Novel Technique for Enhancing the Strength of Friction Stir Spot Welds through Dynamic Welding Parameters
Abstract
:1. Introduction
2. Material and Research Methodology
2.1. Research Framework
2.2. Experimental Setup
2.3. Parametric Study
3. Results and Discussion
3.1. Static Welding Parametric Study
3.2. Weld’s Strength Enhancement Study Using DWP
3.2.1. Results of DWP
3.2.2. Welding Force and Temperature Results
3.2.3. Results of the Microhardness
4. Summary and Conclusions
- The proposed DWP method provides an enhancement in the welds’ strength compared to when static welding parameters are used.
- As compared to the static welding parameters approach, increases of 12% and 21% were noted in the welds’ strength corresponding to RDWP of 0.5 and 0.25, respectively, when the spindle speed is used as DWP.
- For the RDWP value higher than 1, the weld strength decreases for both SS and FR employed as DWP, due to the increase in the friction and temperature at higher values of SS and FR.
- Overall, the feed rate was not found to be very effective for enhancing the welds’ strength when it was employed as a dynamic welding parameter as compared to the spindle speed.
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mortimer, J. Jaguar “Roadmap” rethinks self-piercing technology. Ind. Robot Int. J. 2005, 32, 209–213. [Google Scholar] [CrossRef]
- Hancock, R. Friction welding of aluminum cuts energy costs by 99%. Weld. J. N. Y. 2004, 83, 40–43. [Google Scholar]
- Shibayanagi, T.; Mizushima, K.; Yoshikawa, S.; Ikeuchi, K. Friction stir spot welding of pure aluminum sheet in view of high temperature deformation. Trans. Join. Weld. Res. Inst. 2011, 40, 1–5. [Google Scholar]
- Pan, T.-Y. Friction Stir Spot Welding (FSSW)—A Literature Review; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Bozkurt, Y.; Türker, A.; Soytemiz, G.; Salman, S. The Investigation and Comparison of Friction Stir Spot Welding and Electrical Resistance Spot Welding of AA2024 Aluminium Alloy Joints. In Proceedings of the ICENS 4th International Conference on Engineering and Natural Science, Kiev, Ukraine, 2–6 March 2018. [Google Scholar]
- Yuan, W. Friction Stir Spot Welding of Aluminum Alloys; Missouri University of Science and Technology: Rolla, MI, USA, 2008. [Google Scholar]
- Lacki, P.; Derlatka, A.; Galaczynski, T. Selection of Basic Position in Refill Friction Stir Spot Welding of 2024-T3 and D16utw Aluminum Alloy Sheets. Arch. Met. Mater. 2017, 62, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Gerlich, A.; Avramovic-Cingara, G.; North, T.H. Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding. Met. Mater. Trans. A 2006, 37, 2773–2786. [Google Scholar] [CrossRef]
- Iwashita, T. Method and Apparatus for Joining. Google Patents EP1149656A3, 22 October 2003. [Google Scholar]
- Meilinger, Á.; Török, I. The importance of friction stir welding tool. Prod. Process. Syst. 2013, 6, 25–34. [Google Scholar]
- Mishra, R.S.; Mahoney, M.W. The Materials Information Society. In Friction Stir Welding and Processing; ASM International: Almere, The Netherland, 2007. [Google Scholar]
- Su, Z.M.; Qiu, Q.H.; Lin, P.C. Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach. Materials 2016, 9, 677. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.R.; Ahn, E.Y.; Das, H.; Jeong, Y.H.; Hong, S.T.; Miles, M.; Lee, K.J. Effect of Tool Geometry and Process Parameters on Mechanical Properties of Friction Stir Spot Welded Dissimilar Aluminum Alloys. Int. J. Precis. Eng. Manuf. 2017, 18, 445–452. [Google Scholar] [CrossRef]
- Li, Z.W.; Yue, Y.M.; Ji, S.D.; Peng, C.; Wang, L. Optimal design of thread geometry and its performance in friction stir spot welding. Mater. Des. 2016, 94, 368–376. [Google Scholar] [CrossRef]
- Paidar, M.; Sadeghi, F.; Najafi, H.; Khodabandeh, A.R. Effect of Pin and Shoulder Geometry on Stir Zone and Mechanical Properties of Friction Stir Spot-Welded Aluminum Alloy 2024-T3 Sheets. J. Manuf. Sci. Eng. Theor. ASME 2015, 137. [Google Scholar] [CrossRef]
