Fatigue-Induced Inter-Limb Asymmetries in Strength of the Hip Stabilizers, Postural Control and Gait Following a Unilateral Countermovement Vertical Jump Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Isometric Strength of the Hip Stabilizers
2.2.2. Assessment of Postural Control
2.2.3. Stance-Phase-of-Gait Assessment
2.3. Design and Procedure
2.4. Statistical Analysis
3. Results
3.1. Effect of the UCVJ on the Isometric Strength of the Hip Stabilizers
3.2. Effect of the UCVJ on Postural Control during the Y-Balance Test
3.3. Effect of the UCVJ on the Stance-Phase-of-Gait
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parrington, L.; Ball, K. Biomechanical considerations of laterality in sport. In Laterality in Sports: Theories and Applications; Loffing, F., Hagemann, N., Strauss, B., MacMahon, C., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 279–308. [Google Scholar]
- Newton, R.U.; Gerber, A.; Nimphius, S.; Shim, J.K.; Doan, B.K.; Robertson, M.; Pearson, D.R.; Craig, B.W.; Häkkinen, K.; Kraemer, W.J. Determination of Functional Strength Imbalance of the Lower Extremities. J. Strength Cond. Res. 2006, 20, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maloney, S.J. The Relationship between Asymmetry and Athletic Performance. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Bishop, C.; Buscà, B.; Aguilera-Castells, J.; Vicens-Bordas, J.; Gonzalo-Skok, O. Inter-limb asymmetries are associated with decrements in physical performance in youth elite team sports athletes. PLoS ONE 2020, 15, e0229440. [Google Scholar] [CrossRef] [Green Version]
- Heil, J.; Loffing, F.; Büsch, D. The Influence of Exercise-Induced Fatigue on Inter-Limb Asymmetries: A Systematic Review. Sport Med. Open 2020, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; McAuley, W.; Read, P.; Gonzalo-Skok, O.; Lake, J.; Turner, A. Acute Effect of Repeated Sprints on Interlimb Asymmetries During Unilateral Jumping. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Delextrat, A.; Baker, J.; Cohen, D.D.; Clarke, N.D. Effect of a simulated soccer match on the functional hamstrings-to-quadriceps ratio in amateur female players. Scand. J. Med. Sci. Sports 2013, 23, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Bromley, T.; Turner, A.; Read, P.; Lake, J.; Maloney, S.; Chavda, S.; Bishop, C. Effects of a Competitive Soccer Match on Jump Performance and Interlimb Asymmetries in Elite Academy Soccer Players. J. Strength Cond. Res. 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.B.; Hanley, B. Gait variability and symmetry in world-class senior and junior race walkers. J. Sports Sci. 2017, 35, 1739–1744. [Google Scholar] [CrossRef]
- Hanley, B.; Tucker, C.B. Gait variability and symmetry remain consistent during high-intensity 10,000 m treadmill running. J. Biomech. 2018, 79, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Powers, C.M. The influence of abnormal hip mechanics on knee injury: A biomechanical perspective. J. Orthop. Sport Phys. Ther. 2010, 40, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cichanowski, H.R.; Schmitt, J.S.; Johnson, R.J.; Niemuth, P.E. Hip strength in collegiate female athletes with patellofemoral pain. Med. Sci. Sport Exerc. 2007, 39, 1227–1232. [Google Scholar] [CrossRef]
