Strain Amplitude Dependence of High Damping Grp/Mg97Zn1Y2 Composites Ranging from Anelastic to Microplastic
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of the Samples
2.2. Material Characterization
3. Results and Discussion
3.1. Microstructure of the Grp/Mg97Zn1Y2 Composites
3.2. Different Intervals in the Strain Amplitude Damping Curve
3.3. Strain Amplitude-Dependent Damping in Anelastic Range
3.4. Strain Amplitude-Dependent Damping in Microplastic Range
4. Conclusions
- (1)
- Composites consisting of different graphite particle sizes (24, 11, and 3 μm) were designed and prepared using the casting method. The graphite particles were successfully added into the Mg97Zn1Y2 matrix. Graphite particles do not easily react with molten magnesium.
- (2)
- The Grp/Mg97Zn1Y2 composite has the characteristics of high damping capacity. At the anelastic stage, the damping properties of the Grp/Mg97Zn1Y2 composites were found to be higher than those of the Mg97Zn1Y2 alloy. Furthermore, decreasing the graphite particle size was found to improve the damping properties of the Grp/Mg97Zn1Y2 composites. At the microplastic deformation stage, the damping properties of the Mg97Zn1Y2 alloy were found to be higher than those of the Grp/Mg97Zn1Y2 composites. Moreover, the damping properties of the Grp/Mg97Zn1Y2 composites were found to decrease with increasing graphite particle size.
- (3)
- The reason for the increased damping of the Grp/Mg97Zn1Y2 composites during the anelastic strain amplitude stage can be attributed to the increase in the number of damping sources and weak interactions among the dislocation damping mechanisms. At the microplastic strain amplitude stage, the damping properties of the composite are mainly affected by the activation volume of the slipped dislocation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, J.; She, J.; Chen, D.; Pan, F. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloy. 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Catania, G.; Strozzi, M. Damping Oriented Design of Thin-Walled Mechanical Components by Means of Multi-Layer Coating Technology. Coatings 2018, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Su, J.-L.; Teng, J.; Xu, Z.-L.; Li, Y. Biodegradable magnesium-matrix composites: A review. Int. J. Miner. Met. Mater. 2020, 27, 724–744. [Google Scholar] [CrossRef]
- Cui, Y.; Li, Y.; Sun, S.; Bian, H.; Huang, H.; Wang, Z.; Koizumi, Y.; Chiba, A. Enhanced damping capacity of magnesium alloys by tensile twin boundaries. Scr. Mater. 2015, 101, 8–11. [Google Scholar] [CrossRef]
- Yu, L.; Ma, Y.; Zhou, C.; Xu, H. Damping efficiency of the coating structure. Int. J. Solids Struct. 2005, 42, 3045–3058. [Google Scholar] [CrossRef]
- Yu, W.; Li, X.; Vallet, M.; Tian, L. High temperature damping behavior and dynamic Young’s modulus of magnesium matrix composite reinforced by Ti2AlC MAX phase particles. Mech. Mater. 2019, 129, 246–253. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, K.; Deng, K.-K.; Nie, K.B.; Wang, X.; Hu, X.; Zheng, M. Damping capacities and tensile properties of magnesium matrix composites reinforced by graphite particles. Mater. Sci. Eng. A 2010, 527, 6816–6821. [Google Scholar] [CrossRef]