- Abbass, M.K.; Hussein, S.K.; Khudhair, A.A. Optimization of Mechanical Properties of Friction Stir Spot Welded Joints for Dissimilar Aluminum Alloys (AA2024-T3 and AA 5754-H114). Arab. J. Sci. Eng. 2016, 41, 4563–4572. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Liu, X.; Ni, J. Effects of Process Parameters on Friction Stir Spot Welding of Aluminum Alloy to Advanced High-Strength Steel. J. Manuf. Sci. Eng. Theor. ASME 2017, 139, 081016. [Google Scholar] [CrossRef]
- Paidar, M.; Khodabandeh, A.; Najafi, H.; Rouh-Aghdam, A.S. Effects of the tool rotational speed and shoulder penetration depth on mechanical properties and failure modes of friction stir spot welds of aluminum 2024-T3 sheets. J. Mech. Sci. Technol. 2014, 28, 4893–4898. [Google Scholar] [CrossRef]
- Patel, V.V.; Sejani, D.J.; Patel, N.J.; Vora, J.J.; Gadhvi, B.J.; Padodara, N.R.; Vamja, C.D. Effect of Tool Rotation Speed on Friction Stir Spot Welded AA5052-H32 and AA6082-T6 Dissimilar Aluminum Alloys. Met. Microstruct. 2016, 5, 142–148. [Google Scholar] [CrossRef]
- Sekhar, S.R.; Chittaranjandas, V.; Govardhan, D.; Karthikeyan, R. Effect Of Tool Rotational Speed On Friction Stir Spot Welded Aa5052-H38 Aluminum Alloy. Mater. Today Proc. 2018, 5, 5536–5543. [Google Scholar] [CrossRef]
- Pattanaik, A.K.; Pradhan, S.; Panda, S.N.; Bagal, D.K.; Pal, K.; Patnaik, D. Effect of Process Parameters on Friction Stir Spot Welding Using Grey Based Taguchi Methodology. Mater. Today Proc. 2018, 5, 12098–12102. [Google Scholar] [CrossRef]
- Piccini, J.M.; Svoboda, H.G. Effect of the tool penetration depth in Friction Stir Spot Welding (FSSW) of dissimilar aluminum alloys. Procedia Mater. Sci. 2015, 8, 868–877. [Google Scholar] [CrossRef] [Green Version]
- Rana, P.K.; Narayanan, R.G.; Kailas, S.V. Effect of rotational speed on friction stir spot welding of AA5052-H32/HDPE/AA5052-H32 sandwich sheets. J. Mater. Process. Technol. 2018, 252, 511–523. [Google Scholar] [CrossRef]
- Garg, A.; Bhattacharya, A. On lap shear strength of friction stir spot welded AA6061 alloy. J. Manuf. Process. 2017, 26, 203–215. [Google Scholar] [CrossRef]
- Shahani, A.; Farrahi, A. Effect of stirring time on the mechanical behavior of friction stir spot weld of Al 6061-T6 lap-shear configuration. Proc. Inst. Mech. Eng. Part C J. Mech. 2019, 233, 3583–3591. [Google Scholar] [CrossRef]
- Boucherit, A.; Avettand-Fenoel, M.N.; Taillard, R. Effect of a Zn interlayer on dissimilar FSSW of Al and Cu. Mater. Des. 2017, 124, 87–99. [Google Scholar] [CrossRef]
- Bakavos, D.; Prangnell, P.B. Effect of reduced or zero pin length and anvil insulation on friction stir spot welding thin gauge 6111 automotive sheet. Sci. Technol. Weld. Join. 2009, 14, 443–456. [Google Scholar] [CrossRef]
- Choi, D.H.; Ahn, B.W.; Lee, C.Y.; Yeon, Y.M.; Song, K.U.; Jung, S.B. Effect of Pin Shapes on Joint Characteristics of Friction Stir Spot Welded AA5J32 Sheet. Mater. Trans. 2010, 51, 1028–1032. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zhang, R.X.; Li, G.H.; Zhou, W.L.; Huang, Y.X.; Song, X.G. Effect of pin profile on microstructure and mechanical properties of friction stir spot welded Al-Cu dissimilar metals. J. Manuf. Process. 2018, 36, 1–9. [Google Scholar] [CrossRef]
- Hirasawa, S.; Badarinarayan, H.; Okamoto, K.; Tomimura, T.; Kawanami, T. Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J. Mater. Process. Technol. 2010, 210, 1455–1463. [Google Scholar] [CrossRef] [Green Version]
- Tozaki, Y.; Uematsu, Y.; Tokaji, K. Effect of tool geometry on microstructure and static strength in friction stir spot welded aluminium alloys. Int. J. Mach. Tools Manuf. 2007, 47, 2230–2236. [Google Scholar] [CrossRef]
- Ojo, O.O.; Taban, E.; Kaluc, E.; Sik, A. Cyclic lateral behavior of friction stir spot welds of AA2219 aluminum alloy: Impact of inherent flow defects. Kov. Mater. 2019, 57, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Minitab. What Are Individual Desirability and Composite Desirability? Available online: https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/using-fitted-models/supporting-topics/response-optimization/what-are-individual-desirability-and-composite-desirability/ (accessed on 27 January 2021).