- Friel, K.; McLean, N.; Myers, C.; Caceres, M. Ipsilateral hip abductor weakness after inversion ankle sprain. J. Athl. Train. 2006, 41, 74–78. [Google Scholar] [PubMed]
- Karandikar, N.; Vargas, O.O.O. Kinetic Chains: A review of the concept and its clinical applications. PM&R 2011, 3, 739–745. [Google Scholar] [CrossRef]
- Cashman, G.E. The effect of weak hip abductors or external rotators on knee valgus kinematics in healthy subjects: A systematic review. J. Sport Rehabil. 2012, 21, 273–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiser, C.F.; O’Connor, K.M.; Earl, J.E. Effects of isolated hip abductor fatigue on frontal plane knee mechanics. Med. Sci. Sport Exerc. 2010, 42, 535–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gribble, P.A.; Hertel, J. Effect of hip and ankle muscle fatigue on unipedal postural control. J. Electromyogr. Kinesiol. 2004, 14, 641–646. [Google Scholar] [CrossRef]
- Hwang, W.; Jang, J.H.; Huh, M.; Kim, Y.J.; Kim, S.W.; Hong, I.U.; Lee, M.Y. The effect of hip abductor fatigue on static balance and gait parameters. Phys. Ther. Rehabil. Sci. 2016, 5, 34–39. [Google Scholar] [CrossRef]
- Arvin, M.; Hoozemans, M.J.M.; Burger, B.J.; Rispens, S.M.; Verschueren, S.M.P.; van Dieën, J.H.; Pijnappels, M. Effects of hip abductor muscle fatigue on gait control and hip position sense in healthy older adults. Gait Posture 2015, 42, 545–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimer, R.C.; Wikstrom, E.A. Functional fatigue of the hip and ankle musculature cause similar alterations in single leg stance postural control. J. Sci. Med. Sport 2010, 13, 161–166. [Google Scholar] [CrossRef]
- Coventry, E.; O’Connor, K.M.; Hart, B.A.; Earl, J.E.; Ebersole, K.T. The effect of lower extremity fatigue on shock attenuation during single-leg landing. Clin. Biomech. 2006, 21, 1090–1097. [Google Scholar] [CrossRef]
- Chelly, M.S.; Hermassi, S.; Aouadi, R.; Khalifa, R.; Van den Tillaar, R.; Chamari, K.; Shephard, R.J. Match analysis of elite adolescent team handball players. J. Strength Cond. Res. 2011, 25, 2410–2417. [Google Scholar] [CrossRef]
- McClay, I.S.; Robinson, J.R.; Andriacchi, T.P.; Frederick, E.C.; Gross, T.; Martin, P.; Valiant, G.; Williams, K.R.; Cavanagh, P.R. A profile of ground reaction forces in professional basketball. J. Appl. Biomech. 1994, 10, 222–236. [Google Scholar] [CrossRef]
- Kirialanis, P. Occurrence of acute lower limb injuries in artistic gymnasts in relation to event and exercise phase. Br. J. Sports Med. 2003, 37, 137–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, O.-E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury mechanisms for anterior cruciate ligament injuries in team handball. Am. J. Sports Med. 2004, 32, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Test-retest reliability of hand-held dynamometry during a single session of strength assessment. Phys. Ther. 1986, 66, 206–209. [Google Scholar] [CrossRef]
- Thorborg, K.; Petersen, J.; Magnusson, S.P.; Hölmich, P. Clinical assessment of hip strength using a hand-held dynamometer is reliable. Scand. J. Med. Sci. Sports 2009, 20, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Vigneault, J.; Rizzo, J. Hip external and internal rotation strength: Consistency over time and between sides. Isokinet. Exerc. Sci. 2008, 16, 107–111. [Google Scholar] [CrossRef]
