Microstructural Characteristics and Strengthening Mechanisms of Ferritic–Martensitic Dual-Phase Steels: A Review
Abstract
:1. Introduction
2. Microstructural Characteristics of DP Steels
3. The Strengthening Mechanisms of the DP Steels
4. The Role of FGS, MVF, and MM on Strengthening of DP Steels
4.1. FGS Contribution on the Strengthening
4.2. MVF Contribution on the Strengthening
4.3. MM Contribution on the Strengthening
5. Mechanical Properties of the DP Steels Affected by Strengthening Factors
6. Conclusions and the Future Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Tasan, C.C.; Diehl, M.; Yan, D.; Bechtold, M.; Roters, F.; Schemmann, L.; Zheng, C.; Peranio, N.; Ponge, D.; Koyama, M.; et al. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design. Annu. Rev. Mater. Res. 2015, 45, 391–431. [Google Scholar] [CrossRef]
- Fonstein, N. Dual-phase steels. In Automotive Steels; Woodhead Publishing: Cambridge, UK, 2017; pp. 169–216. [Google Scholar] [CrossRef]
- Guo, C.; Hao, L.; Li, S.; Kang, Y.; An, Y. Effect of microstructure quenched around Ac3 point on the damage behavior in 0.087C–1.35Mn steel. J. Mater. Res. Technol. 2019, 8, 5103–5113. [Google Scholar] [CrossRef]
- Kalashami, A.G.; Kermanpur, A.; Ghassemali, E.; Najafizadeh, A.; Mazaheri, Y. The effect of Nb on texture evolutions of the ultrafine-grained dual-phase steels fabricated by cold rolling and intercritical annealing. J. Alloys Compd. 2017, 694, 1026–1035. [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, Z.; Zhang, Y.; Ye, J.; Huang, Y.; Huang, A. Effect of Warm Rolling Temperature on the Microstructure and Texture of Microcarbon Dual-Phase (DP) Steel. Metals 2020, 10, 566. [Google Scholar] [CrossRef]
- Mihaliková, M.; Zgodavová, K.; Bober, P.; Sütőová, A. Prediction of Bake Hardening Behavior of Selected Advanced High Strength Automotive Steels and Hailstone Failure Discussion. Metals 2019, 9, 1016. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.T.; Park, T.M.; Baik, K.-H.; Choi, W.S.; Han, J. Effects of cold rolling reduction ratio on microstructures and tensile properties of intercritically annealed medium-Mn steels. Mater. Sci. Eng. A 2019, 752, 43–54. [Google Scholar] [CrossRef]
- Soleimani, M.; Kalhor, A.; Mirzadeh, H. Transformation-induced plasticity (TRIP) in advanced steels: A review. Mater. Sci. Eng. A 2020, 795, 140023. [Google Scholar] [CrossRef]
- Kumar, S.; Desai, R. Effect of Boron Micro-alloying on Microstructure and Corrosion Behavior of Dual-Phase Steel. J. Mater. Eng. Perform. 2019, 28, 6228–6236. [Google Scholar] [CrossRef]
- Zhou, Q.; Qian, L.; Meng, J.; Zhao, L. The fatigue properties, microstructural evolution and crack behaviors of low-carbon carbide-free bainitic steel during low-cycle fatigue. Mater. Sci. Eng. A 2021, 820, 141571. [Google Scholar] [CrossRef]
- Liu, L.; Maresca, F.; Hoefnagels, J.; Vermeij, T.; Geers, M.; Kouznetsova, V. Revisiting the martensite/ferrite interface damage initiation mechanism: The key role of substructure boundary sliding. Acta Mater. 2020, 205, 116533. [Google Scholar] [CrossRef]
- Badkoobeh, F.; Nouri, A.; Hassannejad, H. The bake hardening mechanism of dual-phase silicon steels under high pre-strain. Mater. Sci. Eng. A 2019, 770, 138544. [Google Scholar] [CrossRef]
- Badkoobeh, F.; Nouri, A.; Hassannejad, H.; Mostaan, H. Microstructure and mechanical properties of resistance spot welded dual-phase steels with various silicon contents. Mater. Sci. Eng. A 2020, 790, 139703. [Google Scholar] [CrossRef]
- Hou, Y.; Min, J.; Guo, N.; Lin, J.; Carsley, J.E.; Stoughton, T.B.; Traphöner, H.; Clausmeyer, T.; Tekkaya, A.E. Investigation of evolving yield surfaces of dual-phase steels. J. Mater. Process. Technol. 2021, 287, 116314. [Google Scholar] [CrossRef]
- Wang, M.; Huang, M. Abnormal TRIP effect on the work hardening behavior of a quenching and partitioning steel at high strain rate. Acta Mater. 2020, 188, 551–559. [Google Scholar] [CrossRef]
- Avishan, B.; Khoshkebari, S.M.; Yazdani, S. Effect of pre-existing martensite within the microstructure of nano bainitic steel on its mechanical properties. Mater. Chem. Phys. 2021, 260, 124160. [Google Scholar] [CrossRef]
- Kumar, R.; Dwivedi, R.K.; Ahmed, S. Stability of Retained Austenite in Carbide Free Bainite during the Austempering Temperature and its Influence on Sliding Wear of High Silicon Steel. Silicon 2021, 13, 1249–1259. [Google Scholar] [CrossRef]
