Calculated Shoulder to Gauge Ratio of Fatigue Specimens in PWR Environment
Abstract
:1. Introduction
2. Shoulder-to-Gauge (S2G) Ratio
3. Finite Element Model
3.1. Specimen Geometries
3.2. Material
3.2.1. Elastic and Elastic–Plastic
3.2.2. Combined Isotropic and Kinematic Hardening
3.2.3. Multilinear Kinematic Hardening
3.3. Loads and Boundary Conditions
3.4. Mesh
4. Results
4.1. S2G Ratios
4.2. SCK-CEN Specimen, the Effect of the Extensometer Position
4.3. JRC Specimen, L3 Length Effect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chopra, O.; Stevens, G.L. Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials; Technical Report NUREG/CR-6909; Rev. 1, U.S. Nuclear Regulatory Commission (NRC): Rockville, MD, USA, 2018. [Google Scholar]
- Chopra, O.K.; Stevens, G.L.; Tregoning, R.; Rao, A.S. Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials. J. Press. Vessel Technol. 2017, 139, 060801. [Google Scholar] [CrossRef]
- Tice, D.R.; McLennan, A.; Gill, P. Environmentally Assisted Fatigue (EAF) Knowledge Gap Analysis: Update and Revision of the EAF Knowledge Gaps; Technical Report 3002013214; Electric Power Research Institute: Palo Alto, CA, USA, 2018. [Google Scholar]
- Courtin, S.; Lefrançois, A.; le Duff, J.-A.; le Pécheur, A. Environmentally assisted fatigue assessment considering an alternative method to the ASME code case N-792. In Proceedings of the ASME 2012 Pressure Vessels & Piping Conference, Toronto, ON, Canada, 15–19 July 2012. [Google Scholar]
- Faidy, C. Status of French road map to improve environmental fatigue rules. In Proceedings of the ASME 2012 Pressure Vessels & Piping Conference, Toronto, ON, Canada, 15–19 July 2012. [Google Scholar]
- De Haan-de Wilde, F.H.E.; Hannink, M.H.C.; Blom, F.J. Overview of international implementation of environmental fatigue. In Proceedings of the ASME 2013 Pressure Vessels & Piping Conference, Paris, France, 14–18 July 2013. [Google Scholar]
- Métais, T.; Morley, A.; de Baglion, L.; Tice, D.; Stevens, G.L.; Cuvilliez, S. Explicit quantification of the interaction between PWR environment and component surface finish in environmental fatigue evaluation methods for austenitic stainless steels. In Proceedings of the American Society of Mechanical Engineers (ASME), Pressure Vessels and Piping Conference, Prague, Czech Republic, 15–20 July 2018; Volume 1A. PVP2018-84240. [Google Scholar]
- Cuvilliez, S.; McLennan, A.; Mottershead, K.; Mann, J.; Bruchhausen, M. Incefa-Plus Project: Lessons Learned from the Project Data and Impact On Existing Fatigue Assessment Procedures. J. Press. Vessel Technol. 2020, 5, 061507S. [Google Scholar] [CrossRef]
- Twite, M.; Platts, N.; McLennan, A.; Meldrum, J.; McMinn, A. Variations in measured fatigue life in LWR coolant environments due to different small specimen geometries. In Proceedings of the ASME 2016 Pressure Vessels & Piping Conference, Vancouver, BC, Canada, 17–21 July 2016; Volume 1A. [Google Scholar]
- Asada, S.; Tsutsumi, K.; Fukuta, Y.; Kanasaki, H. Applicability of hollow cylindrical specimens to environmental assisted fatigue tests. In Proceedings of the American Society of Mechanical Engineers (ASME), Pressure Vessels and Piping Conference, Waikoloa, HI, USA, 16–20 July 2017; Volume 1A. PVP2017-65514. [Google Scholar]
- Gill, P.; James, P.; Currie, C.; Madew, C.; Morley, A. An investigation into the lifetimes of solid and hollow fatigue endurance specimens using cyclic hardening material models in finite element analysis. In Proceedings of the American Society of Mechanical Engineers (ASME), Pressure Vessels and Piping Conference, Waikoloa, HI, USA, 16–20 July 2017; Volume A1. PVP2017-65975. [Google Scholar]
- Mclennan, A.; Spätig, P.; le Roux, J.-C.; Waters, J.; Gill, J.B.P.; Platts, N. INCEFA PLUS project: The impact of using fatigue data generated from multiple specimen geometries on the outcome of a regression analysis. In Proceedings of the American Society of Mechanical Engineers (ASME), Pressure Vessels and Piping Conference, Virtual Conference, 3 August–1 November 2020. PVP2020-21422. [Google Scholar]
- Vankeerberghen, M.; McLennan, A.; Simonovski, I.; Barrera, G.; Gomez, S.A.; Ernestova, M.; Platts, N.; Scibetta, M.; Twite, M. Strain control correction for fatigue testing in LWR environments. In Proceedings of the American Society of Mechanical Engineers (ASME), Pressure Vessels and Piping Conference, Virtual Conference, 3 August–1 November 2020. PVP2020-21373. [Google Scholar]
- Procopio, I.; Cicero, S.; Mottershead, K.; Bruchhausen, M.; Cuvilliez, S. INCEFA-PLUS (Increasing safety in NPPs by covering gaps in environmental fatigue assessment). Procedia Struct. Integr. 2018, 13, 97–103. [Google Scholar] [CrossRef]
- ASTM E606/E606M-19. Standard Test Method for Strain-Controlled Fatigue Testing; ASTM: West Conshohocken, PA, USA, 2019. [Google Scholar]
- ISO 12106. Metallic Materials-Fatigue Testing-Axial-Strain-Controlled Method, 2nd ed.; IOS: 2017-03; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Vankeerberghen, M.; Marmy, P.; Bens, L. PWR Fatigue Testing at SCK•CEN in the Framework of INCEFA+. In Proceedings of the 7th International Conference on Fracture Fatigue and Wear, Ghent, Belgium, 9–10 July 2018; pp. 225–240. [Google Scholar]
- Akamatsu, M.; Chevallier, E. Chemical and Mechanical Characterization of the Materials Purchased for the Study of the Fatigue Behaviour of Austenitic Stainless Steels, T2-00-04 project (DOMZOME), Report HT4210010201A, EDF, 2001, page 18.