- Mandalidis, D.G.; Karagiannakis, D.N. A comprehensive method for assessing postural control during dynamic balance testing. MethodsX 2020, 7, 100964. [Google Scholar] [CrossRef] [PubMed]
- Gurney, J.K.; Kersting, U.G.; Rosenbaum, D. Between-day reliability of repeated plantar pressure distribution measurements in a normal population. Gait Posture 2008, 27, 706–709. [Google Scholar] [CrossRef]
- Elias, L.J.; Bryden, M.P.; Bulman-Fleming, M.B. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 1998, 36, 37–43. [Google Scholar] [CrossRef]
- Borg, G.A.V. Psychophysical bases of perceived exertion. Med. Sci. Sport Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Cortes, N.; Greska, E.; Kollock, R.; Ambegaonkar, J.; Onate, J.A. Changes in lower extremity biomechanics due to a short-term fatigue protocol. J. Athl. Train. 2013, 48, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Liederbach, M.; Kremenic, I.J.; Orishimo, K.F.; Pappas, E.; Hagins, M. Comparison of Landing Biomechanics Between Male and Female Dancers and Athletes, Part 2. Am. J. Sports Med. 2014, 42, 1089–1095. [Google Scholar] [CrossRef]
- Pereira, G.; Correia, R.; Ugrinowitsch, C.; Nakamura, F.; Rodacki, A.; Fowler, N.; Kokubun, E. The rating of perceived exertion predicts intermittent vertical jump demand and performance. J. Sports Sci. 2011, 29, 927–932. [Google Scholar] [CrossRef]
- Eston, R. Use of ratings of perceived exertion in sports. Int. J. Sports Physiol. Perform. 2012, 7, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Twist, C.; Gleeson, N.; Eston, R. The effects of plyometric exercise on unilateral balance performance. J. Sports Sci. 2008, 26, 1073–1080. [Google Scholar] [CrossRef]
- Romero-Franco, N.; Jiménez-Reyes, P. Unipedal postural balance and countermovement jumps after a warm-up and plyometric training session. J. Strength Cond. Res. 2015, 29, 3216–3222. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Sanchez-Sanchez, J.; Gonzalo-Skok, O.; Rodríguez-Fernandez, A.; Carretero, M.; Nakamura, F.Y. Specific changes in young soccer player’s fitness after traditional bilateral vs. unilateral combined strength and plyometric training. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howcroft, J.; Lemaire, E.D.; Kofman, J.; McIlroy, W.E. Elderly fall risk prediction using static posturography. PLoS ONE 2017, 12, e0172398. [Google Scholar] [CrossRef] [PubMed]
- Kamieniarz, A.; Michalska, J.; Brachman, A.; Pawłowski, M.; Słomka, K.; Juras, G. A posturographic procedure assessing balance disorders in Parkinson’s disease: A systematic review. Clin. Interv. Aging 2018, 13, 2301–2316. [Google Scholar] [CrossRef] [Green Version]
- Andreeva, A.; Melnikov, A.; Skvortsov, D.; Akhmerova, K.; Vavaev, A.; Golov, A.; Draugelite, V.; Nikolaev, R.; Chechelnickaia, S.; Zhuk, D.; et al. Postural stability in athletes: The role of age, sex, performance level, and athlete shoe features. Sports 2020, 8, 89. [Google Scholar] [CrossRef]