- Thakur, A.K.; Kumar, R.R.; Bansal, G.K.; Verma, R.K.; Tarafder, S.; Sivaprasad, S.; Mandal, G.K. Processing-Microstructure-Property Correlation for Producing Stretch-Flangeable Grade Dual-Phase Steel. J. Mater. Eng. Perform. 2021, 30, 4300–4317. [Google Scholar] [CrossRef]
- Li, S.; Guo, C.; Hao, L.; Kang, Y.; An, Y. Microstructure-Based Modeling of Mechanical Properties and Deformation Behavior of DP600 Dual Phase Steel. Steel Res. Int. 2019, 90, 1900311. [Google Scholar] [CrossRef]
- Hu, X.; Ke, D.; Zhi, Y.; Liu, X. Effect of Two Steps Overaging on Mechanical Properties of Tailor Rolled Blank of Dual Phase Steel. Metals 2021, 11, 792. [Google Scholar] [CrossRef]
- Dai, J.; Meng, Q.; Zheng, H. High-strength dual-phase steel produced through fast-heating annealing method. Results Mater. 2020, 5, 100069. [Google Scholar] [CrossRef]
- Shan, Y.V.; Soliman, M.; Palkowski, H.; Kozeschnik, E. Modeling of Bake Hardening Kinetics and Carbon Redistribution in Dual-Phase Steels. Steel Res. Int. 2021, 92, 2000307. [Google Scholar] [CrossRef]
- Çobanoğlu, M.; Ertan, R.K.; Şimşir, C.; Efe, M. Excessive damage increase in dual phase steels under high strain rates and temperatures. Int. J. Damage Mech. 2021, 30, 283–296. [Google Scholar] [CrossRef]
- Davaze, V.; Vallino, N.; Feld-Payet, S.; Langrand, B.; Besson, J. Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings. Eng. Fract. Mech. 2020, 235, 107165. [Google Scholar] [CrossRef]
- Singh, M.; Das, A.; Venugopalan, T.; Mukherjee, K.; Walunj, M.; Nanda, T.; Kumar, B.R. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel. Met. Mater. Trans. A 2018, 49, 463–475. [Google Scholar] [CrossRef]
- An, D.; Baik, S.-I.; Ren, Q.; Jiang, M.; Zhu, M.; Isheim, D.; Krakauer, B.W.; Seidman, D.N. A transmission electron microscopy and atom-probe tomography study of martensite morphology and composition in a dual-phase steel. Mater. Charact. 2020, 162, 110207. [Google Scholar] [CrossRef]
- Asadipoor, M.; Kadkhodapour, J.; Anaraki, A.P.; Sharifi, S.M.H.; Darabi, A.C.; Barnoush, A. Experimental and Numerical Investigation of Hydrogen Embrittlement Effect on Microdamage Evolution of Advanced High-Strength Dual-Phase Steel. Met. Mater. Int. 2021, 27, 2276–2291. [Google Scholar] [CrossRef]
- Zhou, L.-Y.; Zhang, D.; Liu, Y.-Z. Influence of silicon on the microstructures, mechanical properties and stretch-flangeability of dual phase steels. Int. J. Miner. Met. Mater. 2014, 21, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Li, C.-H.; Tsao, T.-C.; Chiu, P.-H.; Tsai, S.-P.; Yang, J.-R.; Chiang, L.-J.; Wang, S.-H. A novel technique for developing a dual-phase steel with a lower strength difference between ferrite and martensite. Mater. Today Commun. 2020, 23, 100895. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, T.; Wang, Y.; Guo, S.; Liu, Y. Ultrafine grained dual-phase martensite/ferrite steel strengthened and toughened by lamella structure. Mater. Sci. Eng. A 2018, 734, 311–317. [Google Scholar] [CrossRef]
- Ramazani, A.; Ebrahimi, Z.; Prahl, U. Study the effect of martensite banding on the failure initiation in dual-phase steel. Comput. Mater. Sci. 2014, 87, 241–247. [Google Scholar] [CrossRef]
- Lai, Q.; Bouaziz, O.; Gouné, M.; Perlade, A.; Bréchet, Y.; Pardoen, T. Microstructure refinement of dual-phase steels with 3.5 wt% Mn: Influence on plastic and fracture behavior. Mater. Sci. Eng. A 2015, 638, 78–89. [Google Scholar] [CrossRef]
- Song, E.; Lee, G.-H.; Jeon, H.; Park, B.J.; Lee, J.-G.; Kim, J.-Y. Stretch-flangeability correlated with hardness distribution and strain-hardenability of constituent phases in dual- and complex-phase steels. Mater. Sci. Eng. A 2021, 817, 141353. [Google Scholar] [CrossRef]
- Roodgari, M.R.; Jamaati, R.; Aval, H.J. A new method to produce dual-phase steel. Mater. Sci. Eng. A 2021, 803, 140695. [Google Scholar] [CrossRef]
- Ramazani, A.; Mukherjee, K.; Prahl, U.; Bleck, W. Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size. Met. Mater. Trans. A 2012, 43, 3850–3869. [Google Scholar] [CrossRef]
- Ramazani, A.; Mukherjee, K.; Schwedt, A.; Goravanchi, P.; Prahl, U.; Bleck, W. Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. Int. J. Plast. 2013, 43, 128–152. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Z.; Wu, G.; Wang, N.; Zhao, Q.; Luo, J. Investigation on micromechanism of ferrite hardening after pre-straining with different strain rates of dual-phase steel. Mater. Sci. Eng. A 2020, 802, 140657. [Google Scholar] [CrossRef]
