Anodized Biomedical Stainless-Steel Mini-Implant for Rapid Recovery in a Rabbit Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Surface and Microstructure Characterization
2.3. Cell Behavior Analysis
2.4. Implantation Procedure
2.5. Hystopathological Evaluation
3. Results
3.1. Microstructural and Chemical Bonding Features
3.2. Morphology of the Potential Anodized Mini-Implant
3.3. Cell Adhesion and Response
3.4. Bone Healing and Regeneration Characteristic
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Zhao, Z.; Li, Y.; Wu, J.; Zheng, L.; Tang, T. Osseointegration of orthodontic micro-screws after immediate and early loading. Angle Orthod. 2010, 80, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Oltramari-Navarro, P.V.; Navarro, R.L.; Henriques, J.F.; Cestari, T.M.; Francischone, C.E.; Taga, R.; McNamara, J.A., Jr. The impact of healing time before loading on orthodontic mini-implant stability: A histomorphometric study in minipigs. Arch. Oral Biol. 2013, 58, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, L.; Wu, Y.; Wang, H.; Zhao, Z.; Xu, Z.; Wei, X.; Tang, T. The effect of varying healing times on orthodontic mini-implant stability: A microscopic computerized tomographic and biomechanical analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, J.S.; Albuquerque, R.F., Jr.; Murshed, M.; Feine, J.S. Osseointegration of standard and mini dental implants: A histomorphometric comparison. Int. J. Implant. Dent. 2017, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramazanzadeh, B.A.; Fatemi, K.; Dehghani, M.; Mohtasham, N.; Jahanbin, A.; Sadeghian, H. Effect of healing time on bone-implant contact of orthodontic micro-implants: A histologic study. ISRN Dent. 2014, 2014, 179037. [Google Scholar] [CrossRef] [Green Version]
- Baumgaertel, S.; Razavi, M.R.; Hans, M.G. Mini-implant anchorage for the orthodontic practitioner. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 621–627. [Google Scholar] [CrossRef]
- Buchter, A.; Wiechmann, D.; Koerdt, S.; Wiesmann, H.P.; Piffko, J.; Meyer, U. Load-related implant reaction of mini-implants used for orthodontic anchorage. Clin. Oral Implant. Res. 2005, 16, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Consolaro, A.; Romano, F.L. Reasons for mini-implants failure: Choosing installation site should be valued! Dental Press J. Orthod. 2014, 19, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynders, R.; Ronchi, L.; Bipat, S. Mini-implants in orthodontics: A systematic review of the literature. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 564.e1–564.e19. [Google Scholar] [CrossRef]
- Oh, N.H.; Kim, E.Y.; Paek, J.; Kook, Y.A.; Jeong, D.M.; Cho, I.S.; Nelson, G. Evaluation of stability of surface-treated mini-implants in diabetic rabbits. Int. J. Dent. 2014, 2014, 838356. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Xie, J. Comparison of the effects of mini-implant and traditional anchorage on patients with maxillary dentoalveolar protrusion. Angle Orthod. 2017, 87, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Cousley, R.R.; Sandler, P.J. Advances in orthodontic anchorage with the use of mini-implant techniques. Br. Dental J. 2015, 218, E4. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Inami, T.; Ito, K.; Kasai, K.; Tanimoto, Y. Mini-implants in the anchorage armamentarium: New paradigms in the orthodontics. Int. J. Biomater. 2012, 2012, 394121. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.C.; Chang, H.H.; Chang, J.Z.; Lai, H.H.; Lu, S.C.; Chen, Y.J. Revisiting the stability of mini-implants used for orthodontic anchorage. J. Formos. Med. Assoc. 2015, 114, 1122–1128. [Google Scholar] [CrossRef]
