Additive Manufacturing of Titanium-Based Implants with Metal-Based Antimicrobial Agents
Abstract
:1. Introduction
2. Surface Coatings
- potential toxicity,
- depression of the revision process,
- damage to cell functioning,
- a faster rate of elution of the incorporated drugs,
- a relatively low drug concentration at the target site,
- inability to produce coatings that can load and release enough bactericides in a controllable fashion throughout the lifetime of the implant and
- the detrimental effect of bacterial resistance.
3. Copper as Preferred MBA Agent
4. Metal Additive Manufacturing
5. Effect of Surface Texture on Microorganisms
6. Challenges, Further Research and Recommendations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gosavi, S.; Gosavi, S.; Alla, R. Titanium: A Miracle Metal in Dentistry. Trends Biomater. Artif. Organs. 2013, 27, 42–46. [Google Scholar]
- Niinomi, M. Biologically and Mechanically Biocompatible Titanium Alloys. Mater. Trans. 2008, 49, 2170–2178. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Chu, P.K.; Zhang, Y.; Wu, Z. Antibacterial Coatings on Titanium Implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 91, 470–480. [Google Scholar] [CrossRef]
- Ribeiro, M.; Monteiro, F.J.; Ferraz, M.P. Infection of Orthopedic Implants with Emphasis on Bacterial Adhesion Process and Techniques Used in Studying Bacterial-Material Interactions. Biomaterials 2012, 2, 176–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Tang, T. Surface Treatment Strategies to Combat Implant-Related Infection from the Beginning. J. Orthop. Transl. 2019, 17, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Elias, C.N. Titanium Dental Implant Surfaces. Rev. Mater. 2010, 15, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Narayana, S.V.V.S.N.; Srihari, S.V.V.S. A Review on Surface Modifications and Coatings on Implants to Prevent Biofilm. Regen. Eng. Transl. Med. 2020, 6, 330–346. [Google Scholar]
- Yuan, Z.; Huang, S.; Lan, S.; Xiong, H.; Tao, B.; Ding, Y.; Liu, Y.; Liu, P.; Cai, K. Surface Engineering of Titanium Implants with Enzyme-Triggered Antibacterial Properties and Enhanced Osseointegration: In Vivo. J. Mater. Chem. B 2018, 6, 8090–8104. [Google Scholar] [CrossRef] [PubMed]
- Riddiford, R. Medical Grinding Takes More Than a Machine|Production Machining. Available online: https://www.productionmachining.com/articles/medical-grinding-takes-more-than-a-machine (accessed on 12 February 2021).
- Grasson, M. Grinding Machines Offer Unique Capabilities for the Medical Industry—Medical Design Briefs. Available online: https://www.medicaldesignbriefs.com/component/content/article/mdb/features/articles/25590 (accessed on 12 February 2021).
- Hanawa, T. Titanium-Tissue Interface Reaction and Its Control with Surface Treatment. Front. Bioeng. Biotechnol. 2019, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Gröbe, A.; Heiland, M.; Ebker, T. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res. Int. 2016, 2016, 6285620. [Google Scholar] [CrossRef] [Green Version]
- Garg, H.; Bedi, G.; Garg, A. Implant Surface Modifications: A Review. J. Clin. Diagn. Res. 2020, 6, 319–324. [Google Scholar]
- Alsaeedi, R.; Ozdemir, Z. Evaluation of Chemical Mechanical Polishing-Based Surface Modification on 3D Dental Implants Compared to Alternative Methods. Materials 2018, 11, 2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, S.; Robertson, S.F.; Bandyopadhyay, A. Surface Modification of Biomaterials and Biomedical Devices Using Additive Manufacturing. Acta Biomater. 2018, 66, 6–22. [Google Scholar] [CrossRef]