- Cicero, R. Low Cycle Fatigue—Strain Control Test Data for AISI 304L ar Material at 300 °C and Nominal Strain Range of 6% (Sixth Nominally Repeat Test), European Commission JRC, DataSet. 2020. [Google Scholar] [CrossRef]
- Cicero, R. Low Cycle Fatigue—Strain Control Test Data for AISI 304L ar Material at 300 °C, European Commission JRC, DataSet. 2019. [Google Scholar] [CrossRef]
- Platts, N.; Coult, B.; Zhang, W.; Gill, P. Negative R Fatigue Crack Growth Rate Testing on Austenitic Stainless Steel in Air and Simulated Primary Water Environments. In Proceedings of the American Society of Mechanical Engineers (ASME), Pressure Vessels and Piping ConferenceDivision (Publication) PVP, Prague, Czech Republic, 15–20 July 2018. PVP2018-84252. [Google Scholar]
- Simonovski, I. INCEFA+, Finite Element Support; JRC Technical Report; European Commission, Joint Research Centre: Petten, The Netherlands, 2020. [Google Scholar]
Specimen | (Gauge Length 2*L1)/(Gauge Diameter D1) | (Transition Region Radius R)/(Gauge Diameter D1) | Gauge Diameter D1 (mm) |
---|---|---|---|
ASTM-E606 | 3 ± 1 | 4 ± 2 | 6.35 |
ISO 12106 | >2 | >2 | 5–10 |
JRC | 18/6 = 3 | 48/6 = 8 | 6 |
SCK-CEN | 10/4.5 = 2.22 | 18/4.5 = 4 | 4.5 |
CIEMAT | 10/4 = 2.5 | 50/4 = 12.5 | 4 |
Δε = 0.6% | Δε = 1.2% | ||
---|---|---|---|
Stress (MPa) | Plastic Strain (/) | Stress (MPa) | Plastic Strain (/) |
81.2 | 0.0 | 110.0 | 0.0 |
91.2 | 0.0592 | 120.0 | 0.0592 |
91.2 | 1.4798 | 120.0 | 1.4798 |
- | ε ≤ 0.4% | ε > 0.4% | - | ε ≤ 0.33% | ε > 0.33% | ||||
---|---|---|---|---|---|---|---|---|---|
- | K (MPa) | n (/) | K (MPa) | n (/) | - | K (MPa) | n (/) | K (MPa) | n (/) |
JACOBS | 800 | 0.213 | 2800 | 0.425 | INCEFA | 770 | 0.234 | 2500 | 0.425 |
Specimen | Aspect Ratio | ||
---|---|---|---|
>10 (%) | Average | Worst | |
JRC | 0 | 1.39 | 1.93 |
SCK-CEN | 0 | 1.33 | 3.73 |
CIEMAT | 0 | 1.57 | 2.03 |
Constitutive Law | JRC | SCK-CEN | CIEMAT | |||
---|---|---|---|---|---|---|
Δε = 0.6% | Δε = 1.2% | Δε = 0.6% | Δε = 1.2% | Δε = 0.6% | Δε = 1.2% | |
AnalyticElastic | 2.20 | 2.20 | - | - | 3.13 | 3.13 |
FEMElastic | 2.22 | 2.22 | 2.37 | 2.37 | 3.16, 3.15 * | 3.16, 3.15 * |
FEMElasticPlastic | 1.53 | 1.50 | 1.55 | 1.49 | 1.90, 1.88 * | 1.81, 1.80 * |
FEMIsoKin | 1.71 | 1.60 | 1.71 | 1.61 | 2.20 | 2.00 |
FEMJacobs | 1.84 | 1.82 | 1.87 | 1.82 | 2.40, 2.38 * | 2.32, 2.31 * |
FEMIncefa | 1.83 | 1.84 | 1.85 | 1.84 | 2.35, 2.34 * | 2.35, 2.34 * |
Measured [13] | - | - | 1.51 | 1.46 | - | - |
Extensometer Position (mm) | Effective Gauge Length (mm) | S2G FEMJACOBS | S2G FEMINCEFA | ||
---|---|---|---|---|---|
Δε = 0.6% | Δε = 1.2% | Δε = 0.6% | Δε = 1.2% | ||
Original | 10 | 1.87 | 1.82 | 1.85 | 1.84 |
+0.5 | 11.0 = 10 + 2 × 0.50 | 1.71 | 1.66 | 1.68 | 1.68 |
+0.75 | 11.5 = 10 + 2 × 0.75 | 1.64 | 1.59 | 1.61 | 1.60 |
+1.00 | 12.0 = 10 + 2 × 1.00 | 1.57 | 1.52 | 1.55 | 1.54 |
