Investigation of the Pressure Dependent Hydrogen Solubility in a Martensitic Stainless Steel Using a Thermal Agile Tubular Autoclave and Thermal Desorption Spectroscopy
Abstract
:1. Introduction
2. Investigated Material
3. Experimental Procedure
4. Results and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
TDS | thermal desorption spectroscopy |
FCEV | fuel-cell-electric-vehicle |
MPI-IS | Max Planck Institute for Intelligent Systems |
RT | roomtemperature |
HELP | hydrogen-enhanced-localised-plasticity |
References
- Züttel, A. Hydrogen storage methods. Die Nat. 2004, 91, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Schick, N. Referenz-Brennstoffzellensystem für Elektrofahrzeuge. MTZ—Mot. Z. 2019, 80, 100–104. [Google Scholar] [CrossRef]
- Robertson, I.; Sofronis, P.; Nagao, A.; Martin, M.L.; Wang, S.; Gross, D.W.; Nygren, K.E. Hydrogen embrittlement understood. Metall. Mater. Trans. B 2015, 46, 1085–1103. [Google Scholar] [CrossRef]
- Takai, K.; Shoda, H.; Suzuki, H.; Nagumoc, M. Lattice defects dominating hydrogen-related failure of metals. Acta Mater. 2008, 56, 5158–5167. [Google Scholar] [CrossRef]
- Lynch, S. Hydrogen embrittlement (HE) phenomena and mechanisms. In Stress Corrosion Cracking; Elsevier: Amsterdam, The Netherlands, 2011; pp. 90–130. [Google Scholar]
- Möser, M.; Schmidt, V. Fractography and mechanism of hydrogen cracking-the fisheye concept. In Fracture 84; Elsevier: Amsterdam, The Netherlands, 1984; pp. 2459–2466. [Google Scholar]
- Fujita, F. The role of hydrogen in the fracture of iron and steel. Trans. Jpn. Inst. Met. 1976, 17, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Michler, T.; Naumann, J. Influence of high pressure hydrogen on the tensile and fatigue properties of a high strength Cu–Al–Ni–Fe alloy. Int. J. Hydrogen Energy 2010, 35, 11373–11377. [Google Scholar]
- Schauer, G. Auslegungsansatz für Stahlbauteile bei Ermüdungsbeanspruchung in Druckwasserstoffatmosphäre. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2018. [Google Scholar]
- San Marchi, C.; Michler, T.; Nibur, K.A.; Somerday, B.P. On the physical differences between tensile testing of type 304 and 316 austenitic stainless steels with internal hydrogen and in external hydrogen. Int. J. Hydrogen Energy 2010, 35, 9736–9745. [Google Scholar] [CrossRef]
- Boellinghaus, T.; Hoffmeister, H.; Dangeleit, A. A scatterband for hydrogen diffusion coefficients in microalloyed and low carbon structural steels. Weld. World/Le Soudage Monde 1995, 2, 149. [Google Scholar]
- Zafra, A.; Peral, L.B.; Belzunce, J.; Rodriguez, C. Effect of hydrogen on the tensile properties of 42CrMo4 steel quenched and tempered at different temperatures. Int. J. Hydrogen Energy 2018, 43, 9068–9082. [Google Scholar] [CrossRef]
- Peral, L.B.; Zafra, A.; Blason, S.; Rodriguez, C.; Belzunce, J. Effect of hydrogen on the fatigue crack growth rate of quenched and tempered CrMo and CrMoV steels. Int. J. Fatigue 2019, 120, 201–214. [Google Scholar] [CrossRef]
- Zeppelin, F.; Haluska, M.; Hirscher, M. Thermal desorption spectroscopy as a quantative tool to determine the hydrogen content in solids. Thermochim. Acta 2003, 404, 251–258. [Google Scholar] [CrossRef]
- Schubert, A. MatFuel—Werkstofftechnik für Brennstoffzellenkomponenten—Förderkennzeichen BMWi 03ET2051A. Robert Bosch GmbH 2017. Available online: https://www.tib.eu/de/suchen/id/TIBKAT:895006367?cHash=052e6876f2a939af01bf4d8727097562 (accessed on 11 September 2020).
