Effects of Laser Peening with a Pulse Energy of 1.7 mJ on the Residual Stress and Fatigue Properties of A7075 Aluminum Alloy
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. LPwC Setup and Conditions
2.3. Measurement of RSs
2.4. Fatigue
3. Results and Discussion
3.1. Surface RSs on A7075-T73
3.2. RS Depth Profiles
3.3. Fatigue Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clauer, A.H. Laser shock peening, the path to production. Metals 2019, 9, 626. [Google Scholar] [CrossRef]
- Ding, K.; Ye, L. Laser Shock Peening; Woodhead Publishing in Materials; Woodhead: Cambridge, UK, 2006. [Google Scholar]
- Kruusing, A. Underwater and water-assisted laser processing: Part 1—General features, steam cleaning and shock processing. Opt. Lasers Eng. 2004, 41, 307–327. [Google Scholar] [CrossRef]
- Montross, C.S.; Wei, T.; Ye, L.; Clark, G.; Mai, Y.W. Laser shock processing and its effects on microstructure and properties of metal alloys: A review. Int. J. Fatigue 2002, 24, 1021–1036. [Google Scholar] [CrossRef]
- Fabbro, R.; Peyre, P.; Berthe, L.; Scherpereel, X. Physics and applications of laser-shock processing. J. Laser Appl. 1998, 10, 265–279. [Google Scholar] [CrossRef]
- Sano, Y. Quarter century development of laser peening without coating. Metals 2020, 10, 152. [Google Scholar] [CrossRef]
- Altenberger, I.; Nalla, R.K.; Sano, Y.; Wagner, L.; Ritchie, R.O. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550 °C. Int. J. Fatigue 2012, 44, 292–302. [Google Scholar] [CrossRef]
- Spanrad, S.; Tong, J. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6Al-4V aerofoil specimens. Mater. Sci. Eng. A 2011, 528, 2128–2136. [Google Scholar] [CrossRef]
- See, D.W.; Dulaney, J.L.; Clauer, A.H.; Tenaglia, R.D. The air force manufacturing technology laser peening initiative. Surf. Eng. 2002, 18, 32–36. [Google Scholar] [CrossRef]
- Curtiss-Wright Surface Technologies. Available online: https://cwst.com/ (accessed on 10 September 2021).
- LSP Technologies. Available online: https://www.lsptechnologies.com/ (accessed on 10 September 2021).
- Peyre, P.; Berthe, L.; Scherpereel, X.; Fabbro, R. Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behavior. J. Mater. Sci. 1998, 33, 1421–1429. [Google Scholar] [CrossRef]
- Peyre, P.; Chaieb, I.; Braham, C. FEM calculation of residual stresses induced by laser shock processing in stainless steels. Model. Simul. Mater. Sci. Eng. 2007, 15, 205–221. [Google Scholar] [CrossRef]
- Mukai, N.; Aoki, N.; Obata, M.; Ito, A.; Sano, Y.; Konagai, C. Laser processing for underwater maintenance in nuclear plants. In Proceedings of the 3rd JSME/ASME International Conference on Nuclear Engineering (ICONE-3), Kyoto, Japan, 23–27 April 1995; p. 534. [Google Scholar]
- Sano, Y.; Mukai, N.; Okazaki, K.; Obata, M. Residual stress improvement in metal surface by underwater laser irradiation. Nucl. Instrum. Methods Phys. Res. B 1997, 121, 432–436. [Google Scholar] [CrossRef]
- Sano, Y.; Kimura, M.; Sato, K.; Obata, M.; Sudo, A.; Hamamoto, Y.; Shima, S.; Ichikawa, Y.; Yamazaki, H.; Naruse, M.; et al. Development and application of laser peening system to prevent stress corrosion cracking of reactor core shroud. In Proceedings of the 8th International Conference on Nuclear Engineering (ICONE-8), Baltimore, MD, USA, 2–6 April 2000. [Google Scholar]
- Yoda, M.; Chida, I.; Okada, S.; Ochiai, M.; Sano, Y.; Mukai, N.; Komotori, G.; Saeki, R.; Takagi, T.; Sugihara, M.; et al. Development and application of laser peening system for PWR power plants. In Proceedings of the 14th International Conference on Nuclear Engineering (ICONE-14), Miami, FL, USA, 17–20 July 2006. [Google Scholar]
- Sims, W.; Elias, V. Laser peening for long term operation. Nucl. Plant J. 2018, 4, 54–56. [Google Scholar]
- Sano, Y.; Akita, K.; Sano, T. A mechanism for inducing compressive residual stresses on a surface by laser peening without coating. Metals 2020, 10, 816. [Google Scholar] [CrossRef]
- Sano, Y.; Obata, M.; Kubo, T.; Mukai, N.; Yoda, M.; Masaki, K.; Ochi, Y. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Mater. Sci. Eng. A 2006, 417, 334–340. [Google Scholar] [CrossRef]
- Masaki, K.; Ochi, Y.; Matsumura, T.; Ikarashi, T.; Sano, Y. Effects of laser peening treatment on high cycle fatigue and crack propagation behaviors in austenitic stainless steel. J. Power Energy Syst. 2010, 4, 94–104. [Google Scholar] [CrossRef][Green Version]
- Sakino, Y.; Sano, Y.; Kim, Y.-C. Application of laser peening without coating on steel welded joints. Int. J. Struct. Integr. 2011, 2, 332–344. [Google Scholar] [CrossRef]
- Sano, Y.; Masaki, K.; Gushi, T.; Sano, T. Improvement in fatigue performance of friction stir welded A6061-T6 aluminum alloy by laser peening without coating. Mater. Des. 2012, 36, 809–814. [Google Scholar] [CrossRef]
- Maawad, E.; Sano, Y.; Wagner, L.; Brokmeier, H.-G.; Genzel, C. Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys. Mater. Sci. Eng. A 2012, 536, 82–91. [Google Scholar] [CrossRef]
- Sakino, Y.; Sano, Y.; Sumiya, R.; Kim, Y.-C. Major factor causing improvement in fatigue strength of butt welded steel joints after laser peening without coating. Sci. Technol. Weld. Join. 2012, 17, 402–407. [Google Scholar] [CrossRef]
- Taira, T. Domain-controlled laser ceramics toward Giant Micro-photonics. Opt. Mater. Express 2011, 1, 1040–1050. [Google Scholar] [CrossRef]
- Sato, Y.; Akiyama, J.; Taira, T. Process design of microdomains with quantum mechanics for giant pulse lasers. Sci. Rep. 2017, 7, 10732. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Kausas, A.; Taira, T. Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser. Opt. Mater. Express 2017, 7, 3214–3221. [Google Scholar] [CrossRef]
- Zheng, L.; Kausas, A.; Taira, T. >30 MW peak power from distributed face cooling tiny integrated laser. Opt. Express 2019, 27, 30219–30224. [Google Scholar] [CrossRef] [PubMed]
- Unitac Co., Ltd. Available online: https://unitac.net/micro-01/ (accessed on 10 September 2021).
