Effect of Natural Ageing on Subsequent Artificial Ageing of AA7075 Aluminum Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Vickers Hardness Test
3.2. Tensile Test
3.3. Identification of η’ and η2 Phases
3.4. Precipitate Size Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, W.; Ji, S.; Wang, M.; Li, Z. Precipitation behaviour of Al–Zn–Mg–Cu alloy and diffraction analysis from η′ precipitates in four variants. J. Alloy. Compd. 2014, 610, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Wen, K.; Fan, Y.; Wang, G.; Jin, L.; Li, X.; Li, Z.; Xiong, B. Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers. Mater. Des. 2016, 101, 16–23. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, R.; Wang, B.; Huang, M.; Lei, G.; Luo, F. Effects of aging on the microstructure and properties of 7075 Al sheets. Materials 2020, 13, 4022. [Google Scholar] [CrossRef] [PubMed]
- Staley, J.T.; Byrne, S.C.; Colvin, E.L.; Kinnear, K.P. Corrosion and stress-corrosion of 7XXX-W products. Mater. Sci. Forum. 1996, 217, 1587–1592. [Google Scholar] [CrossRef]
- Chen, S.; Chen, K.; Dong, P.; Ye, S.; Huang, L. Effect of recrystallization and heat treatment on strength and SCC of an Al–Zn–Mg–Cu alloy. J. Alloy. Compd. 2013, 581, 705–709. [Google Scholar] [CrossRef]
- Marlaud, T.; Baroux, B.; Deschamps, A.; Chemin, J.L.; Hénon, C. Understanding the compromise between strength and exfoliation corrosion in high strength 7000 alloys. Mater. Sci. Forum. 2006, 519, 455–460. [Google Scholar] [CrossRef]
- Berg, L.K.; Gjønnes, J.; Hansen, V.X.; Li, X.Z.; Knutson-Wedel, M.; Schryvers, D.; Wallenberg, L.R. GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 2001, 49, 3443–3451. [Google Scholar] [CrossRef]
- Hansen, V.; Gjønnes, J.; Skjervold, S. Effect of predeformation and preaging at room temperature in Al–Zn–Mg–(Cu, Zr) alloys. Mater. Sci. Eng. A 2001, 303, 226–233. [Google Scholar]
- Löffler, H.; Kovács, I.; Lendvai, J. Decomposition processes in Al-Zn-Mg alloys. J. Mater. Sci. 1983, 18, 2215–2240. [Google Scholar] [CrossRef]
- Guinier, A. Structure of age-hardened aluminium-copper alloys. Nature 1938, 142, 569–570. [Google Scholar] [CrossRef]
- Preston, G. The diffraction of X-rays by age-hardening aluminium copper alloys. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1938, 167, 526–538. [Google Scholar] [CrossRef]
- Buha, J.; Lumley, R.; Crosky, A. Secondary ageing in an aluminium alloy 7050. Mater. Sci. Eng. A 2008, 492, 1–10. [Google Scholar] [CrossRef]
- Schloth, P.; Deschamps, A.; Gandin, C.A.; Drezet, J.M. Modeling of GP (I) zone formation during quench in an industrial AA7449 75 mm thick plate. Mater. Des. 2016, 112, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Jiao, H.; Li, C. The HREM study of precipitates in an Al− Zn− Mg alloy. Adv. Perform. Mater. 1995, 2, 305–309. [Google Scholar] [CrossRef]
- Lee, S.H.; Jung, J.G.; Baik, S.I.; Seidman, D.N.; Kim, M.S.; Lee, Y.K.; Euh, K. Precipitation strengthening in naturally aged Al–Zn–Mg–Cu alloy. Mater. Sci. Eng. A 2021, 803, 140719. [Google Scholar] [CrossRef]
- Paulisch, M.C.; Treff, A.; Driehorst, I.; Reimers, W. The influence of natural aging and repeated solution annealing on microstructure and mechanical properties of hot extruded alloys Al 7020 and Al 7175. Mater. Sci. Eng. A 2018, 709, 203–213. [Google Scholar] [CrossRef]
- Liu, J.; Hu, R.; Zheng, J.; Zhang, Y.; Ding, Z.; Liu, W.; Sha, G. Formation of solute nanostructures in an Al–Zn–Mg alloy during long-term natural aging. J. Alloy. Compd. 2020, 691, 153572. [Google Scholar] [CrossRef]
- Ma, P.; Liu, C.; Chen, Q.; Wang, Q.; Zhan, L.; Li, J. Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy. J. Mater. Sci. Technol. 2020, 46, 107–113. [Google Scholar] [CrossRef]
- Zhang, P.; Shi, K.; Bian, J.; Zhang, J.; Peng, Y.; Liu, G.; Sun, J. Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al–Zn–Mg alloy. Acta Mater. 2021, 207, 116682. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Z.; Bai, S.; Zeng, D.; Luo, L.; Wang, J. Effects of natural aging on the formation and strengthening effect of GP zones in a retrogression and re-aged Al–Zn–Mg–Cu alloy. J. Alloy. Compd. 2020, 829, 154469. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, J.; Li, Z.; Luo, R.; Chen, B. Precipitation in an Al-Zn-Mg-Cu alloy during isothermal aging: Atomic-scale HAADF-STEM investigation. Mater. Sci. Eng. A 2017, 691, 60–70. [Google Scholar] [CrossRef]