- Paillard, T. Effects of general and local fatigue on postural control: A review. Neurosci. Biobehav. Rev. 2012, 36, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.R.; Robertson, K.E.; Burnham, J.M.; Yonz, M.C.; Ireland, M.L.; Noehren, B. The relationship between hip strength and the Y Balance Test. J. Sport Rehabil. 2018, 27, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Patrek, M.F.; Kernozek, T.W.; Willson, J.D.; Wright, G.A.; Doberstein, S.T. Hip-abductor fatigue and single-leg landing mechanics in women athletes. J. Athl. Train. 2011, 46, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef]
- Stein, R.B.; Lee, R.G. Tremor and clonus. In Comprehensive Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Saxton, J.M.; Clarkson, P.M.; James, R.; Miles, M.; Westerfer, M.; Clark, S.; Donnelly, A.E. Neuromuscular dysfunction following eccentric exercise. Med. Sci. Sports Exerc. 1995, 27, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Karagiannakis, D.N.; Iatridou, K.I.; Mandalidis, D.G. Ankle muscles activation and postural stability with Star Excursion Balance Test in healthy individuals. Hum. Mov. Sci. 2020, 69, 102563. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Budden, S.; Byrne, J.M.; Behm, D.G. Effect of unilateral knee extensor fatigue on force and balance of the contralateral limb. Eur. J. Appl. Physiol. 2015, 115, 2177–2187. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T.; Chaubet, V.; Maitre, J.; Dumitrescu, M.; Borel, L. Disturbance of contralateral unipedal postural control after stimulated and voluntary contractions of the ipsilateral limb. Neurosci. Res. 2010, 68, 301–306. [Google Scholar] [CrossRef]
- Kavanagh, J.J.; Morrison, S.; Barrett, R.S. Lumbar and cervical erector spinae fatigue elicit compensatory postural responses to assist in maintaining head stability during walking. J. Appl. Physiol. 2006, 101, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, C.A.; Uhl, T.L.; Mattacola, C.G.; Shapiro, R.; Rayens, W.S. Hip abductor function and lower extremity landing kinematics: Sex differences. J. Athl. Train. 2007, 42, 76–83. [Google Scholar] [PubMed]
Parameter | Definition |
---|---|
Gait line length | The perpendicular length of the line connecting the position of successive centers of pressure (CoP) calculated for successive moments in time during a single stance phase. |
Contact time | The average contact time of the toes, mid-foot and heel, in seconds (s) and as a percentage of the total stance time. |
Time change from heel to forefoot | The time elapsed between the points in time where the maximum force recorded on the heel and the forefoot, in seconds (s) and as a percentage (%) of the total stance time. |
Maximum force and pressure | The average maximum values of force and pressure obtained for the toes, mid-foot and heel in N and N/cm², respectively. |
Pre-Fatigue | Post-Fatigue | |||
---|---|---|---|---|
FLL | NFLL | FLL | NFLL | |
HABD (N) | 218.9 (45.0) | 214.1 (55.1) | 226.9 (54.6) | 226.3 (56.7) |
HADD (N) | 323.8 (91.1) | 306.5 (64.8) | 350.6 (90.3) | 347.9 (83.7) |
HEXR (N) | 146.4 (43.9) | 143.3 (36.8) | 148.4 (37.8) | 144.7 (33.3) |
HINR (N) | 178.5 (55.9) | 165.9 (46.7) | 178.2 (45.0) | 182.9 (52.7) |
HABD/HADD | 0.7 (0.1) | 0.7 (0.2) | 0.7 (0.1) | 0.7 (0.1) |