- Safdarian, R.J.J.o.S.M. The Effects of Forming Parameters on the Single Point Incremental Forming of 1050 Aluminum Alloy Sheet. J. Solid Mech. 2019, 11, 825–841. [Google Scholar]
- Khan, F.; Qayyum, F.; Asghar, W.; Azeem, M.; Anjum, Z.; Nasir, A.; Shah, M. Effect of various surface preparation techniques on the delamination properties of vacuum infused Carbon fiber reinforced aluminum laminates (CARALL): Experimentation and numerical simulation. J. Mech. Sci. Technol. 2017, 31, 5265–5272. [Google Scholar] [CrossRef]
- Sun, X.; Dong, P. Analysis of aluminum resistance spot welding processes using coupled finite element procedures. Weld. J. 2000, 79, 215s–221s. [Google Scholar]
- Karthikeyan, R.; Balasubramanian, V. Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM. Int. J. Adv. Manuf. Technol. 2010, 51, 173–183. [Google Scholar] [CrossRef]
- Mekri, H.; Bouchouicha, B.; Miloudi, A.; Christophe, H.; Imad, A. Influence of the coupling between the mechanical characteristics and the welding conditions by the FSSW process: Case of the bi-material aluminum-steel. Frat. Integrità Strutt. 2018, 46, 62–72. [Google Scholar] [CrossRef]
- Cepeda-Jimenez, C.M.; Hidalgo, P.; Pozuelo, M.; Ruano, O.A.; Carreno, F. Influence of Constituent Materials on the Impact Toughness and Fracture Mechanisms of Hot-Roll-Bonded Aluminum Multilayer Laminates. Met. Mater. Trans. A 2010, 41, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Bilici, M.K.; Yukler, A.I.; Kurtulmus, M. The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mater. Des. 2011, 32, 4074–4079. [Google Scholar] [CrossRef]
- Dashatan, S.H.; Azdast, T.; Ahmadi, S.R.; Bagheri, A. Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets. Mater. Des. 2013, 45, 135–141. [Google Scholar] [CrossRef]
- Bilici, M.K. Application of Taguchi approach to optimize friction stir spot welding parameters of polypropylene. Mater. Des. 2012, 35, 113–119. [Google Scholar] [CrossRef]
- Abedini, O.; Ranjbarnodeh, E.; Marashi, P. Effect of tool geometry and welding parameters on the microstructure and static strength of the friction-stir spot-welded DP780 dual-phase steel sheets. Mater. Technol. 2017, 51, 687–694. [Google Scholar]
- Farmanbar, N.; Mousavizade, S.M.; Ezatpour, H.R. Achieving special mechanical properties with considering dwell time of AA5052 sheets welded by a simple novel friction stir spot welding. Mar. Struct. 2019, 65, 197–214. [Google Scholar] [CrossRef]
- Paidar, M.; Ojo, O.O.; Moghanian, A.; Pabandi, H.K.; Elsa, M. Pre-threaded hole friction stir spot welding of AA2219/PP-C30S sheets. J. Mater. Process. Tech. 2019, 273, 116272. [Google Scholar] [CrossRef]
- Buffa, G.; Fanelli, P.; Fratini, L.; Vivio, F. Influence of joint geometry on micro and macro mechanical properties of friction stir spot welded joints. Procedia Eng. 2014, 81, 2086–2091. [Google Scholar] [CrossRef]
- Malik, V.; Sanjeev, N.K.; Hebbar, H.S.; Kailas, S.V. Time Efficient Simulations of Plunge and Dwell Phase of FSW and its Significance in FSSW. Procedia Mater. Sci. 2014, 5, 630–639. [Google Scholar] [CrossRef] [Green Version]