- Mazaheri, Y.; Jahanara, A.H.; Sheikhi, M.; Kalashami, A.G. High strength-elongation balance in ultrafine grained ferrite-martensite dual phase steels developed by thermomechanical processing. Mater. Sci. Eng. A 2019, 761, 138021. [Google Scholar] [CrossRef]
- Frómeta, D.; Cuadrado, N.; Rehrl, J.; Suppan, C.; Dieudonné, T.; Dietsch, P.; Calvo, J.; Casellas, D. Microstructural effects on fracture toughness of ultra-high strength dual phase sheet steels. Mater. Sci. Eng. A 2021, 802, 140631. [Google Scholar] [CrossRef]
- Velasquez, C.P.; Rodriguez, D.A.; Tovar, C.N.; Roncery, L.M.; Baracaldo, R.R. Fatigue Crack Growth and Fracture Toughness in a Dual Phase Steel: Effect of Increasing Martensite Volume Fraction. Int. J. Automot. Mech. Eng. 2020, 17, 8086–8095. [Google Scholar] [CrossRef]
- Huan, P.-C.; Wang, X.-N.; Yang, L.; Zheng, Z.; Hu, Z.-R.; Zhang, M.; Chen, C.-J. Effect of Martensite Content on Failure Behavior of Laser Welded Dual-Phase Steel Joints During Deformation. J. Mater. Eng. Perform. 2019, 28, 1801–1809. [Google Scholar] [CrossRef]
- Soliman, M.; Palkowski, H. Strain Hardening Dependence on the Structure in Dual-Phase Steels. Steel Res. Int. 2021, 92, 2000518. [Google Scholar] [CrossRef]
- Calcagnotto, M.; Ponge, D.; Raabe, D. Effect of grain refinement to 1μm on strength and toughness of dual-phase steels. Mater. Sci. Eng. A 2010, 527, 7832–7840. [Google Scholar] [CrossRef]
- Yoon, J.I.; Jung, J.; Lee, H.H.; Kim, J.Y.; Kim, H.S. Relationships Between Stretch-Flangeability and Microstructure-Mechanical Properties in Ultra-High-Strength Dual-Phase Steels. Met. Mater. Int. 2019, 25, 1161–1169. [Google Scholar] [CrossRef]
- Das, H.; Mondal, M.; Hong, S.-T.; Lim, Y.; Lee, K.-J. Comparison of microstructural and mechanical properties of friction stir spot welded ultra-high strength dual phase and complex phase steels. Mater. Charact. 2018, 139, 428–436. [Google Scholar] [CrossRef]
- Mostaan, H.; Saeedpour, P.; Ahmadi, H.; Nouri, A. Laser welding of dual-phase steels with different silicon contents: Phase evolutions, microstructural observations, mechanical properties, and fracture behavior. Mater. Sci. Eng. A 2021, 811, 140974. [Google Scholar] [CrossRef]
- Nouri, A.; Saghafian, H.; Kheirandish, S. Influence of volume fraction of martensite on the work hardening behaviour of two dual-phase steels with high and low silicon contents. Int. J. Mater. Res. 2010, 101, 1286–1292. [Google Scholar] [CrossRef]
- Calcagnotto, M.; Adachi, Y.; Ponge, D.; Raabe, D. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 2011, 59, 658–670. [Google Scholar] [CrossRef]
- Nouri, A.; Hassannejad, H.; Farrokhi-Rad, M. Relationship between Microstructure and Corrosion Behavior in Dual-Phase Steels with Various Si Content. Steel Res. Int. 2019, 90, 1900331. [Google Scholar] [CrossRef]
- Nouri, A.; Hassannejad, H.; Farrokhi-Rad, M. Effect of Silicon Content on the Wear Behavior of Low-Carbon Dual-Phase Steels. Tribol. Lett. 2019, 67, 69. [Google Scholar] [CrossRef]
- Khosravani, A.; Cecen, A.; Kalidindi, S.R. Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: Application to dual-phase steels. Acta Mater. 2017, 123, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Chattopadhyay, P.P. Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel. J. Mater. Sci. 2009, 44, 2957–2965. [Google Scholar] [CrossRef]
- Mazaheri, Y.; Jahanara, A.H.; Sheikhi, M.; Ghassemali, E. On the Simultaneous Improving of Strength and Elongation in Dual Phase Steels via Cold Rolling. Metals 2020, 10, 1676. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Saeidi, N.; Raeissi, M. Microstructural Modifications of Dual-Phase Steels: An Overview of Recent Progress and Challenges. Steel Res. Int. 2020, 91, 2000178. [Google Scholar] [CrossRef]
- Wang, H.-S.; Yuan, G.; Kang, J.; Cao, G.; Li, C.-G.; Misra, R.; Wang, G. Microstructural evolution and mechanical properties of dual phase steel produced by strip casting. Mater. Sci. Eng. A 2017, 703, 486–495. [Google Scholar] [CrossRef]
- Jung, J.; Yoon, J.I.; Park, H.K.; Kim, J.Y.; Kim, H.S. Bayesian approach in predicting mechanical properties of materials: Application to dual phase steels. Mater. Sci. Eng. A 2019, 743, 382–390. [Google Scholar] [CrossRef]
- Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N. Examination of phase transformation kinetics during step quenching of dual phase steels. Mater. Chem. Phys. 2017, 187, 203–217. [Google Scholar] [CrossRef]
- Ji, D.; Zhang, M.; Zhu, D.; Luo, S.; Li, L. Influence of microstructure and pre-straining on the bake hardening response for ferrite-martensite dual-phase steels of different grades. Mater. Sci. Eng. A 2017, 708, 129–141. [Google Scholar] [CrossRef]