- Mandracci, P.; Mussano, F.; Rivolo, P.; Carossa, S. Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology. Coatings 2016, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Bagno, A.; Di Bello, C. Surface Treatments and Roughness Properties of Ti-Based Biomaterials. J. Mater. Sci. Mater. Med. 2004, 15, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Nazneen, F.; Herzog, G.; Arrigan, D.W.M.; Caplice, N.; Benvenuto, P.; Galvin, P.; Thompson, M. Surface Chemical and Physical Modification in Stent Technology for the Treatment of Coronary Artery Disease. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1989–2014. [Google Scholar] [CrossRef]
- Jemat, A.; Ghazali, M.J.; Razali, M.; Otsuka, Y. Surface modifications and their effects on titanium dental implants. BioMed. Res. Int. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hanawa, T. Research and Development of Metals for Medical Devices Based on Clinical Needs. Sci. Technol. Adv. Mater. 2012, 13, 064102. [Google Scholar] [CrossRef] [PubMed]
- Rau, J.V.; De Bonis, A.; Curcio, M.; Schuhladen, K.; Barbaro, K.; De Bellis, G.; Teghil, R.; Boccaccini, A.R. Borate and Silicate Bioactive Glass Coatings Prepared by Nanosecond Pulsed Laser Deposition. Coatings 2020, 10, 1105. [Google Scholar] [CrossRef]
- Ghiuță, I.; Cristea, D.; Țînț, D.; Munteanu, D. Surface modification of metallic biomaterials used as medical implants and prostheses—Bulletin of the Transilvania University of Brasov. Eng. Sci. 2015, 8, 159–164. [Google Scholar]
- El-Banna, A.; Bissa, M.W.; Khurshid, Z.; Zohaib, S.; Asiri, F.Y.I.; Zafar, M.S. Surface Modification Techniques of Dental Implants. In Dental Implants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 49–68. [Google Scholar]
- Jahanmard, F.; Croes, M.; Castilho, M.; Majed, A.; Steenbergen, M.J.; Lietaert, K.; Vogely, H.C.; van der Wal, B.C.H.; Stapels, D.A.C.; Malda, J.; et al. Bactericidal Coating to Prevent Early and Delayed Implant-Related Infections. J. Control. Release 2020, 326, 38–52. [Google Scholar] [CrossRef]
- Jahanmard, F.; Dijkmans, F.M.; Majed, A.; Vogely, H.C.; Van Der Wal, B.C.H.; Stapels, D.A.C.; Ahmadi, S.M.; Vermonden, T.; Amin Yavari, S. Toward Antibacterial Coatings for Personalized Implants. Acs Biomater. Sci. Eng. 2020, 6, 5486–5492. [Google Scholar] [CrossRef]
- Mas-Moruno, C.; Su, B.; Dalby, M.J. Multifunctional Coatings and Nanotopographies: Toward Cell Instructive and Antibacterial Implants. Adv. Healthc. Mater. 2019, 8, 1801103. [Google Scholar] [CrossRef] [PubMed]
- Cyphert, E.L.; von Recum, H.A. Emerging Technologies for Long-Term Antimicrobial Device Coatings: Advantages and Limitations. Exp. Biol. Med. 2017, 242, 788–798. [Google Scholar] [CrossRef]
- Polívková, M.; Hubáček, T.; Staszek, M.; Švorčík, V.; Siegel, J. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology. Int. J. Mol. Sci. 2017, 18, 419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subbiahdoss, G.; Kuijer, R.; Grijpma, D.W.; van der Mei, H.C.; Busscher, H.J. Microbial Biofilm Growth vs. Tissue Integration: ‘The Race for the Surface’ Experimentally Studied. Acta Biomater. 2009, 5, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Ince, A.; Schütze, N.; Hendrich, C.; Thull, R.; Eulert, J.; Löhr, J.F. In Vitro Investigation of Orthopedic Titanium-Coated and Brushite-Coated Surfaces Using Human Osteoblasts in the Presence of Gentamycin. J. Arthroplast. 2008, 23, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, C.R.; Cross, J.D.; Brown, K.V.; Murray, C.K.; Wenke, J.C. Effect of Various Concentrations of Antibiotics on Osteogenic Cell Viability and Activity. J. Orthop. Res. 2011, 29, 1070–1074. [Google Scholar] [CrossRef]
- Otter, J.; Brophy, K.; Palmer, J.; Harrison, N.; Riley, J.; Williams, D.; Larrouy-maumus, G. Smart Surfaces to Tackle Infection and Antimicrobial Resistance; Institute for Molecular Science and Engineering: London, UK, 2020. [Google Scholar]
- Brophy, K. How Could Smart Surfaces Help Tackle Infection and Antimicrobial Resistance? Available online: https://www.imperial.ac.uk/news/195975/how-could-smart-surfaces-help-tackle/ (accessed on 30 September 2020).