- Liu, E.-Y.; Yu, S.-R.; Yuan, M.; Li, F.-G.; Zhao, Y.; Xiong, W. Effects of Semi-solid Isothermal Heat Treatment on Microstructures and Damping Capacities of Fly Ash Cenosphere/AZ91D Composites. Acta Met. Sin. (Engl. Lett.) 2018, 31, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, Q.; Li, Q. Microstructure and Mechanical Properties of AZ61 Magnesium Alloys with the Y and Ca Combined Addition. Int. J. Metalcast. 2018, 12, 897–905. [Google Scholar] [CrossRef]
- Kar, C.; Trishul, M. Experimentation and optimisation of wear parameters of glass fibre-graphite reinforced composite. Mater. Today Proc. 2020, 27, 1431–1434. [Google Scholar] [CrossRef]
- Luo, X.; Chung, D. Vibration damping using flexible graphite. Carbon 2000, 38, 1510–1512. [Google Scholar] [CrossRef]
- Hu, Y.; Deng, J.; Pan, F.; Zhang, D.; Chen, Y.; Wang, J. Study on damping capacity of graphite particle—reinforced AZ31 magnesium matrix composites. J. Compos. Mater. 2011, 45, 557–564. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, K.; Deng, K.-K.; Nie, K.B.; Wang, X.; Zheng, M.; Hu, X. Damping capacities and microstructures of magnesium matrix composites reinforced by graphite particles. Mater. Des. 2010, 31, 4862–4865. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, K.; Nie, K.; Deng, K.-K.; Hu, X.; Wang, X.; Zheng, M. Damping capacities and tensile properties in Grp/AZ91 and SiCp/Grp/AZ91 magnesium matrix composites. Mater. Sci. Eng. A 2010, 527, 7873–7877. [Google Scholar] [CrossRef]
- Madeira, S.; Carvalho, O.; Carneiro, V.; Soares, D.; Silva, F.; Miranda, G. Damping capacity and dynamic modulus of hot pressed AlSi composites reinforced with different SiC particle sized. Compos. Part B Eng. 2016, 90, 399–405. [Google Scholar] [CrossRef]
- Wang, C.-J.; Deng, K.-K.; Liang, W. High temperature damping behavior controlled by submicron SiCp in bimodal size particle reinforced magnesium matrix composite. Mater. Sci. Eng. A 2016, 668, 55–58. [Google Scholar] [CrossRef]
- Granato, A.V.; Lucke, K. Theory of Mechanical Damping Due to Dislocations. J. Appl. Phys. 1956, 27, 583–593. [Google Scholar] [CrossRef]
- Granato, A.V.; Lucke, K. Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies. J. Appl. Phys. 1956, 27, 789–805. [Google Scholar] [CrossRef]
- Wang, J.; Lu, R.; Qin, D.; Yang, W.; Wu, Z. Effect of arc-bending deformation on amplitude-dependent damping in pure magnesium. Mater. Sci. Eng. A 2014, 615, 296–301. [Google Scholar] [CrossRef]
- Yu, L.; Yan, H.; Chen, J.; Xia, W.; Su, B.; Song, M. Effects of solid solution elements on damping capacities of binary magnesium alloys. Mater. Sci. Eng. A 2020, 772, 138707. [Google Scholar] [CrossRef]
- Wan, D.; Hu, J.; Hu, Y.; Wang, H. Anelastic and Microplastic Damping of an Mg–Zn–Y–Al Alloy. Met. Mater. Int. 2019, 26, 69–74. [Google Scholar] [CrossRef]
- Xie, Z.-K.; Tane, M.; Hyun, S.-K.; Okuda, Y.; Nakajima, H. Vibration–damping capacity of lotus-type porous magnesium. Mater. Sci. Eng. A 2006, 417, 129–133. [Google Scholar] [CrossRef]