- Calcagnotto, M.; Ponge, D.; Demir, E.; Raabe, D. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 2010, 527, 2738–2746. [Google Scholar] [CrossRef]
- Li, S.; Guo, C.; Hao, L.; Kang, Y.; An, Y. In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests. Mater. Sci. Eng. A 2019, 759, 624–632. [Google Scholar] [CrossRef]
- Atreya, V.; Bos, C.; Santofimia, M.J. Understanding ferrite deformation caused by austenite to martensite transformation in dual phase steels. Scr. Mater. 2021, 202, 114032. [Google Scholar] [CrossRef]
- Saha, D.; Biro, E.; Gerlich, A.; Zhou, Y. Influences of blocky retained austenite on the heat-affected zone softening of dual-phase steels. Mater. Lett. 2020, 264, 127368. [Google Scholar] [CrossRef]
- Saleh, M.; Priestner, R. Retained austenite in dual-phase silicon steels and its effect on mechanical properties. J. Mater. Process. Technol. 2001, 113, 587–593. [Google Scholar] [CrossRef]
- Dong, X.; Shen, Y.; Xue, W.; Jia, N. Improved work hardening of a medium carbon-TRIP steel by partial decomposition of retained austenite. Mater. Sci. Eng. A 2021, 803, 140504. [Google Scholar] [CrossRef]
- Soliman, M.; Shan, Y.V.; Mendez-Martin, F.; Kozeschnik, E.; Palkowski, H. Strain aging characterization and physical modelling of over-aging in dual phase steel. Mater. Sci. Eng. A 2020, 788, 139595. [Google Scholar] [CrossRef]
- Zhang, J.; Di, H.; Deng, Y.; Misra, R. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel. Mater. Sci. Eng. A 2015, 627, 230–240. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Z.; Lian, J. Influence of predeformation on microstructure and mechanical properties of 1020 dual phase steel. Mater. Sci. Technol. 1991, 7, 527–532. [Google Scholar] [CrossRef]
- Dieter, G.E. Mechanical Metallurgy, 3rd ed.; MCgraw-Hill Book Company: London, UK, 1988. [Google Scholar]
- Hertzberg, R.W.; Vinci, R.P.; Hertzberg, J.L. Deformation and Fracture Mechanics of Engineering Materials, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Trevisiol, C.; Jourani, A.; Bouvier, S. Effect of Martensite Morphology on Tribological Behaviour of a Low-Alloy Steel. Met. Microstruct. Anal. 2019, 8, 123–134. [Google Scholar] [CrossRef]
- Singh, V.; Adhikary, M.; Venugopalan, T.; Chakraborty, A.; Nanda, T.; Kumar, B.R. Role of Recrystallization and Pearlite Dissolution in Industrial Processing of DP590 Steels. Mater. Manuf. Process. 2017, 4, 686–1816. [Google Scholar] [CrossRef]
- Fan, S.; Hao, H.; Zhang, X.; Han, Q. Improvement in Mechanical Properties of a Surface-Carburized Ferrite–Martensite Dual-Phase Steel by Intercritical Annealing. J. Mater. Eng. Perform. 2020, 29, 7034–7044. [Google Scholar] [CrossRef]
- Jahanara, A.H.; Mazaheri, Y.; Sheikhi, M. Correlation of ferrite and martensite micromechanical behavior with mechanical properties of ultrafine grained dual phase steels. Mater. Sci. Eng. A 2019, 764, 138206. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, T.; Sun, Y.; Wang, Y.; Liu, Y. A lamellar structured ultrafine grain ferrite-martensite dual-phase steel and its resistance to hydrogen embrittlement. J. Alloys Compd. 2017, 698, 390–399. [Google Scholar] [CrossRef]
- Son, Y.I.; Lee, Y.K.; Park, K.-T.; Lee, C.S.; Shin, D.H. Ultrafine grained ferrite–martensite dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties. Acta Mater. 2005, 53, 3125–3134. [Google Scholar] [CrossRef]
- Mazaheri, Y.; Kermanpur, A.; Najafizadeh, A. Strengthening Mechanisms of Ultrafine Grained Dual Phase Steels Developed by New Thermomechanical Processing. ISIJ Int. 2015, 55, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Bag, A.; Ray, K.K.; Dwarakadasa, E.S. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Met. Mater. Trans. A 1999, 30, 1193–1202. [Google Scholar] [CrossRef]
- Avendaño-Rodríguez, D.; Granados, J.D.; Espejo-Mora, E.; Mujica-Roncery, L.; Baracaldo, R.R. Fracture mechanisms in dual-phase steel: Influence of martensite volume fraction and ferrite grain size. J. Eng. Sci. Technol. Rev. 2018, 11, 174–181. [Google Scholar] [CrossRef]
- Hai, C.; Cheng, X.; Du, C.; Li, X. Role of Martensite Structural Characteristics on Corrosion Features in Ni-Advanced Dual-Phase Low-Alloy Steels. Acta Met. Sin. Engl. Lett. 2021, 34, 802–812. [Google Scholar] [CrossRef]
- Paul, S.K. Effect of martensite volume fraction on stress triaxiality and deformation behavior of dual phase steel. Mater. Des. 2013, 50, 782–789. [Google Scholar] [CrossRef]
