Transient Reduction of FMD-Response and L-Arginine Accompanied by Increased Levels of E-Selectin, VCAM, and ICAM after Prolonged Strenuous Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Flow-Mediated Dilatation (FMD)
2.3. Blood Samples
2.4. Statistics
3. Results
3.1. Subjects
3.2. Flow-Mediated Dilation (FMD)
3.3. Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Celermajer, D.S.; Sorensen, K.E.; Bull, C.; Robinson, J.; Deanfield, J.E. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J. Am. Coll. Cardiol. 1994, 24, 1468–1474. [Google Scholar] [CrossRef]
- Pohl, U.; Holtz, J.; Busse, R.; Bassenge, E. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 1986, 8, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.S.; Haga, J.H.; Chien, S. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 2005, 38, 1949–1971. [Google Scholar] [CrossRef] [PubMed]
- Green, D.J.; Dawson, E.A.; Groenewoud, H.M.; Jones, H.; Thijssen, D.H. Is flow-mediated dilation nitric oxide mediated? A meta-analysis. Hypertension 2014, 63, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Birk, G.K.; Dawson, E.A.; Batterham, A.M.; Atkinson, G.; Cable, T.; Thijssen, D.H.; Green, D.J. Effects of exercise intensity on flow mediated dilation in healthy humans. Int. J. Sports Med. 2013, 34, 409–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, E.A.; Whyte, G.P.; Black, M.A.; Jones, H.; Hopkins, N.; Oxborough, D.; Gaze, D.; Shave, R.E.; Wilson, M.; George, K.P.; et al. Changes in vascular and cardiac function after prolonged strenuous exercise in humans. J. Appl. Physiol. 2008, 105, 1562–1568. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, G.V.; Mendes Cordeiro, E.; Volino-Souza, M.; Rezende, C.; Conte-Junior, C.A.; Silveira Alvares, T. Flow-Mediated Dilation in Healthy Young Individuals Is Impaired after a Single Resistance Exercise Session. Int. J. Environ. Res. Public Health 2020, 17, 5194. [Google Scholar] [CrossRef]
- Hwang, I.C.; Kim, K.H.; Choi, W.S.; Kim, H.J.; Im, M.S.; Kim, Y.J.; Kim, S.H.; Kim, M.A.; Sohn, D.W.; Zo, J.H. Impact of acute exercise on brachial artery flow-mediated dilatation in young healthy people. Cardiovasc. Ultrasound 2012, 10, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapilevich, L.V.; Kologrivova, V.V.; Zakharova, A.N.; Mourot, L. Post-exercise Endothelium-Dependent Vasodilation Is Dependent on Training Status. Front. Physiol. 2020, 11, 348. [Google Scholar] [CrossRef]
- McClean, C.; Harris, R.A.; Brown, M.; Brown, J.C.; Davison, G.W. Effects of Exercise Intensity on Postexercise Endothelial Function and Oxidative Stress. Oxid. Med. Cell. Longev. 2015, 2015, 723679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakobowchuk, M.; Harris, E.; Taylor, A.; Baliga, V.; Cubbon, R.M.; Rossiter, H.B.; Birch, K.M. Heavy and moderate interval exercise training alters low-flow-mediated constriction but does not increase circulating progenitor cells in healthy humans. Exp. Physiol. 2012, 97, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Rognmo, O.; Bjornstad, T.H.; Kahrs, C.; Tjonna, A.E.; Bye, A.; Haram, P.M.; Stolen, T.; Slordahl, S.A.; Wisloff, U. Endothelial function in highly endurance-trained men: Effects of acute exercise. J. Strength Cond. Res. 2008, 22, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Shenouda, N.; Skelly, L.E.; Gibala, M.J.; MacDonald, M.J. Brachial artery endothelial function is unchanged after acute sprint interval exercise in sedentary men and women. Exp. Physiol. 2018, 103, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Tinken, T.M.; Thijssen, D.H.; Black, M.A.; Cable, N.T.; Green, D.J. Time course of change in vasodilator function and capacity in response to exercise training in humans. J. Physiol. 2008, 586, 5003–5012. [Google Scholar] [CrossRef]
- Tjonna, A.E.; Rognmo, O.; Bye, A.; Stolen, T.O.; Wisloff, U. Time course of endothelial adaptation after acute and chronic exercise in patients with metabolic syndrome. J. Strength Cond. Res. 2011, 25, 2552–2558. [Google Scholar] [CrossRef] [PubMed]