- Cazzola, M.; Ferraris, S.; Allizond, V.; Banche, G.; Bertea, C.; Gautier di Confiengo, G.; Novara, C.; Cochis, A.; Rimondini, L.; Spriano, S. Surface Coating and Functionalization of Metallic Biomaterials with Essential Oils for Antibacterial Applications. In Proceedings of the 1st Coatings and Interfaces Web Conference (CIWC 2019), Basel, Switzerland, 15–29 March 2019; pp. 1–9. [Google Scholar]
- Ntondini, S.S.; Lenatha, G.G.; Dzogbewu, T.C. Inhibitory Effect of Essentials Oil Against Oral Pathogens. Int. J. Dent. Oral Sci. 2021, 8, 1018–1023. [Google Scholar]
- Goodman, S.B.; Yao, Z.; Keeney, M.; Yang, F. The Future of Biologic Coatings for Orthopaedic Implants. Biomaterials 2013, 34, 3174–3183. [Google Scholar] [CrossRef] [Green Version]
- Jilani, A.; Abdel-wahab, M.S.; Hammad, A.H. Advance Deposition Techniques for Thin Film and Coating. In Modern Technologies for Creating the Thin-Film Systems and Coatings; InTech Open: London, UK, 2017. [Google Scholar]
- Abegunde, O.O.; Akinlabi, E.T.; Oladijo, O.P.; Akinlabi, S.; Ude, A.U. Overview of Thin Film Deposition Techniques. AIMS Mater. Sci. 2019, 6, 174–199. [Google Scholar] [CrossRef]
- Ren, L.; Ma, Z.; Li, M.; Zhang, Y.; Liu, W.; Liao, Z.; Yang, K. Antibacterial Properties of Ti-6Al-4V-XCu Alloys. J. Mater. Sci. Technol. 2014, 30, 699–705. [Google Scholar] [CrossRef]
- Li, B.; Liu, X.; Meng, F.; Chang, J.; Ding, C. Preparation and Antibacterial Properties of Plasma Sprayed Nano-Titania/Silver Coatings. Mater. Chem. Phys. 2009, 118, 99–104. [Google Scholar] [CrossRef]
- Heimann, R.B. Plasma-Sprayed Hydroxylapatite Coatings as Biocompatible Intermediaries Between Inorganic Implant Surfaces and Living Tissue. J. Therm. Spray Technol. 2018, 27, 1212–1237. [Google Scholar] [CrossRef] [Green Version]
- Heimann, R.B. Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural; Biomedical Properties. J. Therm. Spray Technol. 2016, 25, 827–850. [Google Scholar] [CrossRef] [Green Version]
- Brohede, U.; Forsgren, J.; Roos, S.; Mihranyan, A.; Engqvist, H.; Strømme, M. Multifunctional Implant Coatings Providing Possibilities for Fast Antibiotics Loading with Subsequent Slow Release. J. Mater. Sci. Mater. Med. 2009, 20, 1859–1867. [Google Scholar] [CrossRef] [PubMed]
- Badr, N.A.; El Hadary, A.A. Hydroxyapatite-Electroplated Cp-Titanium Implant and Its Bone Integration Potentiality: An in Vivo Study. Implant Dent. 2007, 16, 297–308. [Google Scholar] [CrossRef]
- Hoene, A.; Prinz, C.; Walschus, U.; Lucke, S.; Patrzyk, M.; Wilhelm, L.; Neumann, H.G.; Schlosser, M. In Vivo Evaluation of Copper Release and Acute Local Tissue Reactions after Implantation of Copper-Coated Titanium Implants in Rats. Biomed. Mater. (Bristol) 2013, 8, 035009. [Google Scholar] [CrossRef]
- De Maeztu, M.A.; Alava, J.I.; Gay-Escoda, C. Ion Implantation: Surface Treatment for Improving the Bone Integration of Titanium and Ti6Al4V Dental Implants. Clin. Oral Implant. Res. 2003, 14, 57–62. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Courtney, H.S.; Bettenga, M.; Agrawal, C.M.; Bumgardner, J.D.; Ong, J.L. In Vitro Anti-Bacterial and Biological Properties of Magnetron Co-Sputtered Silver-Containing Hydroxyapatite Coating. Biomaterials 2006, 27, 5512–5517. [Google Scholar] [CrossRef]