- Escobar, D.P.; Verbeken, K.; Duprez, L.; Verhaegea, M. Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy. Mater. Sci. Eng. A 2012, 551, 50–58. [Google Scholar] [CrossRef]
- Frappart, S.; Oudriss, A.; Feaugas, X.; Creus, J.; Bouhattate, J.; Thébault, F.; Delattre, L.; Marchebois, H. Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy. Scr. Mater. 2011, 65, 859–862. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Yamabe, J.; Awane, T.; Takakuwa, O.; Matsuoka, S. Hydrogen-assisted degradation of high-strength stainless steel with a newly developed aluminum-based coating in high-pressure hydrogen gas environment. Press. Vessel. Pip. Conf. 2017, 58004, V06BT06A038. [Google Scholar]
- Somerday, B.P. Technical References on Hydrogen Compatibility of Materials—Low-Alloy Ferritic Steels: Tempered Fe-Cr-Mo Alloys (code 1211)—Sandia National Laboratories. Robert Bosch GmbH. Volume 551, pp. 50–58. Available online: https://www.sandia.gov/matlsTechRef/chapters/1211TechRef_FeCrMo_T.pdf (accessed on 26 June 2020).
- American National Standards Institute. ANSI/CSA CHMC 1-2014 Test Methods for Evaluating Material Compatibility in Compressed Hydrogen Applications—Metals; CSA Group: Toronto, ON, Canada, 2014. [Google Scholar]
Atmosphere | YS [MPa] | UTS [MPa] | A [%] | RA [%] | RRA [%] |
---|---|---|---|---|---|
Air | 834 | 946 | 17.7 | 66.8 | |
1 MPa H2 | 826 | 946 | 18.4 | 65.6 | 98.1 |
C | Si | Mn | P | S | Cr | Ni | Mo | N |
---|---|---|---|---|---|---|---|---|
0.025 | 0.40 | 0.92 | 0.021 | 0.008 | 15.47 | 4.66 | 0.90 | 0.068 |
Pressure at | Pressure at | 1st Charging | 2nd Charging | 3rd Charging | ceq |
---|---|---|---|---|---|
RT [MPa] | 250 °C [MPa] | Duration [s] | Duration [s] | Duration [s] | [wt.-ppm] |
1 | 1.1 | 3274 | 11,191 | 55,761 | 2.78 |
6 | 6.7 | 3234 | 10,064 | 55,525 | 5.31 |
13.5 | 15.0 | 3340 | 9451 | 58,419 | 8.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayek, P.; Esser, S.; Quiroz, V.; Kim, C.D. Investigation of the Pressure Dependent Hydrogen Solubility in a Martensitic Stainless Steel Using a Thermal Agile Tubular Autoclave and Thermal Desorption Spectroscopy. Metals 2021, 11, 231. https://doi.org/10.3390/met11020231
Fayek P, Esser S, Quiroz V, Kim CD. Investigation of the Pressure Dependent Hydrogen Solubility in a Martensitic Stainless Steel Using a Thermal Agile Tubular Autoclave and Thermal Desorption Spectroscopy. Metals. 2021; 11(2):231. https://doi.org/10.3390/met11020231
Chicago/Turabian StyleFayek, Patrick, Sebastian Esser, Vanessa Quiroz, and Chong Dae Kim. 2021. "Investigation of the Pressure Dependent Hydrogen Solubility in a Martensitic Stainless Steel Using a Thermal Agile Tubular Autoclave and Thermal Desorption Spectroscopy" Metals 11, no. 2: 231. https://doi.org/10.3390/met11020231
APA StyleFayek, P., Esser, S., Quiroz, V., & Kim, C. D. (2021). Investigation of the Pressure Dependent Hydrogen Solubility in a Martensitic Stainless Steel Using a Thermal Agile Tubular Autoclave and Thermal Desorption Spectroscopy. Metals, 11(2), 231. https://doi.org/10.3390/met11020231