- Tiller, N.B.; Chiesa, S.T.; Roberts, J.D.; Turner, L.A.; Jones, S.; Romer, L.M. Physiological and Pathophysiological Consequences of a 25-Day Ultra-Endurance Exercise Challenge. Front. Physiol. 2019, 10, 589. [Google Scholar] [CrossRef]
- Dawson, E.A.; Green, D.J.; Cable, N.T.; Thijssen, D.H. Effects of acute exercise on flow-mediated dilatation in healthy humans. J. Appl. Physiol. 2013, 115, 1589–1598. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, O.; Konig, D.; Wagner, K.H. Recovery after an Ironman triathlon: Sustained inflammatory responses and muscular stress. Eur. J. Appl. Physiol. 2008, 104, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, T.; Carlsson, J.; Schreyer, H.; Ahnesjo, J.; Ten Siethoff, L.; Ragnarsson, T.; Tugetam, A.; Bergman, P. Blood biomarkers in male and female participants after an Ironman-distance triathlon. PLoS ONE 2017, 12, e0179324. [Google Scholar] [CrossRef] [Green Version]
- Nyborg, C.; Melau, J.; Bonnevie-Svendsen, M.; Mathiasen, M.; Melsom, H.S.; Storsve, A.B.; Hisdal, J. Biochemical markers after the Norseman Extreme Triathlon. PLoS ONE 2020, 15, e0239158. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, T.; Schreyer, H.; Woksepp, H.; Johansson, T.; Bergman, P.; Mansson, A.; Carlsson, J. Two-peaked increase of serum myosin heavy chain-alpha after triathlon suggests heart muscle cell death. BMJ Open Sport Exerc. Med. 2019, 5, e000486. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, J.; Ragnarsson, T.; Danielsson, T.; Johansson, T.; Schreyer, H.; Breyne, A.; Bergman, P. Biochemical changes after strenuous exercise—Data from the Kalmar Ironman. Lakartidningen 2016, 113, 27483401. [Google Scholar]
- Storsve, A.B.; Johnsen, L.; Nyborg, C.; Melau, J.; Hisdal, J.; Burri, L. Effects of Krill Oil and Race Distance on Serum Choline and Choline Metabolites in Triathletes: A Field Study. Front. Nutr. 2020, 7, 133. [Google Scholar] [CrossRef]
- Palmer, R.M.; Ashton, D.S.; Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988, 333, 664–666. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.L.; Kohler, H.; Bittinger, F.; Wagner, M.; Hermanns, I.; Grant, K.; Lewis, J.C.; Kirkpatrick, C.J. Comparative studies on vascular endothelium in vitro. I. Cytokine effects on the expression of adhesion molecules by human umbilical vein, saphenous vein and femoral artery endothelial cells. Pathobiology 1994, 62, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Kerns, W.; Schwartz, L.; Blanchard, K.; Burchiel, S.; Essayan, D.; Fung, E.; Johnson, R.; Lawton, M.; Louden, C.; MacGregor, J.; et al. Drug-induced vascular injury--a quest for biomarkers. Toxicol. Appl. Pharm. 2005, 203, 62–87. [Google Scholar] [CrossRef]
- Hashimoto, M.; Akishita, M.; Eto, M.; Ishikawa, M.; Kozaki, K.; Toba, K.; Sagara, Y.; Taketani, Y.; Orimo, H.; Ouchi, Y. Modulation of endothelium-dependent flow-mediated dilatation of the brachial artery by sex and menstrual cycle. Circulation 1995, 92, 3431–3435. [Google Scholar] [CrossRef]
- Del Coso, J.; Gonzalez-Millan, C.; Salinero, J.J.; Abian-Vicen, J.; Soriano, L.; Garde, S.; Perez-Gonzalez, B. Muscle damage and its relationship with muscle fatigue during a half-iron triathlon. PLoS ONE 2012, 7, e43280. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Lee, Y.H.; Kim, C.K. Changes in serum cartilage oligomeric matrix protein (COMP), plasma CPK and plasma hs-CRP in relation to running distance in a marathon (42.195 km) and an ultra-marathon (200 km) race. Eur. J. Appl. Physiol. 2009, 105, 765–770. [Google Scholar] [CrossRef]
- Jee, H.; Park, J.; Oh, J.G.; Lee, Y.H.; Shin, K.A.; Kim, Y.J. Effect of a prolonged endurance marathon on vascular endothelial and inflammation markers in runners with exercise-induced hypertension. Am. J. Phys. Med. Rehabil. 2013, 92, 513–522. [Google Scholar] [CrossRef]