- Jurgeleit, T.; Quandt, E.; Zamponi, C. Magnetron Sputtering a New Fabrication Method of Iron Based Biodegradable Implant Materials. Adv. Mater. Sci. Eng. 2015, 2015, 294686. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.Z.; Chen, C.Z.; Yu, H.J.; Zhang, S.J. Application of Magnetron Sputtering for Producing Bioactive Ceramic Coatings on Implant Materials. Bull. Mater. Sci. 2008, 31, 877–884. [Google Scholar] [CrossRef]
- Secinti, K.D.; Ayten, M.; Kahilogullari, G.; Kaygusuz, G.; Ugur, H.C.; Attar, A. Antibacterial Effects of Electrically Activated Vertebral Implants. J. Clin. Neurosci. 2008, 15, 434–439. [Google Scholar] [CrossRef]
- Putri, S.A.; Pujiyanto, E.; Triyono, J. Optimization of Electroplating Thickness Quality at Hip Joint Implant Using the Taguchi Method. J. Tek. Ind. 2019, 20, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Oh, S.; Ong, A.P.; Oh, N.; Liu, Y.; Courtney, H.S.; Appleford, M.; Ong, J.L. Antibacterial and Osteogenic Properties of Silver-Containing Hydroxyapatite Coatings Produced Using a Sol Gel Process. J. Biomed. Mater. Res. Part A 2007, 82, 899–906. [Google Scholar] [CrossRef]
- Bollino, F.; Tranquillo, E. Surface Modification of Implants by Sol-Gel Coating Technology: Advantages and Applications. Mater. Proc. 2020, 2, 6827. [Google Scholar] [CrossRef]
- Carlos Bernedo Alcázar, J.; Moreira Javier Lemos, R.; Cristian Muniz Conde, M.; Alexandre Chisini, L.; Miluska Suca Salas, M.; Noremberg, B.S.; Villela da Motta, F.; Fernando Demarco, F.; Beatriz Chaves Tarquinio, S.; Lenin Villarreal Carreño, N. Preparation, Characterization; Biocompatibility of Different Metal Oxide/PEG-Based Hybrid Coating Synthesized by Sol–Gel Dip Coating Method for Surface Modification of Titanium. Prog. Org. Coat. 2019, 130, 206–213. [Google Scholar] [CrossRef]
- Wan, Y.Z.; Raman, S.; He, F.; Huang, Y. Surface Modification of Medical Metals by Ion Implantation of Silver and Copper. Vacuum 2007, 81, 1114–1118. [Google Scholar] [CrossRef]
- Knetsch, M.L.W.; Koole, L.H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers 2011, 3, 340–366. [Google Scholar] [CrossRef]
- Ostaszewska, T.; Śliwiński, J.; Kamaszewski, M.; Sysa, P.; Chojnacki, M. Cytotoxicity of Silver and Copper Nanoparticles on Rainbow Trout (Oncorhynchus Mykiss) Hepatocytes. Environ. Sci. Pollut. Res. 2018, 25, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wang, L.; He, J.; Zhu, C. In Vitro Cytotoxicity of Cu 2+, Zn 2+, Ag + and Their Mixtures on Primary Human Endometrial Epithelial Cells. Contraception 2012, 85, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Gaetke, L.M.; Chow, C.K. Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Shirai, T.; Tsuchiya, H.; Shimizu, T.; Ohtani, K.; Zen, Y.; Tomita, K. Prevention of Pin Tract Infection with Titanium-Copper Alloys. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 91, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Lu, Y.; Li, S.; Guo, S.; He, M.; Luo, K.; Lin, J. Copper-Modified Ti6Al4V Alloy Fabricated by Selective Laser Melting with pro-Angiogenic and Anti-Inflammatory Properties for Potential Guided Bone Regeneration Applications. Mater. Sci. Eng. C 2018, 90, 198–210. [Google Scholar] [CrossRef]