- Kustov, S.; Golyandin, S.; Sapozhnikov, K.; Robinson, W. Amplitude-dependent internal friction, microplastic strain and recovery of lead at ambient temperature. Mater. Sci. Eng. A 1997, 237, 191–199. [Google Scholar] [CrossRef]
- Lü, S.; Wu, S.; Yang, X.; Hao, L.; Guo, W.; Fang, X. Microstructure and mechanical properties of Mg 97 Zn 1 Y 2 alloy reinforced with LPSO structure produced by semisolid squeeze casting. Mater. Sci. Eng. A 2018, 732, 359–367. [Google Scholar] [CrossRef]
- Suzawa, K.; Inoue, S.-I.; Nishimoto, S.; Fuchigami, S.; Yamasaki, M.; Kawamura, Y.; Yoshida, K.; Kawabe, N. High-strain-rate superplasticity and tensile behavior of fine-grained Mg97Zn1Y2 alloys fabricated by chip/ribbon-consolidation. Mater. Sci. Eng. A 2019, 764, 138–179. [Google Scholar] [CrossRef]
- Fu, H.; Liu, N.; Zhang, Z.; Peng, Q. Effect of super-high pressure on microstructure and mechanical properties of Mg97Zn1Y2 alloys. J. Magnes. Alloy. 2016, 4, 302–305. [Google Scholar] [CrossRef] [Green Version]
- Puškár, A. Internal Friction of Materials; Cambridge International Science Publishing: Cambrigde, UK, 2001; pp. 234–324, ISBN-13/EAN: 9781898326502. [Google Scholar]
- Diqing, W.; Houbin, W.; Jiajun, H.; Yinglin, H.; Linsen, W.; Kangjin, F. Effect of the Secondary Phase on Mechanical and Damping Properties of Mg–Zn–Y–Si Alloy. Met. Mater. Int. 2021, 27, 838–842. [Google Scholar] [CrossRef]
- Garces, G.; Oñorbe, E.; Dobeš, F.; Pérez, P.; Antoranz, J.M.; Adeva, P. Effect of microstructure on creep behaviour of cast Mg97Y2Zn1 (at.%) alloy. Mater. Sci. Eng. A 2012, 539, 48–55. [Google Scholar] [CrossRef]
- Zhang, J.; Perez, R.J.; Wong, C.R.; Lavernia, E.J. Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites. Mater. Sci. Eng. R Rep. 1994, 13, 325–389. [Google Scholar] [CrossRef]
- Peguin, P.; Perez, J.; Gobin, P. Amplitude-dependent part of the internal friction of aluminum. Aime Met. Soc. Trans. 1967, 239, 438–450. [Google Scholar]
Various Values | B1 102 | B2 102 | ||
---|---|---|---|---|
Material Type | ||||
Mg97Zn1Y2 | 9.5127 | 5.4482 | 0.3020 | |
24 μm 2 vol.%/Mg97Zn1Y2 | 8.1624 | 5.0066 | 0.3175 | |
11 μm 2 vol.%/Mg97Zn1Y2 | 8.1995 | 5.2748 | 0.2982 | |
3 μm 2 vol.%/Mg97Zn1Y2 | 8.6567 | 5.3000 | 0.2901 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, D.; Dong, S.; Hu, Y.; Hu, J.; Xue, Y.; Han, G. Strain Amplitude Dependence of High Damping Grp/Mg97Zn1Y2 Composites Ranging from Anelastic to Microplastic. Metals 2021, 11, 1570. https://doi.org/10.3390/met11101570
Wan D, Dong S, Hu Y, Hu J, Xue Y, Han G. Strain Amplitude Dependence of High Damping Grp/Mg97Zn1Y2 Composites Ranging from Anelastic to Microplastic. Metals. 2021; 11(10):1570. https://doi.org/10.3390/met11101570
Chicago/Turabian StyleWan, Diqing, Shaoyun Dong, Yinglin Hu, Jiajun Hu, Yandan Xue, and Guoliang Han. 2021. "Strain Amplitude Dependence of High Damping Grp/Mg97Zn1Y2 Composites Ranging from Anelastic to Microplastic" Metals 11, no. 10: 1570. https://doi.org/10.3390/met11101570
APA StyleWan, D., Dong, S., Hu, Y., Hu, J., Xue, Y., & Han, G. (2021). Strain Amplitude Dependence of High Damping Grp/Mg97Zn1Y2 Composites Ranging from Anelastic to Microplastic. Metals, 11(10), 1570. https://doi.org/10.3390/met11101570