The Intake of Kiwifruits Improve the Potential Antioxidant Capacity in Male Middle- and Long-Distance Runners Routinely Exposed to Oxidative Stress in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometry
2.3. Measurement of Oxidative Stress Markers
2.4. Serum Creatine Kinase (CK) and Lactate Dehydrogenase (LDH)
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Subjects
3.2. Relationship between Oxidative Stress Markers and Measured Values in Study 1
3.3. Changes in Study 1
3.4. Changes in Runners Having High d-ROMs Values (Study 2)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sen, C.K. Oxidants and antioxidants in exercise. J. Appl. Physiol. 1985, 79, 675–686. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, S.; Napolitano, G.; Venditti, P. Mediators of physical activity protection against ROS-linked skeletal muscle damage. Int. J. Mol. Sci. 2019, 20, 3024. [Google Scholar] [CrossRef] [Green Version]
- Venditti, P.; Gomez-Cabrera, M.C.; Zhang, Y.; Radak, Z. Oxidant antioxidants and adaptive responses to exercise. Oxidative Med. Cell Longev. 2015, 2015, 290190. [Google Scholar] [CrossRef]
- Inoue, T.; Mu, Z.; Sumikawa, K.; Adachi, K.; Okochi, T. Effect of physical exercise on the content of 8-hydroxydeoxyguanosine in nuclear DNA prepared from human lymphocytes. Jpn. J. Cancer Res. 1993, 84, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.; Graumlich, J.F.; King, J.; et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabrial, S.G.N.; Shakib, M.R.; Gabrial, G.N. Protective Role of Vitamin C Intake on Muscle Damage in Male Adolescents Performing Strenuous Physical Activity. Open Access Maced. J. Med. Sci. 2018, 6, 1594–1598. [Google Scholar] [CrossRef]
- Vincent, H.K.; Bourguignon, C.M.; Vincent, K.R.; Weltman, A.L.; Bryant, M.; Taylor, A.G. Antioxidant supplementation lowers exercise-induced oxidative stress in young overweight adults. Obesity 2006, 14, 2224–2235. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Cabrera, M.C.; Domenech, E.; Romagnoli, M.; Arduini, A.; Borras, C.; Pallardo, F.V.; Sastre, J.; Viña, J. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am. J. Clin. Nutr. 2008, 87, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, G.; Cumming, K.T.; Holden, G.; Hallén, J.; Rønnestad, B.R.; Sveen, O.; Skaug, A.; Paur, I.; Bastani, N.E.; Østgaard, H.N.; et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: A double-blind, randomised, controlled trial. J. Physiol. 2014, 592, 1887–1901. [Google Scholar] [CrossRef] [PubMed]
- Vidal, K.; Robinson, N.; Ives, S.J. Exercise performance and physiological responses: The potential role of redox imbalance. Physiol. Rep. 2017, 5, e13225. [Google Scholar] [CrossRef]
- Venditti, P.; Napolitano, G.; Barone, D.; Di Meo, S. Effect of training and vitamin E administration on rat liver oxidative metabolism. Free Radic. Res. 2014, 48, 322–332. [Google Scholar] [CrossRef]
- Venditti, P.; Napolitano, G.; Barone, D.; Pervito, E.; Di Meo, S. Vitamin E-enriched diet reduces adaptive responses to training determining respiratory capacity and redox homeostasis in rat heart. Free Radic. Res. 2016, 50, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Koivisto, A.E.; Paulsen, G.; Paur, I.; Garthe, I.; Tønnessen, E.; Raastad, T.; Bastani, N.E.; Hallén, J.; Blomhoff, R.; Bøhn, S.K. Antioxidant-rich foods and response to altitude training: A randomized controlled trial in elite endurance athletes. Scand. J. Med. Sci. Sports 2018, 28, 1982–1995. [Google Scholar] [CrossRef] [PubMed]
- Ronald, L.P.; Liwei, G.; Xianli, W.; Robert, A.J.; Gity, S.; Adel, A.K.; Richard, A.C. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J. Am. Coll. Nutr. 2007, 26, 170–181. [Google Scholar]
- Bozonet, S.M.; Carr, A.C.; Pullar, J.M.; Vissers, M.C.M. Enhanced human neutrophil vitamin C status, chemotaxis and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit. Nutrients 2015, 7, 2574–2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zespri Kiwifruit. Available online: https://www.zespri.com/ja-JP/blogdetail/8-important-nutrients (accessed on 21 January 2021). (In Japanese).
- Standards Tables of Food Composition in Japan-2015-(Seventh Revised Edition) Documentation and Table. Available online: https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/sdetail01/sdetail01/1385122.htm (accessed on 21 January 2021).