- Hu, J.; Li, H.; Wang, X.; Yang, L.; Chen, M.; Wang, R.; Qin, G.; Chen, D.F.; Zhang, E. Effect of Ultrasonic Micro-Arc Oxidation on the Antibacterial Properties and Cell Biocompatibility of Ti-Cu Alloy for Biomedical Application. Mater. Sci. Eng. C 2020, 115, 110921. [Google Scholar] [CrossRef]
- Selvamani, V.; Zareei, A.; Elkashif, A.; Maruthamuthu, M.K.; Chittiboyina, S.; Delisi, D.; Li, Z.; Cai, L.; Pol, V.G.; Seleem, M.N.; et al. Hierarchical Micro/Mesoporous Copper Structure with Enhanced Antimicrobial Property via Laser Surface Texturing. Adv. Mater. Interfaces 2020, 7, 1901890. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Water Environment Federation; EPA: Washington, DC, USA, 2012; Volume 2005, pp. 726–737. [CrossRef] [Green Version]
- Liu, R.; Tang, Y.; Liu, H.; Zeng, L.; Ma, Z.; Li, J.; Zhao, Y.; Ren, L.; Yang, K. Effects of Combined Chemical Design (Cu Addition) and Topographical Modification (SLA) of Ti-Cu/SLA for Promoting Osteogenic, Angiogenic and Antibacterial Activities. J. Mater. Sci. Technol. 2020, 47, 202–215. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Ro, C. The Surfaces That Kill Bacteria and Viruses. Available online: https://www.bbc.com/future/article/20200529-the-surfaces-that-kill-bacteria-and-viruses (accessed on 26 September 2020).
- Zhang, E.; Li, F.; Wang, H.; Liu, J.; Wang, C.; Li, M.; Yang, K. A New Antibacterial Titanium-Copper Sintered Alloy: Preparation and Antibacterial Property. Mater. Sci. Eng. C 2013, 33, 4280–4287. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Wang, H.; Li, F.; Li, M.; Yang, K.; Zhang, E. The Antibacterial Properties and Biocompatibility of a Ti-Cu Sintered Alloy for Biomedical Application. Biomed. Mater. (Bristol) 2014, 9, 025013. [Google Scholar] [CrossRef]
- Fowler, L.; Masia, N.; Cornish, L.A.; Chown, L.H.; Engqvist, H.; Norgren, S.; Öhman-Mägi, C. Development of Antibacterial Ti-Cux Alloys for Dental Applications: Effects of Ageing for Alloys with Up to 10 Wt% Cu. Materials 2019, 12, 4017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, T.; Okafor, I.C.I.; Watanabe, I.; Hattori, M.; Oda, Y.; Okabe, T. Mechanical Properties of Cast Ti-6Al-4V-XCu Alloys. J. Oral Rehab. 2004, 31, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Dzogbewu, T. Additive Manufacturing of Porous Ti-Based Alloys for Biomedical Applications—A review. J. N. Gener. Sci. 2017, 15, 278–294. [Google Scholar]
- Dzogbewu, T.C.; Monaheng, L.; Yadroitsava, I.; Du Preez, W.B.; Yadroitsev, I. Finite Element Analysis in Design of DMLS Mandible Implants. In Challenges for Technology Innovation; CRC Press: Boca Raton, FL, USA, 2017; pp. 155–160. [Google Scholar]
- Dzogbewu, T.C. Laser Powder Bed Fusion of Ti6Al4V Lattice Structures and Their Applications. J. Metals Mater. Miner. 2020, 30, 68–78. [Google Scholar]
- Dzogbewu, T.C. Direct Metal Laser Sintering of Titanium Alloys for Biomedical Applications. Doctoral Dissertation, Central University of Technology, Bloemfontein, Free State, South Africa, 2017. [Google Scholar]
- ASTM International. Additive Manufacturing—ASTM International. Available online: https://www.astm.org/industry/additive-manufacturing-overview.html (accessed on 1 October 2020).