- Chiu, J.J.; Lee, P.L.; Chen, C.N.; Lee, C.I.; Chang, S.F.; Chen, L.J.; Lien, S.C.; Ko, Y.C.; Usami, S.; Chien, S. Shear stress increases ICAM-1 and decreases VCAM-1 and E-selectin expressions induced by tumor necrosis factor-[alpha] in endothelial cells. Arter. Thromb. Vasc. Biol. 2004, 24, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Altun, I.; Oz, F.; Arkaya, S.C.; Altun, I.; Bilge, A.K.; Umman, B.; Turkoglu, U.M. Effect of statins on endothelial function in patients with acute coronary syndrome: A prospective study using adhesion molecules and flow-mediated dilatation. J. Clin. Med. Res. 2014, 6, 354–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, H.G.; Lyberg, T. Long-distance running modulates the expression of leucocyte and endothelial adhesion molecules. Scand. J. Immunol. 2004, 60, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Frey, R.S.; Ushio-Fukai, M.; Malik, A.B. NADPH oxidase-dependent signaling in endothelial cells: Role in physiology and pathophysiology. Antioxid. Redox Signal. 2009, 11, 791–810. [Google Scholar] [CrossRef]
- Mrakic-Sposta, S.; Gussoni, M.; Vezzoli, A.; Dellanoce, C.; Comassi, M.; Giardini, G.; Bruno, R.M.; Montorsi, M.; Corciu, A.; Greco, F.; et al. Acute Effects of Triathlon Race on Oxidative Stress Biomarkers. Oxid. Med. Cell. Longev. 2020, 2020, 3062807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, V.; Sessa, W.C. Endothelial NOS: Perspective and recent developments. Br. J. Pharm. 2019, 176, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Pollock, J.S.; Forstermann, U.; Mitchell, J.A.; Warner, T.D.; Schmidt, H.H.; Nakane, M.; Murad, F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc. Natl. Acad. Sci. USA 1991, 88, 10480–10484. [Google Scholar] [CrossRef] [Green Version]
- Hardy, T.A.; May, J.M. Coordinate regulation of L-arginine uptake and nitric oxide synthase activity in cultured endothelial cells. Free Radic. Biol. Med. 2002, 32, 122–131. [Google Scholar] [CrossRef]
- Gates, P.E.; Boucher, M.L.; Silver, A.E.; Monahan, K.D.; Seals, D.R. Impaired flow-mediated dilation with age is not explained by L-arginine bioavailability or endothelial asymmetric dimethylarginine protein expression. J. Appl. Physiol. 2007, 102, 63–71. [Google Scholar] [CrossRef]
- Blum, A.; Hathaway, L.; Mincemoyer, R.; Schenke, W.H.; Kirby, M.; Csako, G.; Waclawiw, M.A.; Panza, J.A.; Cannon, R.O., 3rd. Oral L-arginine in patients with coronary artery disease on medical management. Circulation 2000, 101, 2160–2164. [Google Scholar] [CrossRef] [Green Version]
- Bode-Boger, S.M.; Muke, J.; Surdacki, A.; Brabant, G.; Boger, R.H.; Frolich, J.C. Oral L-arginine improves endothelial function in healthy individuals older than 70 years. Vasc. Med. 2003, 8, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, P.; Adams, M.R.; Powe, A.J.; Donald, A.E.; McCredie, R.; Robinson, J.; McCarthy, S.N.; Keech, A.; Celermajer, D.S.; Deanfield, J.E. Oral L-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J. Clin. Investig. 1996, 97, 1989–1994. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.H.; Chen, J.W.; Tsai, C.; Chiang, M.C.; Young, M.S.; Lin, S.J. L-arginine improves endothelial function and reduces LDL oxidation in patients with stable coronary artery disease. Clin. Nutr. 2005, 24, 988–997. [Google Scholar] [CrossRef] [PubMed]
- Deveaux, A.; Pham, I.; West, S.G.; Andre, E.; Lantoine-Adam, F.; Bunouf, P.; Sadi, S.; Hermier, D.; Mathe, V.; Fouillet, H.; et al. L-Arginine Supplementation Alleviates Postprandial Endothelial Dysfunction When Baseline Fasting Plasma Arginine Concentration Is Low: A Randomized Controlled Trial in Healthy Overweight Adults with Cardiometabolic Risk Factors. J. Nutr. 2016, 146, 1330–1340. [Google Scholar] [CrossRef]
- Gundersen, K.M.; Nyborg, C.; Heiberg Sundby, O.; Hisdal, J. The effects of sympathetic activity induced by ice water on blood flow and brachial artery flow-mediated dilatation response in healthy volunteers. PLoS ONE 2019, 14, e0219814. [Google Scholar] [CrossRef]