- Carr, A.C.; Bozonet, S.M.; Pullar, J.M.; Vissers, M.C. Mood improvement in young adult males following supplementation with gold kiwifruit, a high-vitamin C food. J. Nutr. Sci. 2013, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Alberti, A.; Bolognini, L.; Macciantelli, D.; Carratelli, M. The radical cation of N,N-diethyl-para-phenylendiamine: A possible indicator of oxidative stress in biological samples. Res. Chem. Intermed. 2000, 26, 253–267. [Google Scholar] [CrossRef]
- Dohi, K.; Satoh, K.; Ohtaki, H.; Shioda, S.; Miyake, Y.; Shindo, M.; Aruga, T. Elevated plasma levels of bilirubin in patients with neurotrauma reflect its pathophysiological role in free radical scavenging. In Vivo 2005, 19, 855–860. [Google Scholar]
- Cornelli, U.; Terranova, R.; Luca, S.; Cornelli, M.; Alberti, A. Bioavailability and antioxidant activity of some food supplements in men and women using the D-Roms test as a marker of oxidative stress. J. Nutr. 2001, 131, 3208–3211. [Google Scholar] [CrossRef] [Green Version]
- Faienza, M.F.; Francavilla, R.; Goffredo, R.; Ventura, A.; Marzano, F.; Panzarino, G.; Marinelli, G.; Cavallo, L.; Di Bitonto, G. Oxidative stress in obesity and metabolic syndrome in children and adolescents. Horm. Res. Paediatr. 2012, 78, 158–164. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (EFSA NDA Panel); Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; et al. Guidance for the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health: (Revision 1). EFSA J. 2018, 16, e05136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sone, R.; Matsuba, K.; Tahara, R.; Eda, N.; Kosaki, K.; Jesmin, S.; Miyakawa, S.; Watanabe, K. Assessment of salivary nitric oxide levels in elite university athletes in Japan: Findings from a cross sectional study design. J. Clin. Med. Res. 2019, 11, 114–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brancaccio, P.; Maffulli, N.; Buonauro, R.; Limongelli, F.M. Serum enzyme monitoring in sports medicine. Clin. Sports Med. 2008, 27, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Sugama, K.; Suzuki, K.; Yoshitani, K.; Shiraishi, K.; Miura, S.; Yoshioka, H.; Mori, Y.; Kometani, T. Changes of thioredoxin, oxidative stress markers, inflammation and muscle/renal damage following intensive endurance exercise. Exerc. Immunol. Rev. 2015, 21, 130–142. [Google Scholar]
- Oh-ishi, S.; Kizaki, T.; Ookawara, T.; Sakurai, T.; Izawa, T.; Nagata, N.; Ohno, H. Endurance training improves the resistance of rat diaphragm to exercise-induced oxidative stress. Am. J. Respir. Crit. Care Med. 1997, 156, 1579–1585. [Google Scholar] [CrossRef] [Green Version]
- Venditti, P.; Napolitano, G.; Barone, D.; Di Meo, S. Vitamin E supplementation modifies adaptive responses to training in rat skeletal muscle. Free Radic. Res. 2014, 48, 1179–1189. [Google Scholar] [CrossRef]
- Fukui, T.; Yamauchi, K.; Maruyama, M.; Yasuda, T.; Kohno, M.; Abe, Y. Significance of measuring oxidative stress in lifestyle-related diseases from the viewpoint of correlation between d-ROMs and BAP in Japanese subjects. Hypertens. Res. 2011, 34, 1041–1045. [Google Scholar] [CrossRef] [Green Version]
Zespri® † | Food Composition Table § | ||||||
---|---|---|---|---|---|---|---|
Green Kiwifruit | SunGold Kiwifruit | Green Kiwifruit | Yellow Kiwifruit | Strawberry | Blueberry | Orange | |
Energy (kcal) | 53 | 59 | 53 | 59 | 34 | 49 | 39 |