- Sarwar, M.; Priestner, R. Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel. J. Mater. Sci. 1996, 31, 2091–2095. [Google Scholar] [CrossRef]
- Dutta, T.; Das, D.; Banerjee, S.; Saha, S.K.; Datta, S. An automated morphological classification of ferrite-martensite dual-phase microstructures. Measurement 2019, 137, 595–603. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Banadkouki, S.G. Mutual mechanical effects of ferrite and martensite in a low alloy ferrite-martensite dual phase steel. J. Alloys Compd. 2017, 708, 43–54. [Google Scholar] [CrossRef]
- Rana, A.K.; Paul, S.K.; Dey, P.P. Effect of martensite volume fraction on cyclic plastic deformation behavior of dual phase steel: Micromechanics simulation study. J. Mater. Res. Technol. 2019, 8, 3705–3712. [Google Scholar] [CrossRef]
- Jazaeri, H.; Humphreys, F.J. The transition from discontinuous to continuous recrystallization in some aluminium alloys. Acta Mater. 2004, 52, 3251–3262. [Google Scholar] [CrossRef]
- Nasiri, Z.; Ghaemifar, S.; NaghiZadeh, M.; Mirzadeh, H. Thermal Mechanisms of Grain Refinement in Steels: A Review. Met. Mater. Int. 2021, 27, 2078–2094. [Google Scholar] [CrossRef]
- Du, C.; Hoefnagels, J.; Kölling, S.; Geers, M.; Sietsma, J.; Petrov, R.; Bliznuk, V.; Koenraad, P.; Schryvers, D.; Amin-Ahmadi, B. Martensite crystallography and chemistry in dual phase and fully martensitic steels. Mater. Charact. 2018, 139, 411–420. [Google Scholar] [CrossRef]
- Matsuyama, S.; Galindo-Nava, E.I. A Unified Model for Plasticity in Ferritic, Martensitic and Dual-Phase Steels. Metals 2020, 10, 764. [Google Scholar] [CrossRef]
- Bakhtiari, M.; Kermanpur, A.; Han, J.; Najafizadeh, A. Effect of Intercritical Annealing on Microstructure and Tensile Properties of an Ultrafine-Grained Dual-Phase Low Alloy Steel Containing Titanium. Steel Res. Int. 2020, 91, 2000118. [Google Scholar] [CrossRef]
- Pan, Z.; Gao, B.; Lai, Q.; Chen, X.; Cao, Y.; Liu, M.; Zhou, H. Microstructure and Mechanical Properties of a Cold-Rolled Ultrafine-Grained Dual-Phase Steel. Materials 2018, 11, 1399. [Google Scholar] [CrossRef] [Green Version]
- Nikkhah, S.; Mirzadeh, H.; Zamani, M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing. Mater. Chem. Phys. 2019, 230, 1–8. [Google Scholar] [CrossRef]
- Najafi, M.; Mirzadeh, H.; Alibeyki, M. Improved Mechanical Properties of Structural Steel via Developing Bimodal Grain Size Distribution and Intercritical Heat Treatment. J. Mater. Eng. Perform. 2019, 28, 5409–5414. [Google Scholar] [CrossRef]
- Gao, B.; Hu, R.; Pan, Z.; Chen, X.; Liu, Y.; Xiao, L.; Cao, Y.; Li, Y.; Lai, Q.; Zhou, H. Strengthening and ductilization of laminate dual-phase steels with high martensite content. J. Mater. Sci. Technol. 2021, 65, 29–37. [Google Scholar] [CrossRef]
- Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N. A novel and simple technique for development of dual phase steels with excellent ductility. Mater. Sci. Eng. A 2017, 680, 197–202. [Google Scholar] [CrossRef]
- Niakan, H.; Najafizadeh, A. Effect of niobium and rolling parameters on the mechanical properties and microstructure of dual phase steels. Mater. Sci. Eng. A 2010, 527, 5410–5414. [Google Scholar] [CrossRef]
- Rajput, S.K.; Mehta, Y.; Chaudhari, G.P.; Nath, S.K. Optimized Thermomechanical Processing for Fine-Grained Dual-Phase Microstructure Using Deformation-Induced Ferrite Transformation. J. Mater. Eng. Perform. 2020, 29, 4260–4274. [Google Scholar] [CrossRef]
- Aktarer, S.; Küçükömeroğlu, T.; Davut, K. Friction stir processing of dual phase steel: Microstructural evolution and mechanical properties. Mater. Charact. 2019, 155, 109787. [Google Scholar] [CrossRef]
- Deng, Y.G.; Li, Y.; Di, H.; Misra, R.D.K. Effect of Heating Rate during Continuous Annealing on Microstructure and Mechanical Properties of High-Strength Dual-Phase Steel. J. Mater. Eng. Perform. 2019, 28, 4556–4564. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Ji, Z.; Luo, H.; Liu, F. Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability. J. Mater. Sci. Technol. 2021, 75, 139–153. [Google Scholar] [CrossRef]
- Drumond, J.; Girina, O.; Filho, J.F.D.S.; Fonstein, N.; De Oliveira, C.A.S. Effect of Silicon Content on the Microstructure and Mechanical Properties of Dual-Phase Steels. Met. Microstruct. Anal. 2012, 1, 217–223. [Google Scholar] [CrossRef]
- Mohrbacher, H.; Yang, J.-R.; Chen, Y.-W.; Rehrl, J.; Hebesberger, T. Metallurgical Effects of Niobium in Dual Phase Steel. Metals 2020, 10, 504. [Google Scholar] [CrossRef]
