The Effect of Inspiratory Muscle Warm-Up on VO2 Kinetics during Submaximal Rowing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Maximal Inspiratory Pressure
2.3. Incremental Exercise Testing
2.4. Submaximal Intensity Rowing Test at 90% PVO2max Intensity
2.5. Warm-Up Protocols
2.6. Modeling of VO2 Kinetics
- (1)
- Parameters A1, A2, TD1, TD2, τ1 and τ2 could not be negative
- (2)
- τ1 ≥ 10 s
- (3)
- τ2 ≤ 300 s
- (4)
- τ2 ≥ 3 · τ1
- (5)
- 70 ≤ TD2 ≤ 180
2.7. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Secher, N.H. Physiological and biomechanical aspects of rowing. Sports Med. 1993, 15, 24–42. [Google Scholar] [CrossRef] [PubMed]
- Mador, M.J.; Acevedo, F.A. Effect of respiratory muscle fatigue on subsequent exercise performance. J. Appl. Phys. 1991, 70, 2059–2065. [Google Scholar] [CrossRef]
- Verges, S.; Sager, Y.; Erni, C.; Spengler, C.M. Expiratory muscle fatigue impairs exercise performance. Eur. J. Appl. Physiol. 2007, 101, 225–232. [Google Scholar] [CrossRef]
- Romer, L.M.; Polkey, M.I. Exercise-induced respiratory muscle fatigue: Implications for performance. J. Appl. Phys. 2008, 104, 879–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volianitis, S.; McConnell, A.K.; Jones, D.A. Assessment of maximum inspiratory pressure. Prior submaximal respiratory muscle activity (“warm-up”) enhances maximum inspiratory activity and attenuates the learning effect of repeated measurement. Respiration 2001, 68, 22–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dempsey, J.A.; Romer, L.; Rodman, J.; Miller, J.; Smith, C. Consequences of exercise-induced respiratory muscle work. Respir. Physiol. Neurobiol. 2006, 151, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Babcock, M.A.; Pegelow, D.F.; Harms, C.A.; Dempsey, J.A. Effects of respiratory muscle unloading on exercise-induced diaphragm fatigue. J. Appl. Phys. 2002, 93, 201–206. [Google Scholar]
- Illi, S.K.; Held, U.; Frank, I.; Spengler, C.M. Effect of respiratory muscle training on exercise performance in healthy individuals: A systematic review and meta-analysis. Sports Med. 2012, 42, 707–724. [Google Scholar] [CrossRef]
- Lomax, M.; McConnell, A.K. The influence of prior activity (warm-up) and inspiratory muscle training upon between and within day reliability of maximal inspiratory pressure measurement. Respiration 2009, 78, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Richard, P.; Billaut, F. Effects of inspiratory muscle warm-up on locomotor muscle oxygenation in elite speed skaters during 3000 m time trials. Eur. J. Appl. Physiol. 2019, 119, 191–200. [Google Scholar] [CrossRef]
- Barnes, K.R.; Ludge, A.R. Inspiratory Muscle Warm-up Improves 3,200-m Running Performance in Distance Runners. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Barstow, T.J.; Mcdonough, P.; Jones, A.M. Control of oxygen uptake during exercise. Med. Sci. Sport Exerc. 2008, 40, 462–474. [Google Scholar] [CrossRef] [PubMed]
- Whipp, B.J. The slow component of O2 uptake kinetics during heavy exercise. Med. Sci. Sport Exerc. 1994, 26, 1319–1326. [Google Scholar] [CrossRef]
- Barstow, T.J.; Mole, P.P. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J. Appl. Phys. 1991, 71, 2099–2106. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Ribeiro, J.; Sousa, M.; Vilas-Boas, J.P.; Fernandes, R.J. Influence of Prior Exercise on VO2 Kinetics Subsequent Exhaustive Rowing Performance. PLoS ONE 2014, 9, e84208. [Google Scholar] [CrossRef]