HEXR/HINR | 0.9 (0.2) | 0.9 (0.3) | 0.9 (0.3) | 0.8 (0.2) |
Postural Control Parameters | YBT Directions | Pre-Fatigue | Post-Fatigue | ||
---|---|---|---|---|---|
FLL | NFLL | FLL | NFLL | ||
RD (cm) | AN | 83.9 (5.6) | 83.7 (6.4) | 82.7 (5.3) | 84.1 (5.3) * |
PM | 105.8 (7.8) | 106.1 (7.5) | 105.1 (7.5) | 106.0 (7.6) | |
PL | 100.1 (8.6) | 99.9 (8.7) | 100.7 (6.7) | 103.1 (7.9) * † | |
VL of CoP (mm/sec) | AN | 50.7 (9.6) | 51.9 (11.0) | 55.1 (12.1) § | 48.7 (8.7) ** |
PM | 54.5 (9.8) | 53.1 (9.6) | 56.2 (10.7) | 53.1 (10.3) | |
PL | 58.4 (9.9) | 57.2 (8.4) | 58.2 (9.7) | 55.1 (8.8) | |
MLd of CoP (mm) | AN | 12.6 (2.3) | 12.8 (2.5) | 13.3 (2.7) | 12.1 (1.9) * |
PM | 12.5 (3.1) | 12.4 (2.7) | 12.6 (3.2) | 12.3 (2.5) | |
PL | 10.8 (3.4) | 11.3 (2.7) | 11.7 (3.6) | 12.2 (2.7) | |
APd of CoP (mm) | AN | 44.9 (12.7) | 43.2 (14.0) | 43.6 (12.1) | 46.4 (14.1) |
PM | 22.7 (8.0) | 23.6 (8.8) | 22.7 (8.7) | 19.0 (5.5) ‡ | |
PL | 17.2 (6.8) | 16.8 (5.6) | 18.6 (8.0) | 18.6 (5.6) |
Gait Parameters | Foot Zone | Pre-Fatigue | Post-Fatigue | ||
---|---|---|---|---|---|
FLL | NFLL | FLL | NFLL | ||
GL (mm) | 237.3 (18.9) | 238.5 (18.4) | 237.8 (20.9) | 239.5 (20.4) | |
Tc (s) | 0.73 (0.02) | 0.73 (0.02) | 0.73 (0.03) | 0.74 (0.03) | |
Tc (%) | HEE | 19.1 (3.7) | 19.7 (4.8) | 19.0 (3.5) | 18.9 (2.2) |
MID | 41.4 (9.3) | 42.3 (9.2) | 43.2 (8.2) | 45.2 (7.9) | |
FOR | 75.9 (1.4) | 75.3 (1.4) | 75.7 (1.5) | 75.5 (1.2) | |
Th–f (s) | 0.26 (0.06) | 0.27 (0.04) | 0.27 (0.04) | 0.29 (0.04) | |
Th–f (%) | 35.9 (7.7) | 37.3 (5.3) | 37.5 (5.3) | 38.8 (4.5) | |
Fmax (N) | HEE | 486.9 (89.7) | 597.4 (84.4) | 487.0 (85.7) | 511.1 (86.1) |
MID | 131.0 (63.5) | 122.2 (55.8) | 130.8 (58.4) | 121.1 (53.0) | |
FOR | 741.2 (126.8) | 740.3 (125.0) | 737.9 (124.3) | 744.4 (128.3) | |
Pmax (N/cm²) | HEE | 32.7 (6.7) | 34.5 (6.1) | 33.1 (7.0) | 35.5 (6.5) |
MID | 14.1 (6.2) | 12.8 (5.7) | 14.6 (5.8) | 13.7 (6.5) | |
FOR | 35.8 (6.0) | 35.7 (5.0) | 35.1 (5.6) | 35.5 (6.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantopoulos, I.; Kafetzakis, I.; Chatziilias, V.; Mandalidis, D. Fatigue-Induced Inter-Limb Asymmetries in Strength of the Hip Stabilizers, Postural Control and Gait Following a Unilateral Countermovement Vertical Jump Protocol. Sports 2021, 9, 33. https://doi.org/10.3390/sports9030033
Konstantopoulos I, Kafetzakis I, Chatziilias V, Mandalidis D. Fatigue-Induced Inter-Limb Asymmetries in Strength of the Hip Stabilizers, Postural Control and Gait Following a Unilateral Countermovement Vertical Jump Protocol. Sports. 2021; 9(3):33. https://doi.org/10.3390/sports9030033
Chicago/Turabian StyleKonstantopoulos, Ioannis, Ioannis Kafetzakis, Vasileios Chatziilias, and Dimitris Mandalidis. 2021. "Fatigue-Induced Inter-Limb Asymmetries in Strength of the Hip Stabilizers, Postural Control and Gait Following a Unilateral Countermovement Vertical Jump Protocol" Sports 9, no. 3: 33. https://doi.org/10.3390/sports9030033
APA StyleKonstantopoulos, I., Kafetzakis, I., Chatziilias, V., & Mandalidis, D. (2021). Fatigue-Induced Inter-Limb Asymmetries in Strength of the Hip Stabilizers, Postural Control and Gait Following a Unilateral Countermovement Vertical Jump Protocol. Sports, 9(3), 33. https://doi.org/10.3390/sports9030033