- Calcagnotto, M.; Ponge, D.; Raabe, D. On the Effect of Manganese on Grain Size Stability and Hardenability in Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels. Met. Mater. Trans. A 2012, 43, 37–46. [Google Scholar] [CrossRef]
- Gotawala, N.; Wadighare, A.; Shrivastava, A. Phase transformation during friction stir processing of dual-phase 600 steel. J. Mater. Sci. 2020, 55, 4464–4477. [Google Scholar] [CrossRef]
- Jiang, Z.; Guan, Z.; Lian, J. Effects of microstructural variables on the deformation behaviour of dual-phase steel. Mater. Sci. Eng. A 1995, 190, 55–64. [Google Scholar] [CrossRef]
- Yaghoobi, F.; Jamaati, R.; Aval, H.J. Simultaneous enhancement of strength and ductility in ferrite-martensite steel via increasing the martensite fraction. Mater. Chem. Phys. 2021, 259, 124204. [Google Scholar] [CrossRef]
- Deng, Y.-G.; Di, H.-S.; Misra, R.D.K. On significance of initial microstructure in governing mechanical behavior and fracture of dual-phase steels. J. Iron Steel Res. Int. 2018, 25, 932–942. [Google Scholar] [CrossRef]
- Hao, X.; Zhao, X.; Huang, B.; Chen, H.; Ma, J.; Wang, C.; Yang, Y. Influence of Intercritical Quenching Temperature on Microstructure, Mechanical Properties and Corrosion Resistance of Dual-Phase Steel. J. Mater. Eng. Perform. 2020, 29, 4446–4456. [Google Scholar] [CrossRef]
- Hashimoto, T. Fatigue life studies in carbon dual-phase steels. Int. J. Fatigue 1996, 18, 529–533. [Google Scholar] [CrossRef]
- Nouri, A.; Saghafian, H.; Kheirandish, S. Effects of silicon content and intercritical annealing on manganese partitioning in dual phase steels. J. Iron Steel Res. Int. 2010, 17, 44–50. [Google Scholar] [CrossRef]
- Sunil, B.; Rajanna, S. Evaluation of mechanical properties of ferrite-martensite DP steels produced through intermediate quenching technique. SN Appl. Sci. 2020, 2, 1461. [Google Scholar] [CrossRef]
- Yaghoobi, F.; Jamaati, R.; Aval, H.J. A new 1.2 GPa-strength plain low carbon steel with high ductility obtained by SRDR of martensite and intercritical annealing. Mater. Sci. Eng. A 2020, 788, 139584. [Google Scholar] [CrossRef]
- Nouri, A.; Kheirandish, S.; Saghafian, H. A Study of Redistribution of Silicon in Dual-Phase Silicon Steels. Met. Sci. Heat Treat. 2018, 59, 569–574. [Google Scholar] [CrossRef]
- Davies, R.G. Influence of silicon and phosphorous on the mechanical properties of both ferrite and dual-phase steels. Met. Mater. Trans. A 1979, 10, 113–118. [Google Scholar] [CrossRef]
- Pierman, A.-P.; Bouaziz, O.; Pardoen, T.; Jacques, P.; Brassart, L. The influence of microstructure and composition on the plastic behaviour of dual-phase steels. Acta Mater. 2014, 73, 298–311. [Google Scholar] [CrossRef]
- Mohanty, R.R.; Girina, O.A.; Fonstein, N.M. Effect of Heating Rate on the Austenite Formation in Low-Carbon High-Strength Steels Annealed in the Intercritical Region. Met. Mater. Trans. A 2011, 42, 3680–3690. [Google Scholar] [CrossRef]
- Kumar, R.; Patel, N.K.; Mukherjee, K.; Walunj, M.; Mandal, G.K.; Venugopalan, T. Ferrite channel effect on ductility and strain hardenability of ultra high strength dual phase steel. Mater. Sci. Eng. A 2017, 685, 187–193. [Google Scholar] [CrossRef]
- Kim, N.J.; Thomas, G. Effects of morphology on the mechanical behavior of a dual phase Fe/2Si/0.1C steel. Met. Mater. Trans. A 1981, 12, 483–489. [Google Scholar] [CrossRef]
- Paul, S.K.; Stanford, N.; Hilditch, T. Effect of martensite volume fraction on low cycle fatigue behaviour of dual phase steels: Experimental and microstructural investigation. Mater. Sci. Eng. A 2015, 638, 296–304. [Google Scholar] [CrossRef]
- Moeini, G.; Ramazani, A.; Sundararaghavan, V.; Koenke, C. Micromechanical modeling of fatigue behavior of DP steels. Mater. Sci. Eng. A 2017, 689, 89–95. [Google Scholar] [CrossRef]
- Idris, R.; Prawoto, Y. Influence of ferrite fraction within martensite matrix on fatigue crack propagation: An experimental verification with dual phase steel. Mater. Sci. Eng. A 2012, 552, 547–554. [Google Scholar] [CrossRef]
- Ghosal, P.; Paul, S.K.; Das, B.; Chinara, M.; Arora, K.S. Notch fatigue performance of DP600 steel under different pre-straining paths. Theor. Appl. Fract. Mech. 2020, 108, 102630. [Google Scholar] [CrossRef]
- Das, B.; Singh, A.; Arora, K.S.; Shome, M.; Paul, S.K. Influence of pre-straining path on high cycle fatigue performance of DP 600 steel. Int. J. Fatigue 2019, 126, 369–380. [Google Scholar] [CrossRef]