- Barker, A.R.; Jones, A.M.; Armstrong, N. The influence of priming exercise on oxygen uptake, cardiac output, and muscle oxygenation kinetics during very heavy-intensity exercise in 9-to 13-yr-old boys. J. Appl. Phys. 2010, 109, 491–500. [Google Scholar] [CrossRef]
- Jones, A.M.; Burnley, M. Effect of exercise modality on VO2 kinetics. In Oxygen Uptake Kinetics in Sports, Exercise and Medicine; Jones, A.M., Poole, D.C., Eds.; Routledge, Taylor & Francis Books Lt.: Abingdon, UK, 2005; pp. 95–114. ISBN 0-415-30561-6. [Google Scholar]
- Poole, D.C.; Jones, A.M. Oxygen uptake kinetics. Compr. Physiol. 2012, 2, 933–996. [Google Scholar]
- Whipp, B.J.; Rossiter, H.B.; Ward, S.A. Exertional oxygen uptake kinetics: A stamen of stamina? Biochem. Soc. Trans. 2002, 30, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Burnley, M.; Jones, A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
- Ingham, S.A.; Carter, H.; Whyte, G.; Doust, J.H. Comparison of the oxygen uptake kinetics of club and olympic champion rowers. Med. Sci. Sport Exerc. 2007, 39, 865–871. [Google Scholar] [CrossRef]
- Bailey, S.J.; Vanhatalo, A.; Wilkerson, D.P.; DiMenna, F.J.; Jones, A.M. Optimizing the “priming” effect: Influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. J. Appl. Phys. 2009, 107, 1743–1756. [Google Scholar] [CrossRef] [Green Version]
- Sahlin, K.; Sørensen, J.B.; Gladden, L.B.; Rossiter, H.B.; Pedersen, P.K. Prior heavy exercise eliminates VO2 slow component and reduces efficiency during submaximal exercise in humans. J. Physiol. 2005, 564, 765–773. [Google Scholar] [CrossRef]
- Fukuoka, Y.; Poole, D.C.; Barstow, T.J.; Kondo, N.; Nishiwaki, M.; Okushima, D.; Koga, S. Reduction of VO2 slow component by priming exercise: Novel mechanistic insights from time-resolved near-infrared spectroscopy. Physiol. Rep. 2015, 3, e12432. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Burnley, M. Oxygen uptake kinetics: An underappreciated determinant of exercise performance. Int. J. Sports Physiol. Perform. 2009, 4, 524–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ATS/ERS. American Thoracic Society/ European Respiratory Society Statement on respiratory muscle testing. Am. J. Respir. Crit. Care. Med. 2002, 166, 518–624. [Google Scholar] [CrossRef] [PubMed]
- Arend, M.; Mäestu, J.; Kivastik, J.; Rämson, R.; Jürimäe, J. Effect of inspiratory muscle warm-up on submaximal rowing performance. J. Strength Cond. Res. 2015, 29, 213–218. [Google Scholar] [CrossRef]
- Jürimäe, J.; Mäestu, J.; Jürimäe, T.; Pihl, E. Relationship between rowing performance and different metabolic parameters on male rowers. Med. Sport 1999, 52, 119–126. [Google Scholar]
- Kolle, E.; Steene-Johannessen, J.; Andersen, L.B.; Anderssen, S.A. Objectively assessed physical activity and aerobic fitness in a population-based sample of Norwegian 9- and 15-year-old. Scan. J. Med. Sci. Sports 2012, 20, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Kolkhorst, F.W.; Rezende, R.S.; Levy, S.S.; Buono, M.J. Effects of sodium bicarbonate on VO2 kinetics during heavy exercise. Med. Sci. Sport Exerc. 2004, 36, 1895–1899. [Google Scholar] [CrossRef]