+1.25 | 12.5 = 10 + 2 × 1.25 | 1.51 | 1.47 | 1.49 | 1.48 |
Measured [13] | 10 + X | 1.51 | 1.46 | 1.51 | 1.46 |
Specimen | Surface | Lext | Dg | Δεmeas | S2G | ||
---|---|---|---|---|---|---|---|
(mm) | (mm) | (%) | Meas@N25/2 | FEMJacobs | FEMIncefa | ||
SC-2 | Smooth | 11.11 | 4.474 | 0.616 | 1.395 | 1.684 | 1.662 |
SC-5 | Rough | 11.40 | 4.230 | 0.626 | 1.448 | 1.621 | 1.600 |
SC-15 | Smooth | 11.16 | 4.474 | 0.610 | 1.642 | 1.679 | 1.656 |
SC-18 | Rough | 11.07 | 4.129 | 0.606 | 1.652 | 1.663 | 1.639 |
SC-31 | Rough | 12.00 | 4.155 | 0.626 | 1.454 | 1.538 | 1.519 |
SC-24 | Smooth | 11.15 | 4.481 | 0.618 | 1.506 | 1.679 | 1.657 |
SC-25 | Smooth | 11.18 | 4.475 | 0.622 | 1.591 | 1.673 | 1.651 |
SC-26 | Smooth | 11.82 | 4.476 | 0.640 | 1.430 | 1.583 | 1.564 |
Average | - | - | - | 0.620 | 1.51 | 1.64 | 1.62 |
SC-17 | Rough | 11.16 | 4.028 | 1.224 | 1.373 | 1.597 | 1.612 |
SC-19 | Rough | 11.16 | 4.071 | 1.244 | 1.441 | 1.601 | 1.617 |
SC-16 | Smooth | 11.23 | 4.475 | 1.228 | 1.498 | 1.624 | 1.642 |
SC-23 | Smooth | 10.78 | 4.463 | 1.228 | 1.542 | 1.690 | 1.708 |
Average | - | - | - | 1.231 | 1.46 | 1.63 | 1.64 |
Case | L3 (mm) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 4 | 8 | 12 | |
Δε = 0.6% | 1.842 | 1.854 | 1.865 | 1.887 | 1.932 | 1.977 |
Δε = 1.2% | 1.818 | 1.825 | 1.833 | 1.848 | 1.879 | 1.909 |
Case | L3 (mm) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 4 | 8 | 12 | |
Δε = 0.6% | 1.826 | 1.836 | 1.845 | 1.864 | 1.903 | 1.941 |
Δε = 1.2% | 1.842 | 1.850 | 1.857 | 1.871 | 1.900 | 1.928 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonovski, I.; Mclennan, A.; Mottershead, K.; Gill, P.; Platts, N.; Bruchhausen, M.; Waters, J.L.; Vankeerberghen, M.; Moreno, G.B.; Gomez, S.A.; et al. Calculated Shoulder to Gauge Ratio of Fatigue Specimens in PWR Environment. Metals 2021, 11, 376. https://doi.org/10.3390/met11030376
Simonovski I, Mclennan A, Mottershead K, Gill P, Platts N, Bruchhausen M, Waters JL, Vankeerberghen M, Moreno GB, Gomez SA, et al. Calculated Shoulder to Gauge Ratio of Fatigue Specimens in PWR Environment. Metals. 2021; 11(3):376. https://doi.org/10.3390/met11030376
Chicago/Turabian StyleSimonovski, Igor, Alec Mclennan, Kevin Mottershead, Peter Gill, Norman Platts, Matthias Bruchhausen, Joshua L. Waters, Marc Vankeerberghen, Germán Barrera Moreno, Sergio Arrieta Gomez, and et al. 2021. "Calculated Shoulder to Gauge Ratio of Fatigue Specimens in PWR Environment" Metals 11, no. 3: 376. https://doi.org/10.3390/met11030376
APA StyleSimonovski, I., Mclennan, A., Mottershead, K., Gill, P., Platts, N., Bruchhausen, M., Waters, J. L., Vankeerberghen, M., Moreno, G. B., Gomez, S. A., & Novotny, R. (2021). Calculated Shoulder to Gauge Ratio of Fatigue Specimens in PWR Environment. Metals, 11(3), 376. https://doi.org/10.3390/met11030376