- Moshiri, M.; Candeo, S.; Carmignato, S.; Mohanty, S.; Tosello, G. Benchmarking of Laser Powder Bed Fusion Machines. J. Manuf. Mater. Process. 2019, 3, 85. [Google Scholar] [CrossRef] [Green Version]
- Losertová, M.; Kubeš, V. Microstructure and Mechanical Properties of Selective Laser Melted Ti6Al4V Alloy. IOP Conf. Ser. Mater.Sci. Eng. 2017, 266, 012009. [Google Scholar] [CrossRef]
- Newby, E.B.; Kouprianoff, D.; Yadroitsava, I. In-Situ Alloying of TI6AL4V-X%CU Structures by Direct Metal Laser Sintering. In Proceedings of the Additive Manufacturing of Titanium Parts Pre-Conference Seminar, International Convention Centre, Durban, South Africa, 7 November 2017; pp. 21–24. [Google Scholar]
- Kinnear, A.; Dzogbewu, T.C.; Yadroitsev, I.; Yadroitsava, I. In-Situ Alloying Process of Ti6al4v-XCu Structures by Direct Metal Laser Sintering. In Proceedings of the SUNConferences, 17th Annual Conference of the Rapid Product Development Association of South Africa, Vanderbijlpark, South Africa, 2–4 November 2016. [Google Scholar]
- Bosco, R.; Van Den Beucken, J.V.; Leeuwenburgh, S.; Jansen, J. Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces. Coatings 2012, 2, 95–119. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.C.; Cao, C.; Sokoluk, M.; Jiang, L.; Wang, X.; Schoenung, J.M.; Lavernia, E.J.; Li, X. Aluminum with Dispersed Nanoparticles by Laser Additive Manufacturing. Nat. Commun. 2019, 10, 4124. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, O.; Williams, C.; Campbell, T. Additive Manufacturing (AM) and Nanotechnology: Promises and Challenges. Rapid Prototyp. J. 2013, 19, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.; Arezes, P.; Silva, F. Nanomaterials Exposure as an Occupational Risk in Metal Additive Manufacturing. J. Phys. Conf. Ser. 2019, 1323, 012013. [Google Scholar] [CrossRef]
- Lunetto, V.; Catalano, A.R.; Priarone, P.C.; Settineri, L. Comments about the Human Health Risks Related to Additive Manufacturing. In Proceedings of the International Conference on Sustainable Design and Manufacturing, Budapest, Hungary, 4–5 July 2019; pp. 95–104. [Google Scholar] [CrossRef]
- Nozar, M.; Pokorna, V.; Zetkova, I. Potential Health Hazards of Additive Manufacturing. In Proceedings of the 30th DAAAM International Symposium on Intelligent Manufacturing and Automation Potential Health Hazards of Additive Manufacturing, Zadar, Croatia, 23–26 October 2019; pp. 654–662. [Google Scholar] [CrossRef]
- Nhlapo, N.; Dzogbewu, T.C.; De Smidt, O. A Systematic Review on Improving the Biocompatibility of Titanium Implants Using Nanoparticles. Manuf. Rev. 2020, 7, 31. [Google Scholar] [CrossRef]
- Weiss, C.; Carriere, M.; Fusco, L.; Fusco, L.; Capua, I.; Regla-Nava, J.A.; Pasquali, M.; Pasquali, M.; Pasquali, M.; Scott, J.A.; et al. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano 2020, 14, 6383–6406. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, N.; Solgaard, O. 3D Printed Optics with Nanometer Scale Surface Roughness. Microsyst. Nanoeng. 2018, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Alsever, J. Sharklet: A Biotech Startup Fights Germs with Sharks. Available online: https://money.cnn.com/2013/05/31/technology/innovation/sharklet/ (accessed on 26 September 2020).