- Volianitis, S.; McConnell, A.K.; Koutedakis, Y.; Jones, D.A. The influence of prior activity upon inspiratory muscle strength in rowers and non-rowers. Int. J. Sports Med. 1999, 20, 542–547. [Google Scholar] [CrossRef]
- Roberts, C.L.; Wilkerson, D.P.; Jones, A.M. Pulmonary O2 uptake on-kinetics in rowing and cycle ergometer exercise. Respir. Physiol. Neurobiol. 2005, 146, 247–258. [Google Scholar] [CrossRef]
- Sousa, A.; Rodríguez, F.A.; Machado, L.; Vilas-Boas, J.P.; Fernandes, R.J. Exercise modality effect on oxygen uptake off-transient kinetics at maximal oxygen uptake intensity. Exp. Physiol. 2015, 100, 719–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, N.M.; Hills, A.P.; Hunter, G.R.; Weinsier, R.L.; Schutz, Y. Metabolic equivalent: One size does not fit all. J. Appl. Phys. 2005, 99, 1112–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, S.J.; Romer, L.M.; Kelly, J.; Wilkerson, D.P.; DiMenna, F.J.; Jones, A.M. Inspiratory muscle training enhances pulmonary O2 uptake kinetics and high-intensity exercise tolerance in humans. J. Appl. Phys. 2012, 109, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, E.E.; McKeever, T.M.; Lobb, C.; Sherriff, T.; Gupta, L.; Hearson, G.; Martin, N.; Lindley, M.R.; Shaw, D.E. Respiratory muscle specific warm-up and elite swimming performance. Brit. J. Sport Med. 2014, 48, 789–791. [Google Scholar] [CrossRef]
- Markovitz, G.H.; Sayre, J.W.; Storer, T.W.; Cooper, C.B. On issues of confidence in determining the time constant for oxygen uptake kinetics. Brit. J. Sport Med. 2004, 38, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Demarie, S.; Quaresima, V.; Ferrari, M.; Billat, V.; Sbriccoli, P.; Faina, M. Auxiliary muscles and slow component during rowing. Int. J. Sports Med. 2008, 29, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Koga, S.; Rossiter, H.B.; Heinonen, I.; Musch, T.I.; Poole, D.C. Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med. Sci. Sport Exerc. 2014, 46, 860–876. [Google Scholar] [CrossRef] [PubMed]
- Barstow, T.J.; Jones, A.M.; Nguyen, P.H.; Casaburi, R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics in heavy exercise. J. Appl. Phys. 1996, 81, 1642–1650. [Google Scholar] [CrossRef]
- Jones, A.M.; Wilkerson, D.P.; Vanhatalo, A.; Burnley, M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scan. J. Med. Sci. Sports 2008, 18, 615–626. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Poole, D.C.; DiMenna, F.J.; Bailey, S.J.; Jones, A.M. Muscle fiber recruitment and the slow component of O2 uptake: Constant work rate vs. all-out sprint exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R700–R707. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.F.; Alves, F.B.; Bruno, P.M.; Vleck, V.; Millet, G.P. Oxygen uptake kinetics and middle distance swimming performance. J. Sci. Med. Sport 2012, 15, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Carter, H.; Jones, A.M.; Barstow, T.J.; Burnley, M.; Williams, C.A.; Doust, J.H. Oxygen uptake kinetics in treadmill running and cycle ergometry: A comparison. J. Appl. Phys. 2000, 89, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Barstow, T.J.; Jones, A.M.; Nguyen, P.H.; Casaburi, R. Influence of muscle fibre type and fitness on the oxygen uptake/power output slope during incremental exercise in humans. Exp. Physiol. 2000, 85, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Pringle, J.S.; Doust, J.H.; Carter, H.; Tolfrey, K.; Campbell, I.T.; Jones, A.M. Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: The influence of muscle fibre type and capillarisation. Eur. J. Sport Sci. 2003, 89, 289–300. [Google Scholar] [CrossRef]