- Chikarakara, E.; Naher, S.; Brabazon, D. Process mapping of laser surface modification of AISI 316L stainless steel for biomedical applications. Appl. Phys. A 2010, 101, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Martinesi, M.; Bruni, S.; Stio, M.; Treves, C.; Bacci, T.; Borgioli, F. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures. J. Biomed. Mater. Res. A 2007, 80, 131–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stio, M.; Martinesi, M.; Treves, C.; Borgioli, F. Cultures and co-cultures of human blood mononuclear cells and endothelial cells for the biocompatibility assessment of surface modified AISI 316L austenitic stainless steel. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 1081–1091. [Google Scholar] [CrossRef]
- Mojarad Shafiee, B.; Torkaman, R.; Mahmoudi, M.; Emadi, R.; Derakhshan, M.; Karamian, E.; Tavangarian, F. Surface modification of 316L SS implants by applying bioglass/gelatin/polycaprolactone composite coatings for biomedical applications. Coatings 2020, 10, 1220. [Google Scholar] [CrossRef]
- Mandracci, P.; Mussano, F.; Rivolo, P.; Carossa, S. Surface Treatments and functional coatings for biocompatibility Improvement and bacterial adhesion reduction in dental implantology. Coatings 2016, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Kocijan, A.; Conradi, M.; Hocevar, M. The influence of surface wettability and topography on the bioactivity of TiO2/Epoxy coatings on AISI 316L stainless steel. Materials 2019, 12, 1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alipal, J.; Lee, T.C.; Koshy, P.; Abdullah, H.Z.; Idris, M.I. Evolution of anodised titanium for implant applications. Heliyon 2021, 7, e07408. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-J.; Wu, C.-Y.; Huang, B.-H.; Tsai, C.-H.; Saito, T.; Ou, K.-L.; Chuo, Y.-C.; Lin, K.-L.; Peng, P.-W. Surface characteristics and cell adhesion behaviors of the anodized biomedical stainless steel. Appl. Sci. 2020, 10, 6275. [Google Scholar] [CrossRef]
- Mo, S.S.; Kim, S.H.; Kook, Y.A.; Jeong, D.M.; Chung, K.R.; Nelson, G. Resistance to immediate orthodontic loading of surface-treated mini-implants. Angle Orthod. 2010, 80, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Lee, S.J.; Cho, I.S.; Kim, S.K.; Kim, T.W. Rotational resistance of surface-treated mini-implants. Angle Orthod. 2009, 79, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Pliska, A.; Busch, C.; Wilmes, B.; Wolf, M.; Drescher, D. Efficacy of orthodontic mini implants for en masse retraction in the maxilla: A systematic review and meta-analysis. Int. J. Implant. Dent. 2018, 4, 35. [Google Scholar] [CrossRef]
- Bueno, R.C.; Basting, R.T. In vitro study of human osteoblast proliferation and morphology on orthodontic mini-implants. Angle Orthod. 2015, 85, 920–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, C.B.; Segurado, M.N.; Dorta, M.C.; Dias, F.R.; Lenza, M.G.; Lenza, M.A. Evaluation of cytotoxicity and corrosion resistance of orthodontic mini-implants. Dental Press J. Orthod. 2016, 21, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- do Nascimento, C.A.; Barbosa, J.A.; Montalli, V.A.M.; Micheletti, F.; Milani, R.; Pereira, V.; Caldeira, L.; Basting, R.T. Corrosion and micromorphological analysis of temporary stainless steel and titanium alloy anchorage devices. J. Bio- Tribo-Corros. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Luo, H.; Su, H.; Dong, C.; Li, X. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution. Appl. Surf. Sci. 2017, 400, 38–48. [Google Scholar] [CrossRef]