- Wandiyanto, J.V.; Tamanna, T.; Linklater, D.P.; Truong, V.K.; Al Kobaisi, M.; Baulin, V.A.; Joudkazis, S.; Thissen, H.; Crawford, R.J.; Ivanova, E.P. Tunable Morphological Changes of Asymmetric Titanium Nanosheets with Bactericidal Properties. J. Colloid Interface Sci. 2020, 560, 572–580. [Google Scholar] [CrossRef]
- Pogodin, S.; Hasan, J.; Baulin, V.A.; Webb, H.K.; Truong, V.K.; Phong Nguyen, T.H.; Boshkovikj, V.; Fluke, C.J.; Watson, G.S.; Watson, J.A.; et al. Biophysical Model of Bacterial Cell Interactions with Nanopatterned Cicada Wing Surfaces. Biophys. J. 2013, 104, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Tunc, D.C.; Van Dijk, M.; Smit, T.; Higham, P.; Burger, E.; Wuisman, P. Three-Year Follow-up of Bioabsorbable PLLA Cages for Lumbar Interbody Fusion: In Vitro and In Vivo Degradation. Adv. Exp. Med. Biol. 2004, 553, 243–255. [Google Scholar]
Methods | Advantages | Disadvantages | Nature |
---|---|---|---|
Plasma spray [40,41,42] | Can be used to coat a wide range of materials (ceramics, plastics, glass, composites, etc.). | The high temperature operations of the plasma jet can result in carbide formation or excessive oxidation. It is a line-of-sight process, making it difficult or impossible to coat intricate geometries. | Thin film |
Physical and chemical vapor deposition [43,44,45,46] | Can be used to coat a wide range of materials (ceramics, plastics, glass, composites, etc.) | It operates at high vacuum and temperature, requiring skilled operators. | Thin film |
Magnetron sputtering [47,48,49] | The thickness of the deposition can be effectively controlled | The magnetic field of the target material can affect the efficiency of the deposition. | Thin film |
Electroplating [50,51,52,53,54] | Can be used to plate a wide range of metals and prevent them from corrosion | Non-uniform coating of the metal due to the electric field. | Thin film |
Sol–gel method [52,53,54] | Due to the gel state, it can be used to coat some complex geometries | High permeability, low wear resistance, weak bonding, instability of the gel. | Thin film |
Ion implantation [46,55] | Good homogeneity and reproducibility of the profile | The implanted ions can cause damage to the material and even change the material properties. It is a line-of-sight process, making it difficult or impossible to generate surface layers of even thickness for intricate geometries. | Thin layer |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzogbewu, T.C.; du Preez, W.B. Additive Manufacturing of Titanium-Based Implants with Metal-Based Antimicrobial Agents. Metals 2021, 11, 453. https://doi.org/10.3390/met11030453
Dzogbewu TC, du Preez WB. Additive Manufacturing of Titanium-Based Implants with Metal-Based Antimicrobial Agents. Metals. 2021; 11(3):453. https://doi.org/10.3390/met11030453
Chicago/Turabian StyleDzogbewu, Thywill Cephas, and Willie Bouwer du Preez. 2021. "Additive Manufacturing of Titanium-Based Implants with Metal-Based Antimicrobial Agents" Metals 11, no. 3: 453. https://doi.org/10.3390/met11030453
APA StyleDzogbewu, T. C., & du Preez, W. B. (2021). Additive Manufacturing of Titanium-Based Implants with Metal-Based Antimicrobial Agents. Metals, 11(3), 453. https://doi.org/10.3390/met11030453