- Lian, J.; Yang, H.; Vajragupta, N.; Münstermann, S.; Bleck, W. A method to quantitatively upscale the damage initiation of dual-phase steels under various stress states from microscale to macroscale. Comput. Mater. Sci. 2014, 94, 245–257. [Google Scholar] [CrossRef]
- Rudnizki, J.; Prahl, U.; Bleck, W. Phase-field modelling of microstructure evolution during processing of cold-rolled dual phase steels. Integr. Mater. Manuf. Innov. 2012, 1, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Bleck, W.; Hömberg, D.; Prahl, U.; Suwanpinij, P.; Togobytska, N. Optimal Control of a Cooling Line for Production of Hot Rolled Dual Phase Steel. Steel Res. Int. 2014, 85, 1328–1333. [Google Scholar] [CrossRef]
- Reséndiz-Flores, E.; Altamirano-Guerrero, G.; Costa, P.; Salas-Reyes, A.; Salinas-Rodríguez, A.; Goodwin, F. Optimal Design of Hot-Dip Galvanized DP Steels via Artificial Neural Networks and Multi-Objective Genetic Optimization. Metals 2021, 11, 578. [Google Scholar] [CrossRef]
- Jolfaei, M.A.; Zhou, L.; Davis, C. Consideration of Magnetic Measurements for Characterisation of Ferrite–Martensite Commercial Dual-Phase (DP) Steel and Basis for Optimisation of the Operating Magnetic Field for Open Loop Deployable Sensors. Metals 2021, 11, 490. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, D.; Arróyave, R.; Srivastava, A. Microstructure-Based Modeling of the Effect of Inclusion on the Bendability of Advanced High Strength Dual-Phase Steels. Metals 2021, 11, 431. [Google Scholar] [CrossRef]
- Rudomilova, D.; Prošek, T.; Traxler, I.; Faderl, J.; Luckeneder, G.; Schimo-Aichhorn, G.; Muhr, A. Critical Assessment of the Effect of Atmospheric Corrosion Induced Hydrogen on Mechanical Properties of Advanced High Strength Steel. Metals 2021, 11, 44. [Google Scholar] [CrossRef]
- Alvarez, P.; Muñoz, F.; Celentano, D.; Artigas, A.; Cerda, F.M.C.; Ponthot, J.-P.; Monsalve, A. Modeling the Mechanical Response of a Dual-Phase Steel Based on Individual-Phase Tensile Properties. Metals 2020, 10, 1031. [Google Scholar] [CrossRef]
- Drexler, A.; Bergmann, C.; Manke, G.; Kokotin, V.; Mraczek, K.; Pohl, M.; Ecker, W. On the local evaluation of the hydrogen susceptibility of cold-formed and heat treated advanced high strength steel (AHSS) sheets. Mater. Sci. Eng. A 2021, 800, 140276. [Google Scholar] [CrossRef]
- Yaddanapudi, K.; Knezevic, M.; Mahajan, S.; Beyerlein, I.J. Plasticity and structure evolution of ferrite and martensite in DP 1180 during tension and cyclic bending under tension to large strains. Mater. Sci. Eng. A 2021, 820, 141536. [Google Scholar] [CrossRef]
- Khosravani, A.; Caliendo, C.M.; Kalidindi, S.R. New Insights into the Microstructural Changes During the Processing of Dual-Phase Steels from Multiresolution Spherical Indentation Stress–Strain Protocols. Metals 2020, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.; Altamirano, G.; Salinas, A.; González-González, D.S.; Goodwin, F. Optimization of the Continuous Galvanizing Heat Treatment Process in Ultra-High Strength Dual Phase Steels Using a Multivariate Model. Metals 2019, 9, 703. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Tang, S.; Wang, G.; Zhang, Q.; Wang, X. Micro-laminated and ultrafine-grained dual-phase steel plates generated via intercritical rolling followed by water quenching. J. Manuf. Process. 2021, 70, 321–330. [Google Scholar] [CrossRef]
- Xiong, Z.; Kostryzhev, A.G.; Zhao, Y.; Pereloma, E.V. Microstructure Evolution during the Production of Dual Phase and Transformation Induced Plasticity Steels Using Modified Strip Casting Simulated in The Laboratory. Metals 2019, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Badkoobeh, F.; Mostaan, H.; Rafiei, M.; Bakhsheshi-Rad, H.R.; Berto, F. Friction Stir Welding/Processing of Mg-Based Alloys: A Critical Review on Advancements and Challenges. Materials 2021, 14, 6726. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Dan, W.; Ren, C.; Huang, T.; Zhang, W. Study of the Mechanical Behavior of Dual-Phase Steel Based on Crystal Plasticity Modeling Considering Strain Partitioning. Metals 2018, 8, 782. [Google Scholar] [CrossRef] [Green Version]