- Optoquest Co., Ltd. Available online: https://www.optoquest.co.jp/t-info/?p=280/ (accessed on 10 September 2021).
- Optoquest Co., Ltd. Available online: https://www.optoquest.co.jp/t-info/?p=395/ (accessed on 10 September 2021).
- Sakino, Y.; Yoshikawa, K.; Sano, Y.; Sumiya, R.; Kim, Y.-C. A basic study for application of laser peening to large-scale steel structure. Q. J. Jpn. Weld. Soc. 2013, 31, 231–237. [Google Scholar] [CrossRef][Green Version]
- Pulstec Industrial Co., Ltd. Available online: https://www.pulstec.co.jp/en/product/x-ray/ (accessed on 10 September 2021).
- Tanaka, K. The cos method for X-ray residual stress measurement using two-dimensional detector. Mech. Eng. Rev. 2019, 6, 18-00378. [Google Scholar] [CrossRef]
- Sano, Y.; Masaki, K.; Akita, K.; Kajiwara, K.; Sano, T. Effect of laser peening on the mechanical properties of aluminum alloys probed by synchrotron radiation and X-ray free electron laser. Metals 2020, 10, 1490. [Google Scholar] [CrossRef]
- Ubiquitous Power Laser for Achieving a Safe, Secure and Longevity Society under ImPACT Program. Available online: https://www.jst.go.jp/impact/sano/index.html/ (accessed on 10 September 2021).
- Ubiquitous Power Laser for Achieving a Safe, Secure and Longevity Society under ImPACT Program. Available online: https://www.youtube.com/watch?v=nMsOkkEPK5I/ (accessed on 10 September 2021).
Material | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
A7075-T73 | 0.07 | 0.17 | 1.5 | 0.02 | 2.5 | 0.19 | 5.7 | 0.03 | Bal. |
A7075BE-T6511 | 0.08 | 0.19 | 1.8 | 0.04 | 2.6 | 0.20 | 5.8 | 0.01 | Bal. |
Material | 0.2% Proof Stress | Tensile Strength | Elongation |
---|---|---|---|
A7075-T73 | 425 MPa | 497 MPa | 12.0% |
A7075BE-T6511 | 627 MPa | 660 MPa | 9.2% |
Parameter | RS Sample | Fatigue Sample |
---|---|---|
Laser wavelength (μm) | 1.06 | 1.06 |
Pulse energy (mJ) | 1.7 | 1.7 |
Pulse duration (ns) | 1.3 | 1.3 |
Spot diameter (mm) | 0.30 | 0.30 |
Peak power density (GW/cm2) | 1.9 | 1.9 |
Pulse repetition rate (Hz) | 50 | 50 |
Pulse density (pulse/mm2) | 100–1600 | 800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sano, Y.; Masaki, K.; Mizuta, Y.; Tamaki, S.; Hosokai, T.; Taira, T. Effects of Laser Peening with a Pulse Energy of 1.7 mJ on the Residual Stress and Fatigue Properties of A7075 Aluminum Alloy. Metals 2021, 11, 1716. https://doi.org/10.3390/met11111716
Sano Y, Masaki K, Mizuta Y, Tamaki S, Hosokai T, Taira T. Effects of Laser Peening with a Pulse Energy of 1.7 mJ on the Residual Stress and Fatigue Properties of A7075 Aluminum Alloy. Metals. 2021; 11(11):1716. https://doi.org/10.3390/met11111716
Chicago/Turabian StyleSano, Yuji, Kiyotaka Masaki, Yoshio Mizuta, Satoshi Tamaki, Tomonao Hosokai, and Takunori Taira. 2021. "Effects of Laser Peening with a Pulse Energy of 1.7 mJ on the Residual Stress and Fatigue Properties of A7075 Aluminum Alloy" Metals 11, no. 11: 1716. https://doi.org/10.3390/met11111716
APA StyleSano, Y., Masaki, K., Mizuta, Y., Tamaki, S., Hosokai, T., & Taira, T. (2021). Effects of Laser Peening with a Pulse Energy of 1.7 mJ on the Residual Stress and Fatigue Properties of A7075 Aluminum Alloy. Metals, 11(11), 1716. https://doi.org/10.3390/met11111716