- Safiya, S.; Manjunath, G. Mini-implant materials: An overview. IOSR J. Dental Med. Sci. 2013, 7, 6. [Google Scholar] [CrossRef]
- DesJardin- Park, H.E.; Foster, D.S.; Longaker, M.T. Fibroblasts and wound healing: An update. Regen. Med. 2018, 13, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, S. The role of the fibroblast in wound contraction and healing. Wounds 2007, 3, 8. [Google Scholar]
- Bainbridge, P. Wound healing and the role of fibroblasts. J. Wound Care 2018, 22, 6. [Google Scholar]
- Huang, B.H.; Lu, Y.J.; Lan, W.C.; Ruslin, M.; Lin, H.Y.; Ou, K.L.; Saito, T.; Tsai, H.Y.; Lee, C.H.; Cho, Y.C.; et al. Surface properties and biocompatibility of anodized titanium with a potential pretreatment for biomedical applications. Metals 2021, 11, 1090. [Google Scholar] [CrossRef]
- Li, M.; Zhang, A.; Li, J.; Zhou, J.; Zheng, Y.; Zhang, C.; Xia, D.; Mao, H.; Zhao, J. Osteoblast/fibroblast coculture derived bioactive ECM with unique matrisome profile facilitates bone regeneration. Bioact. Mater. 2020, 5, 938–948. [Google Scholar] [CrossRef]
- Claeys, L.; Bravenboer, N.; Eekhoff, E.M.W.; Micha, D. Human fibroblasts as a model for the study of bone disorders. Front. Endocrinol. 2020, 11, 394. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Ferguson, S.J.; Beutler, T.; Cochran, D.L.; Sittig, C.; Hirt, H.P.; Buser, D. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J. Biomed. Mater. Res. 2002, 60, 325–332. [Google Scholar] [CrossRef]
- Buser, D.; Broggini, N.; Wieland, M.; Schenk, R.K.; Denzer, A.J.; Cochran, D.L.; Hoffmann, B.; Lussi, A.; Steinemann, S.G. Enhanced bone apposition to a chemically modified SLA titanium surface. J. Dental Res. 2004, 83, 529–533. [Google Scholar] [CrossRef]
- Buser, D.N.; Nydegger, T.; Oxland, T.; Cochran, D.L.; Schenk, R.K.; Hirt, H.P.; Snetivy, D.; Nolte, L.-P. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: A biomechanical study in the maxilla of miniature pigs. J. Biomed. Mater. Res. 1999, 45, 8. [Google Scholar] [CrossRef]
- Szmukler-Moncler, S.; Perrin, D.; Ahossi, V.; Magnin, G.; Bernard, J.P. Biological properties of acid etched titanium implants: Effect of sandblasting on bone anchorage. J. Biomed. Mater. Res. 2004, 11, 149–159. [Google Scholar] [CrossRef]
Chemical Composition (wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|
Fe | Cr | Ni | C | Si | Mn | P | S | Mo |
Bal. | 17.169 | 11.825 | 0.012 | 0.345 | 1.261 | 0.031 | 0.002 | 2.081 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.-C.; Hung, W.-C.; Lan, W.-C.; Saito, T.; Huang, B.-H.; Lee, C.-H.; Tsai, H.-Y.; Huang, M.-S.; Ou, K.-L. Anodized Biomedical Stainless-Steel Mini-Implant for Rapid Recovery in a Rabbit Model. Metals 2021, 11, 1575. https://doi.org/10.3390/met11101575
Cho Y-C, Hung W-C, Lan W-C, Saito T, Huang B-H, Lee C-H, Tsai H-Y, Huang M-S, Ou K-L. Anodized Biomedical Stainless-Steel Mini-Implant for Rapid Recovery in a Rabbit Model. Metals. 2021; 11(10):1575. https://doi.org/10.3390/met11101575
Chicago/Turabian StyleCho, Yung-Chieh, Wei-Chiang Hung, Wen-Chien Lan, Takashi Saito, Bai-Hung Huang, Chen-Han Lee, Hsin-Yu Tsai, Mao-Suan Huang, and Keng-Liang Ou. 2021. "Anodized Biomedical Stainless-Steel Mini-Implant for Rapid Recovery in a Rabbit Model" Metals 11, no. 10: 1575. https://doi.org/10.3390/met11101575
APA StyleCho, Y.-C., Hung, W.-C., Lan, W.-C., Saito, T., Huang, B.-H., Lee, C.-H., Tsai, H.-Y., Huang, M.-S., & Ou, K.-L. (2021). Anodized Biomedical Stainless-Steel Mini-Implant for Rapid Recovery in a Rabbit Model. Metals, 11(10), 1575. https://doi.org/10.3390/met11101575