Protein (g) | 1.2 | 1.0 | 1.0 | 1.1 | 0.9 | 0.5 | 1.0 |
Carbohydrate (g) | 14.0 | 15.8 | 13.5 | 14.9 | 8.5 | 12.9 | 9.8 |
Dietary fiber (g) | 3.0 | 1.4 | 2.5 | 1.4 | 1.4 | 3.3 | 0.8 |
Water-soluble dietary fiber (g) | 0.6 | 0.4 | 0.7 | 0.5 | 0.5 | 0.5 | 0.3 |
Insoluble dietary fiber (g) | 2.4 | 1.1 | 1.8 | 0.9 | 0.9 | 2.8 | 0.5 |
Calcium (mg) | 27 | 17 | 33 | 17 | 17 | 8 | 21 |
Iron (mg) | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 |
Magnesium (mg) | 14 | 12 | 13 | 12 | 13 | 5 | 11 |
Potassium (mg) | 301 | 315 | 290 | 300 | 170 | 70 | 140 |
Zinc (mg) | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 |
Vitamin C (mg) | 85 | 161 | 69 | 140 | 62 | 9 | 40 |
Vitamin B1 (mg) | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.03 | 0.10 |
Vitamin B2 (mg) | 0.05 | 0.07 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 |
Niacin (mg) | 0.0 | 0.2 | 0.3 | 0.3 | 0.4 | 0.2 | 0.4 |
Pantothenic acid (mg) | 0.00 | 0.12 | 0.29 | 0.26 | 0.33 | 0.12 | 0.36 |
Vitamin B6 (mg) | 0.07 | 0.08 | 0.12 | 0.14 | 0.04 | 0.05 | 0.07 |
Folic acid (µg) | 38 | 31 | 36 | 32 | 90 | 12 | 32 |
Vitamin B12 (µg) | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vitamin A, Retinol equivalent (µg) | 9 | 2 | 6 | 3 | 1 | 5 | 10 |
Vitamin E, α-Tocopherol (mg) | 0.9 | 1.4 | 1.3 | 2.5 | 0.4 | 1.7 | 0.3 |
Study 1 (n = 30) | Study 2 (n = 20) | |
---|---|---|
Height (cm) | 172.7 ± 4.4 | 171.3 ± 4.1 |
Weight (kg) | 58.0 ± 3.8 | 57.9 ± 4.0 |
BMI (kg/m2) | 19.4 ± 0.9 | 19.7 ± 0.8 |
Body fat percentage (%) | 10.9 ± 2.7 | 10.7 ± 2.5 |
Lean body mass (kg) | 51.7 ± 4.1 | 51.8 ± 3.8 |
d-ROMs (U.CARR) | 264 ± 34 | 293 ± 25 |
BAP (µmol/L) | 2036 ± 145 | 2123 ± 100 |
BAP/d-ROMs ratio | 7.9 ± 1.2 | 7.3 ± 0.7 |
CK (U/L) | 584 ± 415 | 335 ± 167 |
LDH (U/L) | 239 ± 40 | 230 ± 46 |
Intake Group (n = 15) | Control Group (n = 15) | |||
---|---|---|---|---|
Pre | Post | Pre | Post | |
d-ROMs (U.CARR) | 270 ± 35 | 247 ± 25 ** | 249 (225–286) | 244 (225–292) |
BAP (µmol/L) | 2013 ± 149 | 2083 ± 150 | 2059 ± 142 | 2143 ± 140 |
BAP/d-ROMs ratio | 7.1 (6.9–8.2) | 8.7 (7.3–9.8) * | 8.1 ± 1.2 | 8.5 ± 1.4 |
CK (U/L) | 702 ± 398 † | 909 ± 605 | 330 (195–605) | 502 (323–857) |
LDH (U/L) | 244 (236–269) † | 253 (202–269) | 222 ± 40 | 237 ± 54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imai, N.; Kobayashi, Y.; Uenishi, K. The Intake of Kiwifruits Improve the Potential Antioxidant Capacity in Male Middle- and Long-Distance Runners Routinely Exposed to Oxidative Stress in Japan. Sports 2021, 9, 37. https://doi.org/10.3390/sports9030037
Imai N, Kobayashi Y, Uenishi K. The Intake of Kiwifruits Improve the Potential Antioxidant Capacity in Male Middle- and Long-Distance Runners Routinely Exposed to Oxidative Stress in Japan. Sports. 2021; 9(3):37. https://doi.org/10.3390/sports9030037
Chicago/Turabian StyleImai, Nami, Yuki Kobayashi, and Kazuhiro Uenishi. 2021. "The Intake of Kiwifruits Improve the Potential Antioxidant Capacity in Male Middle- and Long-Distance Runners Routinely Exposed to Oxidative Stress in Japan" Sports 9, no. 3: 37. https://doi.org/10.3390/sports9030037
APA StyleImai, N., Kobayashi, Y., & Uenishi, K. (2021). The Intake of Kiwifruits Improve the Potential Antioxidant Capacity in Male Middle- and Long-Distance Runners Routinely Exposed to Oxidative Stress in Japan. Sports, 9(3), 37. https://doi.org/10.3390/sports9030037