- Gratze, G.; Rudnicki, R.; Urban, W.; Mayer, H.; Schlogl, A.; Skrabal, F. Hemodynamic and autonomic changes induced by Ironman: Prediction of competition time by blood pressure variability. J. Appl. Physiol. 2005, 99, 1728–1735. [Google Scholar] [CrossRef] [Green Version]
- ter Avest, E.; Holewijn, S.; Stalenhoef, A.F.; de Graaf, J. Variation in non-invasive measurements of vascular function in healthy volunteers during daytime. Clin. Sci. 2005, 108, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Maruhashi, T.; Iwamoto, Y.; Kajikawa, M.; Oda, N.; Kishimoto, S.; Matsui, S.; Hashimoto, H.; Aibara, Y.; Yusoff, F.M.; Hidaka, T.; et al. Interrelationships Among Flow-Mediated Vasodilation, Nitroglycerine-Induced Vasodilation, Baseline Brachial Artery Diameter, Hyperemic Shear Stress, and Cardiovascular Risk Factors. J. Am. Heart Assoc. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Pyke, K.E.; Tschakovsky, M.E. The relationship between shear stress and flow-mediated dilatation: Implications for the assessment of endothelial function. J. Physiol. 2005, 568, 357–369. [Google Scholar] [CrossRef]
- Durand, M.J.; Gutterman, D.D. Exercise and vascular function: How much is too much? Can. J. Physiol. Pharm. 2014, 92, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Merghani, A.; Maestrini, V.; Rosmini, S.; Cox, A.T.; Dhutia, H.; Bastiaenan, R.; David, S.; Yeo, T.J.; Narain, R.; Malhotra, A.; et al. Prevalence of Subclinical Coronary Artery Disease in Masters Endurance Athletes With a Low Atherosclerotic Risk Profile. Circulation 2017, 136, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Mohlenkamp, S.; Lehmann, N.; Breuckmann, F.; Brocker-Preuss, M.; Nassenstein, K.; Halle, M.; Budde, T.; Mann, K.; Barkhausen, J.; Heusch, G.; et al. Running: The risk of coronary events: Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur. Heart J. 2008, 29, 1903–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Value |
---|---|
Age (years) | 43 (40–49) |
Weight (Kg) | 78 (70.6–78.5) |
Height (m) | 1.81 (1.74–1.83) |
Weekly endurance exercise * (h) | 16 (12–18) |
Weekly strength exercise * (h) | 1 (0–2) |
Completed Ironman triathlons (n) | 1 (0–4) |
Completed marathons (n) | 5 (1–7) |
Completed ultra-distance races (n) | 2 (0–7) |
Years of competing ** (y) | 7 (5–10) |
Body mass index (Kg/m2) | 23.4 (22.1–24.7) |
Systolic blood pressure (mmHg) | 127 (125–130) |
Diastolic blood pressure (mmHg) | 73 (70–78) |
Swim time (h) | 1.1 (1.0–1.3) |
Bike time (h) | 7.0 (6.4–7.3) |
Run time (h) | 5.9 (5.3–6.2) |
Finish time (h) | 14.5 (13.4–15.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyborg, C.; Melsom, H.S.; Bonnevie-Svendsen, M.; Melau, J.; Seljeflot, I.; Hisdal, J. Transient Reduction of FMD-Response and L-Arginine Accompanied by Increased Levels of E-Selectin, VCAM, and ICAM after Prolonged Strenuous Exercise. Sports 2021, 9, 86. https://doi.org/10.3390/sports9060086
Nyborg C, Melsom HS, Bonnevie-Svendsen M, Melau J, Seljeflot I, Hisdal J. Transient Reduction of FMD-Response and L-Arginine Accompanied by Increased Levels of E-Selectin, VCAM, and ICAM after Prolonged Strenuous Exercise. Sports. 2021; 9(6):86. https://doi.org/10.3390/sports9060086
Chicago/Turabian StyleNyborg, Christoffer, Helene Støle Melsom, Martin Bonnevie-Svendsen, Jørgen Melau, Ingebjørg Seljeflot, and Jonny Hisdal. 2021. "Transient Reduction of FMD-Response and L-Arginine Accompanied by Increased Levels of E-Selectin, VCAM, and ICAM after Prolonged Strenuous Exercise" Sports 9, no. 6: 86. https://doi.org/10.3390/sports9060086
APA StyleNyborg, C., Melsom, H. S., Bonnevie-Svendsen, M., Melau, J., Seljeflot, I., & Hisdal, J. (2021). Transient Reduction of FMD-Response and L-Arginine Accompanied by Increased Levels of E-Selectin, VCAM, and ICAM after Prolonged Strenuous Exercise. Sports, 9(6), 86. https://doi.org/10.3390/sports9060086