- Chung, T.F.; Yang, Y.L.; Huang, B.M.; Shi, Z.; Lin, J.; Ohmura, T.; Yang, J.R. Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy. Acta Mater. 2018, 149, 377–387. [Google Scholar] [CrossRef]
- Wu, L.M.; Wang, W.H.; Hsu, Y.F.; Trong, S. Effects of microstructure on the mechanical properties and stress corrosion cracking of an Al-Zn-Mg-Sc-Zr alloy by various temper treatments. Mater. Trans. 2007, 48, 600–609. [Google Scholar] [CrossRef] [Green Version]
- Degischer, H.P.; Lacom, W.; Zahra, A.; Zahra, C.Y. Decomposition Processes in an Al--5% Zn--1% Mg Alloy. II.—Electromicroscopic Investigation. Z. Fur Met. 1980, 71, 231–238. [Google Scholar]
- Chung, T.F.; Yang, Y.L.; Tai, C.L.; Shiojiri, M.; Hsiao, C.N.; Tsao, C.S.; Yang, J.R. HR-STEM investigation of atomic lattice defects in different types of η precipitates in creep-age forming Al–Zn–Mg–Cu aluminium alloy. Mater. Sci. Eng. A 2021, 815, 141213. [Google Scholar] [CrossRef]
- Gjønnes, J.; Simensen, C.J. An electron microscope investigation of the microstructure in an aluminium-zinc-magnesium alloy. Acta Metall. 1970, 18, 881–890. [Google Scholar] [CrossRef]
- Chung, T.F.; Yang, Y.L.; Shiojiri, M.; Hsiao, C.N.; Li, W.C.; Tsao, C.S.; Yang, J.R. An atomic scale structural investigation of nanometre-sized η precipitates in the 7050 aluminium alloy. Acta Mater. 2019, 174, 351–368. [Google Scholar] [CrossRef]
- Li, X.Z.; Hansen, V.; Gjønnes, J.; Wallenberg, L.R. HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al–Zn–Mg alloys. Acta Mater. 1999, 47, 2651–2659. [Google Scholar] [CrossRef]
- ASTM E8/E8M-11; Standard Test Methods for Tension Testing of Metallic Materials. ASTM Book of Standards; ASTM International: West Conshohocken, PA, USA, 2011.
- Aboulfadl, H.; Deges, J.; Choi, P.; Raabe, D. Dynamic strain aging studied at the atomic scale. Acta Mater. 2015, 86, 34–42. [Google Scholar] [CrossRef]
- Sha, G.; Wang, Y.B.; Liao, X.Z.; Duan, Z.C.; Ringer, S.P.; Langdon, T.G. Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy. Acta Mater. 2009, 57, 3123–3132. [Google Scholar] [CrossRef]
- Wolverton, C. Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys. Acta Mater. 2001, 49, 3129–3142. [Google Scholar] [CrossRef]
Element | Zn | Mg | Cu | Cr | Mn | Si | Fe | Al |
---|---|---|---|---|---|---|---|---|
Alloy 7075 | 5.74 | 2.55 | 1.47 | 0.18 | 0.008 | 0.05 | 0.17 | Bal. |
Sample | NA-0d | NA-7d | ||||
---|---|---|---|---|---|---|
Ageing Time (h) | YS (MPa) | UTS (MPa) | EL (%) | YS (MPa) | UTS (MPa) | EL (%) |
0 h | 235 ± 3 | 441 ± 5 | 23.7 ± 0.9 | 347 ± 5 | 544 ± 7 | 24.2 ± 0.7 |
2 h | 435 ± 5 | 560 ± 6 | 19.9 ± 0.7 | 471 ± 4 | 570 ± 9 | 17.1 ± 0.5 |
10 h | 519 ± 4 | 591 ± 8 | 17.0 ± 0.6 | 514 ± 7 | 586 ± 11 | 15.1 ± 0.6 |
16 h | 538 ± 6 | 598 ± 11 | 16.9 ± 0.4 | 539 ± 8 | 601 ± 8 | 14.6 ± 0.3 |
24 h | 545 ± 8 | 598 ± 9 | 15.4 ± 0.5 | 539 ± 6 | 597 ± 7 | 15.3 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, C.-L.; Tai, P.-J.; Hsiao, T.-J.; Chiu, P.-H.; Tseng, C.-Y.; Tsao, T.-C.; Chung, T.-F.; Yang, Y.-L.; Chen, C.-Y.; Wang, S.-H.; et al. Effect of Natural Ageing on Subsequent Artificial Ageing of AA7075 Aluminum Alloy. Metals 2022, 12, 1766. https://doi.org/10.3390/met12101766
Tai C-L, Tai P-J, Hsiao T-J, Chiu P-H, Tseng C-Y, Tsao T-C, Chung T-F, Yang Y-L, Chen C-Y, Wang S-H, et al. Effect of Natural Ageing on Subsequent Artificial Ageing of AA7075 Aluminum Alloy. Metals. 2022; 12(10):1766. https://doi.org/10.3390/met12101766
Chicago/Turabian StyleTai, Cheng-Ling, Po-Jui Tai, Ting-Jung Hsiao, Po-Han Chiu, Chien-Yu Tseng, Tzu-Ching Tsao, Tsai-Fu Chung, Yo-Lun Yang, Chih-Yuan Chen, Shing-Hoa Wang, and et al. 2022. "Effect of Natural Ageing on Subsequent Artificial Ageing of AA7075 Aluminum Alloy" Metals 12, no. 10: 1766. https://doi.org/10.3390/met12101766
APA StyleTai, C.-L., Tai, P.-J., Hsiao, T.-J., Chiu, P.-H., Tseng, C.-Y., Tsao, T.-C., Chung, T.-F., Yang, Y.-L., Chen, C.-Y., Wang, S.-H., & Yang, J.-R. (2022). Effect of Natural Ageing on Subsequent Artificial Ageing of AA7075 Aluminum Alloy. Metals, 12(10), 1766. https://doi.org/10.3390/met12101766