- Legrand, R.; Prieur, F.; Marles, A.; Nourry, C.; Lazzari, S.; Blondel, N.; Mucci, P. Respiratory muscle oxygenation kinetics: Relationships with breathing pattern during exercise. Int. J. Sports Med. 2007, 28, 91–99. [Google Scholar] [CrossRef]
- Perrey, S.; Ferrari, M. Muscle Oximetry in Sports Science: A Systematic Review. Sports Med. 2018, 48, 597–616. [Google Scholar] [CrossRef]
- Kowalchuk, J.M.; Rossiter, H.B.; Ward, S.A.; Whipp, B.J. The effect of resistive breathing on leg muscle oxygenation using near-infrared spectroscopy during exercise in men. Exp. Physiol. 2002, 87, 601–611. [Google Scholar] [CrossRef]
- de Bisschop, C.; Beloka, S.; Groepenhoff, H.; van der Plas, M.N.; Overbeek, M.J.; Naeije, R.; Guenard, H. Is there competition for oxygen availability between respiratory and limb muscles? Respir. Physiol. Neurobiol. 2014, 196, 8–16. [Google Scholar] [CrossRef] [PubMed]
Subjects (n = 10) | |||
---|---|---|---|
Mean ± SD | Min | Max | |
Age (y) | 23.1 ± 3.8 | 20.0 | 26.0 |
Height (cm) | 188.1 ± 6.3 | 180.0 | 202.0 |
Body mass (kg) | 85.6 ± 6.6 | 70.5 | 92.0 |
Rowing experience (y) | 8.5 ± 3.2 | 4.5 | 12.0 |
PVO2max (W) | 328.7 ± 40.0 | 275.0 | 383.0 |
VO2max (mL·min−1·kg−1) | 50 ± 4.0 | 43.0 | 57.0 |
N | Test 1 | Test 2 | % Change | p | Effect Size (Cohen’s d) | |
---|---|---|---|---|---|---|
A0′ (L/min) | 10 | 0.26 ± 0.02 | 0.26 ± 0.02 | 0 | - | - |
τ1 (s) | 10 | 19.50 ± 5.80 | 19.26 ± 5.20 | −1.6% | 0.69 | 0.04 |
A1′ (L/min) | 10 | 4.30 ± 0.35 | 4.28 ± 0.42 | −0.5% | 0.75 | 0.05 |
TD2 (s) | 9 | 128.32 ± 35.16 | 125.52 ± 33.18 | −2.2% | 0.88 | 0.08 |
τ2 (s) | 9 | 105.56 ± 64.00 | 101.17 ± 61.51 | −4.2% | 0.83 | 0.07 |
A2′ (L/min) | 9 | 0.26 ± 0.16 | 0.28 ± 0.17 | 7.7% | 0.83 | 0.12 |
VO2 at 400 s (L/min) | 9 | 4.86 ± 0.13 | 4.84 ± 0.14 | -0.4% | 0.76 | 0.15 |
Test 1 | Test 2 | |||||||
---|---|---|---|---|---|---|---|---|
τ1 | τ2 | VO2 at 400 s | A1′ | τ1 | τ2 | VO2 at 400 s | A1′ | |
τ2 | 0.49 | 0.50 | ||||||
VO2 at 400 s | 0.78 * | 0.50 | 0.21 | 0.04 | ||||
A1′ | 0.85 ** | 0.34 | 0.91 ** | 0.33 | −0.08 | 0.92 ** | ||
A2′ | −0.09 | 0.40 | 0.28 | −0.14 | −0.53 | 0.29 | 0.15 | −0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arend, M.; Kivastik, J.; Talts, J.; Mäestu, J. The Effect of Inspiratory Muscle Warm-Up on VO2 Kinetics during Submaximal Rowing. Sports 2021, 9, 42. https://doi.org/10.3390/sports9030042
Arend M, Kivastik J, Talts J, Mäestu J. The Effect of Inspiratory Muscle Warm-Up on VO2 Kinetics during Submaximal Rowing. Sports. 2021; 9(3):42. https://doi.org/10.3390/sports9030042
Chicago/Turabian StyleArend, Mati, Jana Kivastik, Jaak Talts, and Jarek Mäestu. 2021. "The Effect of Inspiratory Muscle Warm-Up on VO2 Kinetics during Submaximal Rowing" Sports 9, no. 3: 42. https://doi.org/10.3390/sports9030042
APA StyleArend, M., Kivastik, J., Talts, J., & Mäestu, J. (2021). The Effect of Inspiratory Muscle Warm-Up on VO2 Kinetics during Submaximal Rowing. Sports, 9(3), 42. https://doi.org/10.3390/sports9030042