.; Paschalis, V.; Nikolaidis, M.G.; Tsaopoulos, D.E.; Theodorou, A.A.; Jamurtas, A.Z.; Koutedakis, Y. The effects of muscle damage on walking biomechanics are speed-dependent. Eur. J. Appl. Physiol. 2010, 110, 977–988. [Google Scholar] [CrossRef]
- Kay, A.D.; Rubley, B.; Talbot, C.; Mina, M.; Baross, A.W.; Blazevich, A.J. Stretch imposed on active muscle elicits positive adaptations in strain risk factors and exercise-induced muscle damage. Scand. J. Med. Sci. Sports 2018, 28, 2299–2309. [Google Scholar] [CrossRef] [Green Version]
- Ehrig, R.M.; Taylor, W.R.; Duda, G.N.; Heller, M.O. A survey of formal methods for determining the centre of rotation of ball joints. J. Biomech. 2006, 39, 2798–2809. [Google Scholar] [CrossRef]
- Ehrig, R.M.; Taylor, W.R.; Duda, G.N.; Heller, M.O. A survey of formal methods for determining functional joint axes. J. Biomech. 2007, 40, 2150–2157. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; Bogert, V.D.A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Kristianslund, E.; Krosshaug, T.; Bogert, V.D.A.J. Effect of low pass filtering on joint moments from inverse dynamics: Implications for injury prevention. J. Biomech. 2012, 45, 666–671. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.T. Changes in biomechanical properties during drop jumps of incremental height. J. Strength Cond. Res. 2011, 25, 2510–2518. [Google Scholar] [CrossRef]
- Chiu, L.Z.F.; Salem, G.J. Pelvic kinematic method for determining vertical jump height. J. Appl. Biomech. 2010, 26, 508–511. [Google Scholar] [CrossRef]
- Vita, D.P.; Skelly, W.A. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med. Sci. Sports Exerc. 1992, 24, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Favre, J.; Clancy, C.; Dowling, A.V.; Andriacchi, T.P. Modification of knee flexion angle has patient-specific effects on anterior cruciate ligament injury risk factors during jump landing. Am. J. Sports Med. 2016, 44, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Kellis, E.; Zafeiridis, A.; Amiridis, L.G. Muscle coactivation before and after the impact phase of running following isokinetic fatigue. J. Athl. Train. 2011, 46, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Derrick, T.R. The Effects of Knee Contact Angle on Impact Forces and Accelerations. Med. Sci. Sports Exerc. 2004, 36, 832–837. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J. Altering the length-tension relationship with eccentric exercise: Implications for performance and injury. Sports Med. 2007, 37, 807–826. [Google Scholar] [CrossRef]
- Butler, R.J.; Crowell, H.P., III; Davis, I.M. Lower extremity stiffness: Implications for performance and injury. Clin. Biomech. 2003, 18, 511–517. [Google Scholar] [CrossRef]
- Henriksen, M.; Alkjær, T.; Lund, H.; Simonsen, E.B.; Nielsen, G.T.; Samsøe, D.B.; Bliddal, H. Experimental quadriceps muscle pain impairs knee joint control during walking. J. Appl. Physiol. 2007, 103, 132–139. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Ford, K.R.; Quatman, C.E.; Geli, A.E.; Hewett, T.E. Sex differences in proximal control of the knee joint. Sports Med. 2011, 41, 541–557. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Myer, G.D. The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc. Sport Sci. Rev. 2011, 39, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Pollard, C.D.; Sigward, S.M.; Powers, C.M. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin. Biomech. 2010, 25, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, J.T.; Padua, D.A. Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity. J. Athl. Train. 2009, 44, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Kuitunen, S.; Avela, J.; Kyröläinen, H.; Nicol, C.; Komi, P.V. Acute and prolonged reduction in joint stiffness in humans after exhausting stretch-shortening cycle exercise. Eur. J. Appl. Physiol. 2002, 88, 107–116. [Google Scholar] [CrossRef]