- Pathak, N.; Bandyopadhyay, K.; Sarangi, M.; Panda, S.K. Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets. J. Mater. Eng. Perform. 2013, 22, 131–144. [Google Scholar] [CrossRef]
- Pita, M.; Mashinini, P.M.; Tartibu, L.K. Enhancing of aluminum alloy 1050-H4 tensile strength by accumulative roll bonding process. In Proceedings of the 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa, 20–22 January 2020; pp. 31–35. [Google Scholar]
- Bazarnik, P.; Bartkowska, A.; Romelczyk-Baishya, B.; Adamczyk-Cieślak, B.; Dai, J.; Huang, Y.; Lewandowska, M.; Langdon, T.G. Superior strength of tri-layered Al–Cu–Al nano-composites processed by high-pressure torsion. J. Alloys Compd. 2020, 846, 156380. [Google Scholar] [CrossRef]
Chemical Composition | Mechanical Properties | ||
---|---|---|---|
Composition | Weight% | Property | Magnitude |
Aluminum (Al) | 99.60 | Yield Strength σy (MPa) | 128 |
Zirconium (Zr) | 0.0015 | Ultimate Tensile Strength σUTS (MPa) | 117.5 |
Strontium (Sr) | 0.00013 | Elongation at Break A (mm) | 8.45 |
Vanadium (V) | 0.0080 | Young Modulus E (MPa) | 67,648 |
Lithium (Li) | 0.00010 | - | - |
Others | 0.39027 | - | - |
Welding Parameter | Welding Parameter Levels |
---|---|
Feed rate, FR (mm/min) | 5, 10, 15, 20, 25, 30 |
Spindle speed, SS (RPM) | 1000, 1500, 2000, 2500, 3000 |
Welding depth, PD (mm) | 2.3, 2.5, 2.7 |
Minitab Optimized Welding Parameters | Weld’s Strength | ||
---|---|---|---|
SS | FR | PD | |
1000 rev/min | 5 mm/min | 2.7 mm | 3092.7 N |
RDWP | DWP | Initial Parameters | End Parameters | Fracture Load |
---|---|---|---|---|
1 | NA | SS = 1000, FR = 5, PD = 2.7 | SS = 1000, FR = 5, PD = 2.7 | 3092.7 N |
0.25 | SS DWP | SS = 1000, FR = 5, PD = 2.7 | SS = 250, FR = 5, PD = 2.7 | 3758.0 N |
FF DWP | SS = 1000, FR = 5, PD = 2.7 | SS = 1000, FR = 1.25, PD = 2.7 | 3173.5 N | |
0.5 | SS DWP | SS = 1000, FR = 5, PD = 2.7 | SS = 500, FR = 5, PD = 2.7 | 3488 N |
FF DWP | SS = 1000, FR = 5, PD = 2.7 | SS = 1000, FR = 2.5, PD = 2.7 | 3142.2 N | |
1.5 | SS DWP | SS = 1000, FR = 5, PD = 2.7 | SS = 1500, FR = 5, PD = 2.7 | 2996.4 N |
FF DWP | SS = 1000, FR = 5, PD = 2.7 | SS = 1500, FR = 7.5, PD = 2.7 | 2989.6 N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badwelan, A.; M. Al-Samhan, A.; Anwar, S.; Hidri, L. Novel Technique for Enhancing the Strength of Friction Stir Spot Welds through Dynamic Welding Parameters. Metals 2021, 11, 280. https://doi.org/10.3390/met11020280
Badwelan A, M. Al-Samhan A, Anwar S, Hidri L. Novel Technique for Enhancing the Strength of Friction Stir Spot Welds through Dynamic Welding Parameters. Metals. 2021; 11(2):280. https://doi.org/10.3390/met11020280
Chicago/Turabian StyleBadwelan, Ahmed, Ali M. Al-Samhan, Saqib Anwar, and Lotfi Hidri. 2021. "Novel Technique for Enhancing the Strength of Friction Stir Spot Welds through Dynamic Welding Parameters" Metals 11, no. 2: 280. https://doi.org/10.3390/met11020280
APA StyleBadwelan, A., M. Al-Samhan, A., Anwar, S., & Hidri, L. (2021). Novel Technique for Enhancing the Strength of Friction Stir Spot Welds through Dynamic Welding Parameters. Metals, 11(2), 280. https://doi.org/10.3390/met11020280