- Bräutigam–Matus, K.; Altamirano, G.; Salinas, A.; Flores, A.; Goodwin, F. Experimental Determination of Continuous Cooling Transformation (CCT) Diagrams for Dual-Phase Steels from the Intercritical Temperature Range. Metals 2018, 8, 674. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Mi, Z.; Liu, S.; Li, H.; Li, J.; Jiang, H. The Impact of Strain Heterogeneity and Transformation of Metastable Austenite on Springback Behavior in Quenching and Partitioning Steel. Metals 2018, 8, 432. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Zhao, Z.; Wu, H.; Peng, C.; Sun, B.; Guo, B.; Liang, J.; Tang, D. Mechanical Behavior of Two Ferrite–Martensite Dual-Phase Steels over a Broad Range of Strain Rates. Metals 2018, 8, 236. [Google Scholar] [CrossRef] [Green Version]
- Amigo, F.J.; Camacho, A.M. Reduction of Induced Central Damage in Cold Extrusion of Dual-Phase Steel DP800 Using Double-Pass Dies. Metals 2017, 7, 335. [Google Scholar] [CrossRef] [Green Version]
- Evin, E.; Tomáš, M. The influence of laser welding on the mechanical properties of dual phase and trip steels. Metals 2017, 7, 239. [Google Scholar] [CrossRef] [Green Version]
- Ji, F.; Song, W.; Ma, Y.; Li, C.; Bleck, W.; Wang, G. Recrystallization behavior in a low-density high-Mn high-Al austenitic steel undergone thin strip casting process. Mater. Sci. Eng. A 2018, 733, 87–97. [Google Scholar] [CrossRef]
- Chang, Y.; Haase, C.; Szeliga, D.; Madej, L.; Hangen, U.; Pietrzyk, M.; Bleck, W. Compositional heterogeneity in multiphase steels: Characterization and influence on local properties. Mater. Sci. Eng. A 2021, 827, 142078. [Google Scholar] [CrossRef]
- Haase, C.; Zehnder, C.; Ingendahl, T.; Bikar, A.; Tang, F.; Hallstedt, B.; Hu, W.; Bleck, W.; Molodov, D.A. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel. Acta Mater. 2017, 122, 332–343. [Google Scholar] [CrossRef]
- Naalchian, M.; Kasiri-Asgarani, M.; Shamanian, M.; Bakhtiari, R.; Bakhsheshi-Rad, H.R.; Berto, F.; Das, O. Phase Formation during heating of amorphous nickel-based BNi-3 for joining of dissimilar cobalt-based superalloys. Materials 2021, 14, 4600. [Google Scholar] [CrossRef] [PubMed]
- Naalchian, M.; Kasiri-Asgarani, M.; Shamanian, M.; Bakhtiari, R.; Bakhsheshi-Rad, H.R. Effect of Substrate’s Heat Treatment on Microstructure and Mechanical Properties TLP Bonding of Dissimilar X-45/FSX-414 Cobalt Based Superalloys. Met. Mater. Int. 2021, 27, 4657–4668. [Google Scholar] [CrossRef]
- Abazari, S.; Shamsipur, A.; Bakhsheshi-Rad, H.R.; Ismail, A.F.; Sharif, S.; Razzaghi, M.; Ramakrishna, S.; Berto, F. Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: A comprehensive review. Materials 2020, 13, 4421. [Google Scholar] [CrossRef]
- Abazari, S.; Shamsipur, A.; Bakhsheshi-Rad, H.R.; Ramakrishna, S.; Berto, F. Graphene family nanomaterial reinforced magnesium-based matrix composites for biomedical application: A comprehensive review. Metals 2020, 10, 1002. [Google Scholar] [CrossRef]
- Mudang, M.; Hamzah, E.; Bakhsheshi-Rad, H.R.; Berto, F. Effect of heat treatment on microstructure and creep behavior of Fe-40Ni-24Cr alloy. Appl. Sci. 2021, 11, 7951. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, B.; Schökel, A.; Song, W.; Ponge, D.; Raabe, D.; Bleck, W. Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels. Acta Mater. 2020, 200, 389–403. [Google Scholar] [CrossRef]
Steel | MVF (%) | YS (MPa) | UTS (MPa) | UE (%) | TE (%) | n-Value | |
---|---|---|---|---|---|---|---|
CG | 31.3 | 12.4 | 17 | 25 | 0.7 | 1.0 | 0.01 |
FG | 30.1 | 2.4 | 7 | 4 | 0.4 | 0.8 | 0.01 |
UFG | 29.8 | 1.2 | 8 | 15 | 0.5 | 0.4 | 0.01 |
Steel | YS (MPa) | UTS (Mpa) | TE (%) |
---|---|---|---|
) | 574 | 851 | 15.98 |
) | 602 | 885 | 13.01 |
) | 621 | 914 | 11.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badkoobeh, F.; Mostaan, H.; Rafiei, M.; Bakhsheshi-Rad, H.R.; Berto, F. Microstructural Characteristics and Strengthening Mechanisms of Ferritic–Martensitic Dual-Phase Steels: A Review. Metals 2022, 12, 101. https://doi.org/10.3390/met12010101
Badkoobeh F, Mostaan H, Rafiei M, Bakhsheshi-Rad HR, Berto F. Microstructural Characteristics and Strengthening Mechanisms of Ferritic–Martensitic Dual-Phase Steels: A Review. Metals. 2022; 12(1):101. https://doi.org/10.3390/met12010101
Chicago/Turabian StyleBadkoobeh, Farzad, Hossein Mostaan, Mahdi Rafiei, Hamid Reza Bakhsheshi-Rad, and Filippo Berto. 2022. "Microstructural Characteristics and Strengthening Mechanisms of Ferritic–Martensitic Dual-Phase Steels: A Review" Metals 12, no. 1: 101. https://doi.org/10.3390/met12010101
APA StyleBadkoobeh, F., Mostaan, H., Rafiei, M., Bakhsheshi-Rad, H. R., & Berto, F. (2022). Microstructural Characteristics and Strengthening Mechanisms of Ferritic–Martensitic Dual-Phase Steels: A Review. Metals, 12(1), 101. https://doi.org/10.3390/met12010101