- Damas, F.; Nosaka, K.; Libardi, C.A.; Chen, T.C.; Ugrinowitsch, C. Susceptibility to Exercise-Induced Muscle Damage: A Cluster Analysis with a Large Sample. Int. J. Sports Med. 2016, 37, 633–640. [Google Scholar] [CrossRef] [PubMed]
−72 h | −24 h | 0 h | +24 h | +48 h | |
---|---|---|---|---|---|
Eccentric exercise | X | ||||
DVJ biomechanics | X | X | |||
Isometric peak torque | X | X * | X | X | |
DOMS | X | X | X | X | |
CK activity | X | X |
Muscle Damage Indicators | 0 h | Immediately After | +24 h | +48 h |
---|---|---|---|---|
IPT extensors (%) | 100 ± 0 | 75.4 ± 7.0 * | 79.7 ± 10.6 * | 80.5 ± 9.9 * |
CK (U/L) | 202 ± 125 | NM | NM | 2040 ± 1306 * |
DOMS extensors | 0 ± 0 | NM | 5.5 ± 1.3 * | 6.7 ± 1.6 * |
0 h | +48 h | p | |
---|---|---|---|
Peak vertical GRF during landing phase (% BW) | 2.04 ± 0.37 | 1.79 ± 0.33 * | <0.05 |
Peak vertical GRF during propulsion phase (% BW) | 1.89 ± 0.32 | 1.58 ± 0.25 * | <0.05 |
Pelvic anterior tilt at initial contact (°) | 17.31 ± 4.4 | 20.19 ± 7.8 | NS |
Peak anterior pelvic tilt during landing phase (°) | 19.74 ± 5.9 | 25.16 ± 6.9 * | <0.05 |
Hip flexion angle at initial contact (°) | 43.39 ± 6.4 | 44.49 ± 7.5 | NS |
Peak hip flexion angle during landing phase (°) | 61.18 ± 10.5 | 69.38 ± 10.3 * | <0.05 |
Peak hip extension moment during landing phase (Nm/kg) | 2.46 ± 0.69 | 2.41 ± 0.51 | NS |
Peak hip power absorption during landing phase (W/kg) | −10.8 ± 5.5 | −10.4 ± 4.2 | NS |
Peak hip power generation during propulsion phase (W/kg) | 5.6 ± 1.8 | 6.4 ± 1.7 | NS |
Knee flexion angle at initial contact (°) | 41.61 ± 5.9 | 40.37 ± 7.4 | NS |
Peak knee flexion angle during landing phase (°) | 84.15 ± 6.2 | 88.66 ± 6.9 * | <0.05 |
Peak knee extension moment during landing phase (Nm/kg) | 3.02 ± 0.44 | 2.53 ± 0.53 * | <0.05 |
Peak knee power absorption during landing phase (W/kg) | −20.65 ± 3.9 | −17.06 ± 4.2 * | <0.05 |
Peak knee power generation during propulsion phase (W/kg) | 18.19 ± 2.9 | 14.76 ± 3.9 * | <0.05 |
Ankle angle at initial contact (°) | −4.07 ± 8.6 | −9.02 ± 6.7 | NS |
Peak ankle angle during landing phase (°) | 37.69 ± 4.2 | 35.51 ± 3.1 | NS |
Peak ankle moment during landing phase (Nm/kg) | 2.20 ± 0.64 | 1.97 ± 0.35 | NS |
Peak ankle power absorption during landing phase (W/kg) | −12.93 ± 4.3 | −11.66 ± 3.2 | NS |
Peak ankle power generation during propulsion phase (W/kg) | 17.38 ± 3.0 | 13.62 ± 2.7 * | <0.05 |
Knee joint stiffness (Nm/kg∙deg) | 0.077 ± 0.03 | 0.055 ± 0.02 * | <0.05 |
Total contact phase duration (ms) | 313.2 ± 60.7 | 381.7 ± 76.6 * | <0.05 |
Landing phase duration (ms) | 134.4 ± 35.4 | 173.3 ± 44.1 * | <0.05 |
Propulsion phase duration (ms) | 178.8 ± 28.1 | 208.4 ± 35.7 * | <0.05 |
Jump height (cm) | 33.38 ± 1.21 | 32.15 ± 1.4 * | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsatalas, T.; Karampina, E.; Mina, M.A.; Patikas, D.A.; Laschou, V.C.; Pappas, A.; Jamurtas, A.Z.; Koutedakis, Y.; Giakas, G. Altered Drop Jump Landing Biomechanics Following Eccentric Exercise-Induced Muscle Damage. Sports 2021, 9, 24. https://doi.org/10.3390/sports9020024
Tsatalas T, Karampina E, Mina MA, Patikas DA, Laschou VC, Pappas A, Jamurtas AZ, Koutedakis Y, Giakas G. Altered Drop Jump Landing Biomechanics Following Eccentric Exercise-Induced Muscle Damage. Sports. 2021; 9(2):24. https://doi.org/10.3390/sports9020024
Chicago/Turabian StyleTsatalas, Themistoklis, Evangeli Karampina, Minas A. Mina, Dimitrios A. Patikas, Vasiliki C. Laschou, Aggelos Pappas, Athanasios Z. Jamurtas, Yiannis Koutedakis, and Giannis Giakas. 2021. "Altered Drop Jump Landing Biomechanics Following Eccentric Exercise-Induced Muscle Damage" Sports 9, no. 2: 24. https://doi.org/10.3390/sports9020024
APA StyleTsatalas, T., Karampina, E., Mina, M. A., Patikas, D. A., Laschou, V. C., Pappas, A., Jamurtas, A. Z., Koutedakis, Y., & Giakas, G. (2021). Altered Drop Jump Landing Biomechanics Following Eccentric Exercise-Induced Muscle Damage. Sports, 9(2), 24. https://doi.org/10.3390/sports9020024